Outline

Today:

- Design Patterns: Brute-Force and Greedy
- Counting Change Problem
- Pattern Matching Algorithms as Examples of 2 Design Patterns
- Brute Force
- Simplified Boyer-Moore
Design Patterns

What is a design pattern?

Design patterns we look at in this course:

- brute force
- divide and conquer
- recursive
- amortized
- greedy, usually involving “heuristics”
- branch and bound
- backtracking
- dynamic programming
Problem: Counting Change

Cashier has a collection of “coins” of various denominations
Want: return a specified sum using the smallest number of coins

Formally:

- A: sum to be returned
- n coins
- the coins, $P = \{p_1, p_2, p_3, \ldots, p_n\}$
- the denominations, $D = \{d_{p_1}, d_{p_2}, d_{p_3}, \ldots, d_{p_n}\}$
 (can have repetition (two dimes, three pennies))
- the change, $C \subset P$
- the selection, $S = \{s_i = 1$ if $p_i \in C$, 0 otherwise $\}$
- Want: minimize $\sum s_i$ (# of coins) such that $\sum d_{c_i} = A$
Counting Change: Example

- $A = 43$
- $n = 13$
- $P = \text{coins of different sizes}$
- $D = 10, 1, 1, 25, 10, 1, 5, 1, 1, 1, 5, 1, 1$
- $C = 10, 1, 1, 25, 1, 5$
- $S = 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0$
Solution: Brute-force Approach

Try all subsets of P:

- $S_1 = 1, 0, 1, 0, 0, 1, \ldots$
- $S_2 = 0, 1, 1, 1, 0, 0, \ldots$
- $S_3 = 1, 0, 1, 1, 1, 0, \ldots$
- \ldots
- How many possible subsets are there?

Feasible solution set: all S_i’s for which $\sum d_{c_i} = A$

Objective function: the S_i that minimizes $\sum s_i$

What is the time complexity to compute the sums?

Total time complexity of this approach:

- worst case:
- best case:
Bruce-force Algorithm

Solves a problem in the most simple, direct, or obvious way

• does not take advantage of structure or pattern in the problem
• usually involves exhaustive search of the solution space
• pro: often simple to implement
• con: usually not the most efficient way
Greedy Approach

Pick coin with largest denomination first:

- return largest coin p_i from P such that $d_{p_i} \leq A$
- $A - = d_{p_i}$
- find next largest coin

What is the time complexity of the algorithm?

Solution not necessarily optimal:

- consider $A = 20$ and $D = \{15, 10, 10, 1, 1, 1, 1, 1\}$
- greedy returns 6 coins, optimal requires only 2 coins!

Solution not guaranteed:

- consider $A = 20$ and $D = \{15, 10, 10\}$
- greedy picks 15 and finds no solution!
Greedy Approach

Algorithm decides what is the best thing to do at each step (local maxima), and never reconsiders its decisions

- pro: may run significantly faster than brute-force
- con: may not lead to the optimal (or even correct) solution (global maxima)

Usually requires some initial pre-computation to set up the problem, to take advantage of special structure/pattern in the problem or solution space
Pattern Matching

Given a text string \((T)\) of length \(n\), and a pattern string \((P)\) of length \(m\), determine if \(P\) is a substring of \(T\).

A match means:

\[
T[i] == P[0], \quad T[i+1] == P[1], \ldots, \quad T[i+m-1] == P[m-1]
\]

If match found, return \(i\) (first match)

Example strings:

- “The quick brown fox jumped over the lazy dog”
- “cagacagacagata”
- “1011110000101011100111100101”

Sugih Jamin (jamin@eecs.umich.edu)
Alphabet Space

The string doesn’t have to consist only of alphabets in a human language

Alphabet space Σ:

- English language: “The quick brown fox jumped over the lazy dog”
- DNA sequence: “cagacagacagata”
- binary data: “1011100001010111000111100101”

Alphabet size, $|\Sigma|$:

- English language: 26 alphabets
- DNA sequence: 4 characters (‘c’, ‘g’, ‘a’, ‘t’)
- binary data: 2 digits (‘1’, ‘0’)

Sugih Jamin (jamin@eecs.umich.edu)
Pattern Matching Algorithms

- Brute-force
- Simplified Boyer-Moore: greedy, but falls back to brute-force
- Knuth-Morris-Pratt: memoized
- Original Boyer-Moore: memoized
Brute-force Pattern Matching

T: a a b c b d a a a a b c a c b a a c
P: a c b a a c a c b a a c

What is the time complexity of the algorithm?
- best case: - worst case:

int // index of matching start in T
bfmatch(char *T, char *P) // T text, P pattern

Sugih Jamin (jamin@eecs.umich.edu)
Simplified Boyer-Moore: Intuition

T: a a b c b d a a a a b c a c b a a c
P: a c b a a c ; right-to-left
 a c b a a c ; skip no match
 3 2
 a c b a a c ; skip to rightmost match
 6 5 4
 a c b a a c ; falls back to brute force
 7
 a c b a a c ; skip to rightmost match
 13 8

Compare against 24 CMPs with brute-force

What is a **heuristic**?
Origin: *heuriskein* (Gr), to find, to discover, Archimedes: Heureka!
A process that may solve a given problem, but offers no guarantee of doing so (in terms of time and/or quality of solution, the opposite of algorithm); a *technique* that improves the average case but not necessarily the worst-case performance

Sugih Jamin (jamin@eecs.umich.edu)
Simplified-BM Algorithm

Heuristics used by the SBM algorithm:

- **SBM-0**: match pattern backwards
- when $T[k] \neq P[j]$:
 - **SBM-1**: if $T[k] \not\in P$, shift P to the right, past $T[k]$, restart matching from $T[k + m]$
 - **SBM-2**: if $T[k] \equiv P[l]$ and $T[k] \not\in P[l + 1, \ldots, m - 1]$ (rightmost l)
 - **SBM-2.1**: if $l < j$, shift P right to align $P[l]$ with $T[k]$, restart matching from $T[k + (m - 1 - l)]$ (shift right by l)
 - **SBM-2.2**: else $l > j$, shift P right by 1, restart matching from $T[k + (m - j)]$ (fall back to brute-force)
Simplified-BM Example

T: a a b c b d a a a a b c a c b a a c

P: a c b a a c ; d != c by SBM-0
 a c b a a c ; by SBM-1
 a c b a a c ; by SBM-2.1
 a c b a a c ; by SBM-2.2
 a c b a a c ; by SBM-2.1

T: a a b c b d a a a a b c a c b a a c

P: a c b a a c ; last[d] = -1
 a c b a a c ; last[b] = 2 < 4
 a c b a a c ; last[c] = 5 > 3
 a c b a a c ; last[b] = 2 < 5
 a c b a a c ; match!

Sugih Jamin (jamin@eecs.umich.edu)
Simplified-BM \texttt{last[]} Computation

How do you determine l?

Just as in the greedy count-change algorithm, pre-compute the information (heuristics) you need.

In this case, pre-compute l for every letter of the alphabet, store these in \texttt{last}[]:

- initialize each member of \texttt{last}[$|\Sigma|$] to -1
- go thru P in reverse to determine the last occurrence of each alphabet

For the example P in previous slide, \texttt{last}[]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
Simplified BM Time Complexity

What is the worst-case time complexity of the algorithm?

What is the average-case time complexity?
Works well for large alphabet, longish pattern with few different characters; empirically, for English words, SBM requires about $0.3n$ CMPs