Outline

Midterm next Thu, 10/25, 6-8 pm in DOW 1013
Review session Tue, 10/23, 6-8 pm in COOLG 906

Last time:

- Finished up LZW

Today:

- AVL Tree
- Amortized analysis
- Multi-way Search Tree
- 2-3 tree
- B-tree

Sugih Jamin (jamin@eecs.umich.edu)
Unbalanced Tree

Insert 1, 2, 3, 4, 5, 6, 7 into a BST

Insert 4, 2, 6, 1, 3, 5, 7 into a BST

From the second BST, remove 2, insert 9, insert 8, insert 11, remove 8, remove 3

Moral: even a balanced tree can become unbalanced after a number of insertions and removals

(Why is a balanced tree desirable?)

When is a tree said to be balanced?
Balanced Tree

A perfect binary tree of height h has exactly $2^{h+1} - 1$ internal nodes

Only trees with $n = 1, 3, 7, 15, 31, 63, \ldots$ internal nodes can be balanced

Need another definition of “balance condition”
Want the definition to satisfy the following criteria

1. height of tree of n nodes = $O(\log n)$
2. balance condition can be maintained efficiently: $O(1)$ to rebalance a tree

We will look at AVL-tree, 2-3 tree, and B-tree
AVL Tree

Adel’son-Vel’skiǐ-Landis (AVL) tree’s balance condition:
A non-empty binary tree is AVL balanced if both T_l and T_r are AVL balanced and

$$|h_l - h_r| \leq 1,$$

where h_l is height of T_l and h_r height of T_r.

Sugih Jamin (jamin@eecs.umich.edu)
AVL Tree Balance Condition

Does the AVL balance condition satisfy the desired criteria?

1. height of tree of \(n \) nodes = \(O(\log n) \)
2. balance condition can be maintained efficiently:
 \(O(1) \) to rebalance a tree

The AVL balance condition satisfies criterion 1:

Preiss Th. 10.2, p. 316: The height of an AVL tree with \(n \) internal nodes is \(\Theta(\log n) \)

Can the AVL balance condition be maintained in \(O(1) \)?
AVL Tree Insertion, Removal, and Balance Factor

Insert and remove operations exactly the same as for BST, but must “re-balance” the tree if AVL balance condition is violated after insertion/removal.

Define “balance factor” \((B_i) \) of a node \(i \) as \((h_{l_i} - h_{r_i}) \):

- if the tree rooted at node \(i \) is AVL balanced, \(|B_i| \leq 1 \)
- if \(T_{r_i} \) is deeper, \(B_i < -1 \)
- if \(T_{l_i} \) is deeper, \(B_i > 1 \)
If $|B_i| > 1$, there are four cases to consider depending on the direction of the imbalance from the unbalanced node: LL, LR, RL, and RR.

For example:

LL: a new node is added to u_l:

$B_u = 0 \rightarrow 1 \Rightarrow B_r = 2$,

which violates the AVL balance condition, and the tree rooted at r is now unbalanced.
Rebalancing AVL Tree

Want: rebalancing operation to be $O(1)$ time complexity

Preiss Th. 10.3, p. 322: When an AVL tree becomes unbalanced, *exactly* one single or double rotation is required to balance the tree

AVL rotations: from the node r that has become unbalanced ($|B_r| > 1$), do LL, RR, LR, or RL rotation depending on the direction of the imbalance from r

Rotate counter to the direction of traversal

For double (RL or LR) rotations, reverse the effect of the last traversal first

Must retain BST property at all times

Sugih Jamin (jamin@eecs.umich.edu)
Single LL Rotation

- L: rotate right: make r the right child of u
- L: rotate right: make u_r the left child of r

After LL Rotation

Note Errata for Preiss Fig. 10.8
Single RR Rotation

- R: rotate left: make r the left child of v
- R: rotate left: make v_l the right child of r
Double LR Rotation

- R: rotate left: do an RR rotation on u
- L: rotate right: do an LL rotation on r

Sugih Jamin (jamin@eecs.umich.edu)
Double RL Rotation

- L: rotate right: do an LL rotation on v
- R: rotate left: do an RR rotation on r

$Bw = -1$ after RR Rotation
$Bw = 1$ after LL Rotation

Sugih Jamin (jamin@eecs.umich.edu)
Exactly One Rotation Needed

Pf. of Preiss Th. 10.3:

- when adding a node, only the height of nodes in the access path between the root and the new node can be changed
- if adding a node doesn’t change the height of node \(i \) in the access path, no rotation is needed at \(i \) or its ancestors
- if height of \(i \) changes, it can either:
 - remains balanced: no rotation needed at \(i \), but may be necessary at its parent node (see LL figure)
 - becomes unbalanced: after one rotation, the height of (sub)tree previously rooted at \(i \) is the same as before insertion! so, none of its ancestors needs to be rebalanced
Deletion in AVL Tree

First delete node as with BST

Then update ancestors’ balance factors and rebalance as needed
Simple Amortized Analysis

- algorithm must “save up” some credits before it can “spend” them
- credits are paid out periodically in lump sum, instead of per-use

Analogy:

- “Mom, send some money” (or earn it)
- buy groceries once a week (pay lump sum)
- eat groceries every day (amortize/spread-out paid sum)
Example Amortized Analysis

Extensible hashing (dynamic hashing):

- hash table of size 2^M
- assume $O(1)$ operation to insert up to $M - 1$ items: total cost $O(M)$
- for item the M-th item, create new hash table of size $4M$, $O(1)$
- rehash all $M - 1$ items to the new table, $O(M)$
- insert new item, $O(1)$
- total cost to insert M items: $O(M + 1 + M + 1) = O(M)$
- so, average cost to insert M items is $O(1)$
- hash table doubling cost is amortized over individual insert

The periodic high cost may not be acceptable to some applications requiring smooth performance