Ceéan Data Structures
and Algorithms

Midterm Review: Week of Oct 17, 2011

Summary

* 93 Survey Responses

* 5 most-requested topics:
— Tries
— AA Trees
— Multi-Way Trees
— Red-Black Trees
— AVL Trees

Tries

* Consider implementing by a Trie
— Nodes don’t contain the character
just for demonstration
— Runtime of search ?
— Memory of Trie ?

Tries

* Given a dictionary with words {"A", "to", "tea
"ted", "ten", "i", "in”, and "inn”

* Consider implementing by a BST
— Runtime of search ?
— Memory of BST ?

’

Tries—Insert

void insert(String input, int len, tree t){
/*base case—inserting last character of input*/
if(len == 1){
if (! (t->children.contains (input.substr (0, 1)))){ //first char
t->children.add (input) ;
}

return;

/*recursive call—adding node if needed and
*calling insert with input as everything but the
*first letter of the input
*e.g. old input = dogs, new input = ogs
*/

if (! (t->children.contains (input.substr (0, 1)))){

t->children.add (input.substr (0, 1));

}

insert(input.substr(l, len - 1), len - 1, t->children.get(input.substr(0, 1));

}

AA Trees

Definition:

1) Every node is red or black

2) Root is black

3) External nodes are black

4) If a node is red, children must be black

5) Black height must be constant (number of black
nodes from a node to a leaf node is the same
regardless of path)

6) Left child cannot be red

AA Trees: Two Cases that Need
Correcting
* So, you're inserting or a node in the tree as

you normally would based upon the ordering
condition (e.g. R-> less than, L-> greater than)

* When you do this either you violate the
integrity of the tree or you don’t

* If you DON’T violate the integrity, you’re done

* When you DO violate the integrity, you’'ve
made one of two cases:

AA Tree Integrity Violation 1: Left
Horizontal Link

i.e.anode hasa G # 0

red left child/

neighbor A B ® A B ®

Node “L” is red

This violates the
integrity of an AA
Tree

How to ﬁx a Red Left Child?

With an operation called “skew”:

skew (...) {
-set red left child/neighbor (L) as parent/neighbor to old
parent/neighbor (T) (swap direction of pointer)
-set old parent/neighbor (T)’s old parent (dotted line) to
new parent/neighbor (L) as its child
-set new parent/neighbor (L)’s right subtree (B) as new
child/neighbor’s (T)’s left child

AA Tree Integrity Violation 2: Double
Right Horizontal Link

* (i.e. red node has a right red node)

red red

How to fix 2 Consecutive (Right) Reds?

@ ®

With an operation called “split”:

split (..){
-elevate middle red node (R) to a parent with it’s left/
neighbor (T) and right/neighbor (X) as children
-set old middle node’s (R) old children (B) as grandchildren
(make B a child of T)
}

Example

e Level 3
a H Level 2

0 00000

Insert J

[
o 00 .

0 00000

°
e 00 ..

0 0000060

eve
° M Level 2

00 ‘ee 0060

° Level 3
° H Level 2

0 00000000

Insert L

G Level 3
o6 000 ..

0 60000 000
y

e 0 Level 3
© 0 O ..

0 6600 000"

AA Trees—Deleting a Node: A little
Trickier

* Decrease the level (if needed)
o Find the node to delete; delete it.

o the deleted node’s parent is not on level 1 and now it
only has one child. So, swap the deleted node’s parent
with it’s remaining child and make the new child red—
this reduces the overall tree to have one fewer levels

* Call skew on (what was the root—since now
there’s multiple nodes at the top level)

* Call split on the new root that was created by
skew

Delete C

e ’ Level 3
° G ° Level 2

0 000 o 0 00

G o Level 3
© 0 O ..

0 000 000"

Delete D

e ° Level 3
° G ° Level 2
© 000 000"

e ’ Level 3
e 0 O..

0 000 000"

Delete D

e a Level 3
'@ 0 O .-

e a Level 3
e 0 O ..

Delete D

e 0 Level 3
@ 0 0.

e - 0 Level 2
- -

/ T vé Y
© 600 000"

Delete D

e ’ Level 2
0 O
/

Delete D

e 0 .
0 0

HGQ © 00

e 0 Level 2

0 000 000"

© 000 000"

O 000000

Delete D 2-3 Trees

Level 2

* Two types of nodes:
00 000 2 Node 3 Node

) (o o) (2 () G @
° L H Level 2

\ / o
0000000

-
—

Insertion Insertion
* Possible Cases:
* Possible Cases: — Inserting into 3-node leaf
— Inserting into 2-node leaf * Must split the 3-node
* Just insert number * Promote middle

* If promotion changes 2-node to a 3-node you’re done
* Otherwise keep splitting

°Se0B® | Ja samses

Insertion
* Splitting with children

— Left sibling adopts left-most children
— Right sibling adopts right-most children

Insert 20

Insert 20

o:e@
ETTEM
- @

Deletion

1) If node to delete is not a leaf, swap with in
order successor. Now you are deleting from a
leaf

2) If you’re deleting from a 3-node, delete and
you’re done

3) If you're deleting from a 2-node, need to
either merge or rotate

Deletion - Merge

* Merge if sibling is a 2-node

)

Merge to the

S L le

=

~

Q Merge ’
—>
-
L
S

Delete 90

oee?ee@
o

o G @
OEEEEE®

Delete 90

J

Delete 90

Deletion - Rotate

* Rotate if sibling is a 3-node

e Rotate G

Deletion

* What if one sibling is a 3-node and one is a 2-
node

— Take your pick you can either merge with the 2-
node or rotate with the 3-node

— Whatever is easiest for you

2-3-4 Trees

* 3 types of nodes
2 node 3 node 4 node

Insertion

* Traverse through the tree and insert just like a
binary tree

* Every 4-node you pass: pre-split

* Pre-split is same as splitting a 4-node in a 2-3
tree

G
(DG (D) (o

Insertion

Pre-split 4 nodes

A

(10 20) (40 5060)
a)

(

Deletion

* Preemptively turn 2-nodes in 3 and 4-nodes
— This way deletion can be done in one pass
— Rotate if sibling is not a 2-node

Remove Z

— Merge if sibling is a 2-node

¢ N is a 2 node. We must fix it.
Sibling is a 2 node so Merge

Remove Z

ot @

Zis a 2 node. We must fix it.
Sibling is a 3 node so Rotate

a6

Remove Z

Sa 0

Red-Black Trees

* Converts 2-4 trees into binary trees

* Red-Black Trees are BSTs where every node is

colored red or black

Converting from 2-4 to red-black

®
SHI® ,

éﬁq

Converting from 2-4 to red-black

* 2 Node becomes a black node
[] o

* 3 Node becomes a black node with one red

child
EXH or

* 4 Node becomes a black node with 2 re
children

a bc

Red-Black Properties

Every node is either red or black
The root is black
External Nodes (nulls) are black

If a node is red, both children are black

number of black nodes (the black height)

Every path from a node to a null has the same

Example Red-Black Tree

Root node is black >
Red nodes

have black -
chlldren

™~
ﬁ
Fz ﬁ<® ® Ll
Null nodes are black

- Every node is either red or black
- Each path from root to null have the same number of black nodes.

Red-Black Tree Insertion

* Insert like a regular binary search tree.
* Inserted node is always red.
* Then fix the tree using 4 steps (really just 3).

Red-Black Trees Insertion

* Step 1
— If the root is red, color it black.

>

o

Red-Black Trees Insertion

* Step 2 (not really a step)
— If the parent is black, then you are done.

e N

Red-Black Trees Insertion

* Step 3
— If parent is red, and uncle is red:
— Paint parent and uncle black
— Paint grandparent red

Red-Black Trees Insertion

» Step 4
— If parent is red, and uncle is black:
— Rotate on parent (if necessary)
— Rotate on grandparent, paint gp red, parent black

Removal

* If removing red leaf, just remove and you’re done

* Ifitis a single child parent, must be black. Delete,
and recolor it’s child (which must be red) black.

* If the node has two children, swap node with in
order successor
— If in-order successor is red, remove it and you’re done

— If in-order is a single child parent, apply previous rule

Example

* Remove S

Example

Q * Remove X

Q b * Deleteit
000 o

Q)

Example
Q * Remove X
e O
000 o
° 0
®
Example
Q * Remove X
Q b * Delete it

G G e Q * Recolor child
(1) ° black

AVL Trees

* Balanced Trees

* Have a height constraint. For each node, the
difference in height of the left and right
subtree must be -1, 0, or 1

Rotations

Right Rotation o 0
>

- ,
A e Left Rotation

AVL Rotation: The Breakdown

Note: “P” is the root
Left Rotation:

-Let Q be P's right child.

-Set Q to be the new root.

-Set P's right child to be Q's left child.
-Set Q's left child to be P.

Right Rotation:

-Let P be Q's left child.

-Set P to be the new root.

-Set Q's left child to be P's right child.
-Set P's right child to be Q.

AVL Rotation: THE CHEATSHEET

Case (what this case is What to do
called)

Right-Right -Right subtree outweighs 1) Left rotation on root
left subtree
-Balance factor of root’s
right is -1

Right-Left -Right subtree outweighs 1) Right rotation on right
left subtree 2) Left rotation on root
-Balance factor of root’s
right is +1

Left-Left -Left subtree outweighs the 1) Right rotation on root
right subtree
-Balance factor Of root’s
leftis +1

Left-Right -Left subtree outweighs the 1) Left rotation on left
right subtree 2) Right rotation on root
-Balance factor of root’s
left is -1

Rotations

Left Right Case Right Left Case

A
AR
4

5

Balanced Balanced

asl

b4k [AhZAK

“ o

Practice AVL Tree

Practice AVL Tree

Practice AVL Tree

Practice AVL Tree

Practice AVL Tree

* Inserting and deleting are the same as in
binary search trees.

e Use rotation to fix balance issues

