
Lecture 12: AA Trees!

Treaps!

AA-Trees!
The implementation and number of rotation cases in
Red-Black Trees is complex!

AA-trees:!
•! fewer rotation cases so easier to code, especially deletions

(eliminates about half of the rotation cases)!

•! named after its inventor Arne Andersson (1993),"
an optimization over original definition of Binary B-trees "
(BB-trees) by Bayer (1971)!

AA-trees still have O(log n) searches in the worst-
case, although they are slightly less efficient empirically!

Demo: http://www.cis.ksu.edu/~howell/viewer/viewer.html!

[McCollam]!

AA-Tree Ordering Properties!

An AA-Tree is a binary search tree with all the
ordering properties of a red-black tree: !
1.! Every node is colored either red or black!

2.! The root is black!
3.! External nodes are black!
4.! If a node is red, its children must be black!
5.! All paths from any node to a descendent leaf

must contain the same number of black nodes
(black-height, not including the node itself)!

 PLUS!
6.! Left children may not be red!

[McCollam]!

An AA-Tree Example!

No left red children!!

Half of red-black tree rotation cases eliminated!!

(Which M-way trees are AA-trees equivalent to?)!

30

15

5 20

35

50

65

85

60

40

10

70

90

55

80

[McCollam]!

Representation of Balancing Info!

The level of a node (instead of color) is used as
balancing info!
•! “red” nodes are simply nodes that located at the same

level as their parents!

For the tree on the previous slide:!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

[McCollam]!

Redefinition of “Leaf” !

Both the terms leaf and level are redefined:!

A leaf in an AA-tree is a node with no black
internal-node as children!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

[McCollam]!

all leaf nodes!

Redefinition of “Level” !

The level of a node in an AA-tree is:!
•! leaf nodes are at level 1!
•! red nodes are at the level of their parent!
•! black nodes are at one less than the level of their parent!
•! as in red-black trees, a black node corresponds to a level change

in the corresponding 2-3 tree!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1!

Level 2!

Level 3!

[McCollam]!

Implications of Ordering Properties!

1.!Horizontal links are right links!
•!because only right children may be red!

2.!There may not be double horizontal links!
•!because there cannot be double red nodes!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

[McCollam]!

Implications of Ordering Properties!

3.!Nodes at level 2 or higher must have two children!

4.!If a node does not have a right horizontal link, its
two children are at the same level!

[McCollam]!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1!

Level 2!

Level 3!

Implications of Ordering Properties!

5.! Any simple path from a black node to a leaf
contains one black node on each level!

[McCollam]!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1!

Level 2!

Level 3!

Example: Insert 45!

First, insert as for simple binary search tree!
Newly inserted node is red!

45

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

[McCollam]!

Example: Insert 45!

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

45

After insert to right of 40:!

Problem: double right horizontal links
starting at 35, need to split!

[McCollam]!

Split: Removing Double Reds!

Problem: With G
inserted, there
are two reds in a
row!

Split is a simple
left rotation
between X and P!

P’s level increases
in the AA-tree !

A

PX

B

G

[McCollam]!

A

X

B

G

A

P

X

B

G

P

Example: Insert 45!

After split at 35:!
Problem: left horizontal link at 50
is introduced, need to skew!

65 55

85

90 80

30

15

5 20 35

50 40

10

70

60

45

[McCollam]!

Skew: Removing Left Horizontal Link!

Problem: left horizontal
link in AA-tree!

Skew is a simple right
rotation between X and P!

P remains at the same
level as X!

A

P

B

X

C

[McCollam]!

A B C

A

XP

B C

P X

After skew at 50:!
Problem: double right horizontal links
starting at 40, need to split!

Example: Insert 45!

65 55

85

90 80

30

15

5 20 35

50 40

10

70

60

45

[McCollam]!

X P

A B

G
X

P

A B

G

split!

After split at 40:!
Problem: left horizontal link at 70 introduced
(50 is now on same level as 70), need to skew!

Example: Insert 45!

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

[McCollam]!

P X

A B C

P X

A B C

skew!

After skew at 70:!
Problem: double right horizontal links
starting at 30, need to split!

Example: Insert 45!

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

[McCollam]!

X P

A B

G
X

P

A B

G

split!

Example: Insert 45!

After split at 30:!
Insertion is complete (finally!)!

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

[McCollam]!

void AATree::!

insert(Link &root, Node &add) {!

if (root == NULL) // have found where to insert y!

root = add;!

else if (add!key < root!key) // <= if duplicate ok!

insert(root!left, add);!

else if (add!key > root!key)!

insert(root!right, add);!

// else handle duplicate if not ok!

skew(root); // do skew and split at each level!

split(root);!
}!

AATree::Insert()!

[McCollam]!

Skew: Remove Left Horizontal Link!

P X

A B C

P X

A B C

skew!

void AATree::skew(Link &root) { // root = X!

if (root!left!level == root!level)!

rotate_right(root);!

}!

[Lee,Andersson]!

Split: Remove Double Reds!

[Lee,Andersson]!

X P

A B

G

X

P

A B

G

split!

void AATree::split(Link &root) { // root = X!

if (root!right!right!level == root!level)!

rotate_left(root);!

}!

More on Skew and Split!

Skew may cause double reds!
•!first we apply skew, then we do split if necessary!

After a split, the middle node increases a level,
which may create a problem for the original parent!
•!parent may need to skew and split!

[Lee]!

AA-Tree Removal!

Rules:!

1.! if node to be deleted is a red leaf, e.g., 10, remove leaf, done!

2.! if it is parent to a single internal node, e.g., 5, it must be black;
replace with its child (must be red) and recolor child black!

3.! if it has two internal-node children, swap node to be deleted
with its in-order successor!
•! if in-order successor is red (must be a leaf), remove leaf, done!
•! if in-order successor is a single child parent, apply second rule!

In both cases the resulting tree is a legit AA-tree"
(we haven’t changed the number of black nodes in paths)!

3.! if in-order successor is a black leaf, or if the node to be
deleted itself is a black leaf, things get complicated . . .!

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

Black Leaf Removal!
Follow the path from the removed node to the root!
At each node p with 2 internal-node children do:!
•! if either of p’s children is two levels below p!
•! decrease the level of p by one!
•! if p’s right child was a red node, decrease its level also!
•! skew(p); skew(p!right); skew(p!right!right);!
•! split(p); split(p!right);!

In the worst case, deleting one leaf node, e.g., 15, could
cause six nodes to all be at one level, connected by
horizontal right links!
•!but the worst case can be"
resolved by 3 calls to"
skew(), followed by 2"
calls to split()!!

85 90

30

15
50

70

60

[Andersson,McCollam]!

Black Leaf Removal!

[Andersson,McCollam]!

65 55

85

90 80

30

15

5 20 35

50

70

60

Level 1!

Level 2!

Level 3!

65 55

85

90 80

30

15

20 35

50

70

60

Level 1!

Level 2!

Level 3!

Remove 5:"
decrease 15’s level !

p!

p!

Black Leaf Removal!

65 55

85

90 80

30

15 20 35

50

70

60

Level 1!

Level 2!

Level 3!

65 55

85

90 80

30

15 20 35

50

70

60

Level 1!

Level 2!

decrease level !

skew(p)! skew(p!right)!

[Andersson,McCollam]!

p!

p!

Black Leaf Removal!

65 55

85

90 80

30

15 20 35

50 70

60

Level 1!

Level 2!

skew(p!right!right)!

65 55

85

90 80

30

15 20 35

50 70 60

Level 1!

Level 2!

split(p)!

[Andersson,McCollam]!

p!

p!

Black Leaf Removal!

65 55

85

90 80

30

15 20 35

50

70 60

Level 1!

Level 2!

split(p!right)!
Level 3!

65 55

85

90 80

30

15 20 35

50 70

60

Level 1!

Level 2!

Level 3!

[Andersson,McCollam]!

p!

p!

AA-Tree
Implementation!

[Andersson]!

Balanced BST Summary!
AVL Trees: maintain balance factor by rotations!

2-3 Trees: maintain perfect trees with variable node
sizes using rotations!

2-3-4 Trees: simpler operations than 2-3 trees due
to pre-splitting and pre-merging nodes,
wasteful in memory usage!

Red-black Trees: binary representation of 2-3-4
trees, no wasted node space but
complicated rules and lots of cases!

AA-Trees: simpler operations than red-black trees,
binary representation of 2-3 trees!

Randomized Search Trees!

Motivations:!
•!when items are inserted in order into a BST, "

worst-case performance becomes O(n)!

•!balanced search trees either waste space or requires
complicated (empirically expensive) operations or both!

•!randomly permuting items to be inserted would ensure good
performance of BST with high probability, but randomly
permuting input is not always possible/practical, instead . . .!

Randomized search trees balance the trees
probabilistically instead of maintaining balance
deterministically!

A treap is a binary tree that:!

•!has a key associated with each of its internal node:!
•! the key in any node is > the keys in all nodes in its left subtree

and < the keys in all nodes in its right subtree!
•! i.e., internal nodes are arranged in in-order"

with respect to their keys!

•!and simultaneously has a priority associated "
with each of its internal node:!
•! the priority of a parent is higher than those of its descendants!
•! i.e., internal nodes are arranged in heap-order"

with respect to their priorities!

A treap is a BST with heap-ordered priorities (but it is not
a heap as it is not required to be a complete binary tree)!

Treaps! Example of a Treap!

assuming min-heap
ordering of the priorities:!

f /9!

z/11!

m/7!

n/8!

d/6!

k/3!

a/12! l/15!

T :

1.! a new item to be inserted into a treap"
is given a random, unique priority (no
duplicates)!

2.! the new item is then inserted into a
treap as a leaf node, just like it would"
be under a standard BST!

3.! if its priority violates the heap-order
property of the treap, the new node is
rotated up until it is in the correct
heap-order priority, using one or "
more single left- or right-rotation!

Example: insert (p/5) into the
example treap!

Treaps: Insert!

z/11!

m/7!

p/5!l/15!

n/8!

z/11!

m/7!

n/8!l/15!

p/5!

p/5!

m/7!

n/8!l/15!

z/11!

z/11!m/7!

n/8!l/15!

p/5!

Example Treap with p/5 Inserted!

assuming min-heap
ordering of the priorities:!

T :

f /9!

l/15!

p/5!

z/11!

d/6!

k/3!

a/12!

n/8!

m/7!

Exact reverse of insert:!

1.! Rotate the node to be deleted such
that its child with larger priority
becomes the new parent!

2.! continue rotating until the node to
be deleted is a leaf node!

3.! delete the leaf node!

Example: delete (p/5) from the
example treap!

Treaps: Delete!

z/11!

m/7!

p/5!l/15!

n/8!

z/11!

m/7!

n/8!l/15!

p/5!

p/5!

m/7!

n/8!l/15!

z/11!

z/11!m/7!

n/8!l/15!

p/5!

Standard BST search!

If it is desirable to keep frequently accessed items
near the root, e.g., when the treap is used to
maintain a cache, whenever an item is accessed,
assign the item a new random number that gives it
a higher priority and, if necessary, rotate its node
up to maintain heap-order!

If it is desirable for the treap of a set of keys to be
unique, use one-way hash function on keys to
generate priorities!

Treaps: Search!

Runtime Complexity!

Various metrics to measure the
complexity of an algorithm:!
•!asymptotic worst-case bound!

•!average-case bound!

•!amortized bound!

•!probabilistic expected-case bound!

The expected depth of any node is O(log n) ! the
expected running time of search, insert, delete (and
tree split and join) are all O(log n)!

The expected number of rotations per insertion or
deletion is less than 2 ⇒ fast implementation!

Proof: relies on probabilistic analysis that is beyond
the scope of this course . . .!

Calls to random number generator usually incur
non-trivial cost!

Treaps Running Time!

Treap Exercise!

Insert F, E, D, C, B, A with random priorities!
•!assuming min-heap ordering of the priorities!

