EECH

DATA STRUCTURES

AND ALGORITHMS

Lecture 12: AA Trees
Treaps

AA-Trees

The implementation and number of rotation cases in
Red-Black Trees is complex

AA-trees:

- fewer rotation cases so easier to code, especially deletions
(eliminates about half of the rotation cases)

+ named after its inventor Arne Andersson (1993),
an optimization over original definition of Binary B-trees
(BB-trees) by Bayer (1971)

AA-trees still have O(log n) searches in the worst-
case, although they are slightly less efficient empirically

Demo: http://www.cis.ksu.edu/~howell/viewer/viewer.html

[McCollam]

AA-Tree Ordering Properties

An AA-Tree is a binary search tree with all the
ordering properties of a red-black tree:

iAW

Every node is colored either red or black
The root is black

External nodes are black

If a node is red, its children must be black

All paths from any node to a descendent leaf

must contain the same number of black nodes

(black-height, not including the node itself)
PLUS

Left children may not be red

[McCollam]

An AA-Tree Example

oo

No left red children!
Half of red-black tree rotation cases eliminated!
(Which M-way trees are AA-trees equivalent to?)

[McCollam]

Representation of Balancing Info

The level of a node (instead of color) is used as
balancing info

* “red” nodes are simply nodes that located at the same
level as their parents

For the tree on the previous slide:

.
W s
\\

[McCollam]

Redefinition of “Level”

The level of a node in an AA-tree is:
« leaf nodes are at level 1
« red nodes are at the level of their parent

« black nodes are at one less than the level of their parent

- as in red-black trees, a black node corresponds to a level change
in the corresponding 2-3 tree

Level 3

Level 2

[McCollam]

Redefinition of “Leaf”

Both the terms leaf and level are redefined:

A leaf in an AA-tree is a node with no black
internal-node as children

all leaf nodes

[McCollam]

Implications of Ordering Properties

|. Horizontal links are right links
* because only right children may be red

2. There may not be double horizontal links
 because there cannot be double red nodes

/ 85
5 210 @<@ 50 B o0

[McCollam]

Implications of Ordering Properties

3. Nodes at level 2 or higher must have two children

4. If a node does not have a right horizontal link, its
two children are at the same level

Level 3

Level 2

[McCollam]

Implications of Ordering Properties

5. Any simple path from a black node to a leaf
contains one black node on each level

Level 3

Level 2

[McCollam]

Example: Insert 45

First, insert as for simple binary search tree
Newly inserted node is red

//, 85
000 ¢ o 5 O

[McCollam]

Example: Insert 45

After insert to right of 40:

Problem: double right horizontal links
starting at 35, need to split

[McCollam]

Split: Removing Double Reds

Problem: With G —0@
inserted, there

are two reds in a

row

/
Split is a simple (G
left rotation
between X and P

P
,)
P’s level increases X G

in the AA-tree A

[McCollam]

Example: Insert 45

After split at 35:

Problem: left horizontal link at 50
is introduced, need to skew

[McCollam]

Skew: Removing Left Horizontal Link

Problem: left horizontal o/
link in AA-tree
£ AN

Skew is a simple right

rotation between X and P / /
P remains at the same 7\
level as X A B\/C

B

[McCollam]

Example: Insert 45

After skew at 50:

Problem: double right horizontal links
starting at 40, need to split

split

!

[McCollam]

Example: Insert 45 § Z AW KEA

After split at 40:

Problem: left horizontal link at 70 introduced
(50 is now on same level as 70), need to skew

o o

[McCollam]

Example: Insert 45

After skew at 70:

Problem: double right horizontal links
starting at 30, need to split

[McCollam]

Example: Insert 45

After split at 30:
Insertion is complete (finally!)

[McCollam]

AATree: :Insert()

void AATree::
insert(Link &root, Node &add) {
if (root == NULL) // have found where to insert y
root = add;
else if (add—key < root—key) // <= if duplicate ok
insert(root—left, add);
else if (add—key > root—key)
insert(root—right, add);
// else handle duplicate if not ok

skew(root); // do skew and split at each level
split(root);

[McCollam]

Skew: Remove Left Horizontal Link

nymn

void AATree::skew(Link &root) { // root = X
if (root—*left—>level == root—level)
rotate right(root);

[Lee,Andersson]

Split: Remove Double Reds

000 g

)

void AATree::split(Link &root) { // root = X
if (root—*right—*right—>level == root—>level)
rotate left(root);

[Lee,Andersson]

More on Skew and Split

Skew may cause double reds
« first we apply skew, then we do split if necessary

After a split, the middle node increases a level,
which may create a problem for the original parent
* parent may need to skew and split

[Lee]

AA-Tree Removal

Rules:
I.if node to be deleted is a red leaf, e.g., 10, remove leaf, done

2.if it is parent to a single internal node, e.g., 5, it must be black;
replace with its child (must be red) and recolor child black

3.if it has two internal-node children, swap node to be deleted
with its in-order successor
« if in-order successor is red (must be a leaf), remove leaf, done
* if in-order successor is a single child parent, apply second rule

In both cases the resulting tree is a legit AA-tree

(we haven’t changed the number of black nodes in paths)

3. if in-order successor is a black leaf, or if the node to be
deleted itself is a black leaf, things get complicated ...

Black Leaf Removal

Follow the path from the removed node to the root
At each node p with 2 internal-node children do:
- if either of p’s children is two levels below p

+ decrease the level of p by one

« if p’s right child was a red node, decrease its level also
« skew(p); skew(p—right); skew(p—right—right);
« split(p); split(p—right);
In the worst case, deleting one leaf node, e.g., 15, could
cause six nodes to all be at one level, connected by
horizontal right links
* but the worst case can be

resolved by 3 calls to
skew(), followed by 2 @

calls to split()! [Andersson,McCollam]

Black Leaf ReTovaI
Level 3

tevel2 . (OIN_. 7@ R
Level 10

Remove 5:
decrease 15’s level
PN\

Level 3

Level 2

Level 1 @

[Andersson,McCollam]

Black Leaf Removal
p\ decrease level

Level 3

Level 2

Level 1

skew(p—>right)

Level 2

Level 1

[Andersson,McCollam]

Black Leaf Removal . .
PN\ N

Level 2

Level 2

Level 1

[Andersson,McCollam]

Black Leaf Removal

Level 3 split(p—>right)

Level 2

Level 1

Level 3

Level 2

Level 1

[Andersson,McCollam]

AA-Tree
Implementation

[Andersson]

procedure Skew (var t: Tree)
var temp: Tree
begin
if t].left] level = t].level then
begin { rotate right }

temp = t
ti= t].left
temp | left t].right:
t].right := temp:
end
end

procedure Split (var t: Tree)
var temp: Tree

if t] right | right | level = t] level then
begin { rotate left }
temp = t:
t t].right:
temp |.right t].left
t].left temp
t].level := t] level + 1
end
end

procedure Insert (var x: data:
var t: Iree: var ok: hoolean)

begin
if t = hottom then begin
new (t)
t] key X;
t].left hottom:
t].right := bottom

t.devel := 1
ok = true
end else begin
if x < t].key then
Ins

(x. t].left. ok)
> t] ke

false:

¢
Skew (t):
Split {t)
end

end

procedure Delete (var x: data:
var t: Iree: var ok: boolean):
begin
ok false:
ift <> bottom then begin

{ 1: Search down the tree and }
{ set pointers last and deleted. }
last t
if x < t].key then
Delete (x. t].left. ok)
else begin
deleted := t
Delete (x. t].right. ok):
end

{ 2: At the hottom of the tree we }

{ remove the element (if it is present). }
if (t = last) and (deleted <> bottom)
and (x = deleted] key) then
begin

deleted].key = t].key
deleted := hottom:

{ 3: On the way back. we rehalance. }
else if (t].left] level < t].level 1)
or (t] .right] level < t].level 1) then
begin
t].level t].level -1
if t].right].level > t].level then
ght|.level t] level:

Skew (t)
Skew (t].right)

Skew (t].right].right)
Split (t)

Split (t].right)

end
end:
end:

Balanced BST Summary

AVL Trees: maintain balance factor by rotations

2-3 Trees: maintain perfect trees with variable node
sizes using rotations

2-3-4 Trees: simpler operations than 2-3 trees due
to pre-splitting and pre-merging nodes,
wasteful in memory usage

Red-black Trees: binary representation of 2-3-4
trees, no wasted node space but
complicated rules and lots of cases

AA-Trees: simpler operations than red-black trees,
binary representation of 2-3 trees

Randomized Search Trees

Motivations:

* when items are inserted in order into a BST,
worst-case performance becomes O(n)

* balanced search trees either waste space or requires
complicated (empirically expensive) operations or both

* randomly permuting items to be inserted would ensure good
performance of BST with high probability, but randomly
permuting input is not always possible/practical, instead . . .

Randomized search trees balance the trees
probabilistically instead of maintaining balance

deterministically

Treaps

A treap is a binary tree that:

* has a key associated with each of its internal node:
« the key in any node is > the keys in all nodes in its left subtree
and < the keys in all nodes in its right subtree
* i.e,, internal nodes are arranged in in-order
with respect to their keys

* and simultaneously has a priority associated
with each of its internal node:
« the priority of a parent is higher than those of its descendants
* i.e,, internal nodes are arranged in heap-order
with respect to their priorities

A treap is a BST with heap-ordered priorities (but it is not
a heap as it is not required to be a complete binary tree)

Example of a Treap

assuming min-heap
ordering of the priorities:
T:

Treaps: Insert D,

I. a new item to be inserted into a treap @3 Gus)
is given a random, unique priority (no
duplicates)

(1D
2. the new item is then inserted into a <D / D
treap as a leaf node, just like it would
be under a standard BST @ @
3. if its priority violates the heap-order (pis)
property of the treap, the new node is
rotated up until it is in the correct / @

heap-order priority, using one or
more single left- or right-rotation (mi7) D
 —
Example: insert (p/5) into the () D
example treap @ @D G Gr)

Example Treap with p/5 Inserted

assuming min-heap
ordering of the priorities:
T:

Treaps: Delete

Exact reverse of insert:

I. Rotate the node to be deleted such
that its child with larger priority
becomes the new parent

2. continue rotating until the node to
be deleted is a leaf node

3. delete the leaf node

Example: delete (p/5) from the
example treap

Treaps: Search
Standard BST search

If it is desirable to keep frequently accessed items
near the root, e.g., when the treap is used to
maintain a cache, whenever an item is accessed,
assign the item a new random number that gives it
a higher priority and, if necessary, rotate its node
up to maintain heap-order

If it is desirable for the treap of a set of keys to be
unique, use one-way hash function on keys to
generate priorities

Runtime Complexity

Various metrics to measure the

complexity of an algorithm:

* asymptotic worst-case bound

* average-case bound

* amortized bound

* probabilistic expected-case bound

Treaps Running Time

The expected depth of any node is O(log n) = the
expected running time of search, insert, delete (and
tree split and join) are all O(log n)

The expected number of rotations per insertion or
deletion is less than 2 = fast implementation

Proof: relies on probabilistic analysis that is beyond
the scope of this course . . .

Calls to random number generator usually incur
non-trivial cost

Treap Exercise

Insert F, E, D, C, B, A with random priorities
* assuming min-heap ordering of the priorities

