AA-Trees

The implementation and number of rotation cases in Red-Black Trees is complex

AA-trees:
• fewer rotation cases so easier to code, especially deletions (eliminates about half of the rotation cases)
• named after its inventor Arne Andersson (1993), an optimization over original definition of Binary B-trees (BB-trees) by Bayer (1971)

AA-trees still have $O(\log n)$ searches in the worst-case, although they are slightly less efficient empirically

Demo: http://www.cis.ksu.edu/~howell/viewer/viewer.html

AA-Tree Ordering Properties

An AA-Tree is a binary search tree with all the ordering properties of a red-black tree:
1. Every node is colored either red or black
2. The root is black
3. External nodes are black
4. If a node is red, its children must be black
5. All paths from any node to a descendent leaf must contain the same number of black nodes (black-height, not including the node itself)
 PLUS
6. Left children may not be red

An AA-Tree Example

No left red children!
Half of red-black tree rotation cases eliminated!
(Which M-way trees are AA-trees equivalent to?)
Representation of Balancing Info

The level of a node (instead of color) is used as balancing info

- “red” nodes are simply nodes that located at the same level as their parents

For the tree on the previous slide:

Redefinition of “Leaf”

Both the terms leaf and level are redefined:

A leaf in an AA-tree is a node with no black internal-node as children

Redefinition of “Level”

The level of a node in an AA-tree is:

- leaf nodes are at level 1
- red nodes are at the level of their parent
- black nodes are at one less than the level of their parent
 - as in red-black trees, a black node corresponds to a level change in the corresponding 2-3 tree

Implications of Ordering Properties

1. Horizontal links are right links
 - because only right children may be red

2. There may not be double horizontal links
 - because there cannot be double red nodes
Implications of Ordering Properties

3. Nodes at level 2 or higher must have two children
4. If a node does not have a right horizontal link, its two children are at the same level

Example: Insert 45
First, insert as for simple binary search tree
Newly inserted node is red

Example: Insert 45
After insert to right of 40:
Problem: double right horizontal links starting at 35, need to split
Split: Removing Double Reds

Problem: With G inserted, there are two reds in a row

Split is a simple left rotation between X and P

P’s level increases in the AA-tree

Example: Insert 45

After split at 35:

Problem: left horizontal link at 50 is introduced, need to skew

Skew: Removing Left Horizontal Link

Problem: left horizontal link in AA-tree

Skew is a simple right rotation between X and P

P remains at the same level as X

Example: Insert 45

After skew at 50:

Problem: double right horizontal links starting at 40, need to split

Example: Insert 45

After split at 40:
Problem: left horizontal link at 70 introduced (50 is now on same level as 70), need to skew

Example: Insert 45

After skew at 70:
Problem: double right horizontal links starting at 30, need to split

Example: Insert 45

After split at 30:
Insertion is complete (finally!)

Example: Insert 45

AATree::Insert()

```cpp
void AATree::Insert(Link &root, Node &add) {
  if (root == NULL) // have found where to insert y
    root = add;
  else if (add.key < root.key) // <= if duplicate ok
    insert(root.left, add);
  else if (add.key > root.key)
    insert(root.right, add);
  // else handle duplicate if not ok
  skew(root); // do skew and split at each level
  split(root);
}
```
More on Skew and Split

Skew may cause double reds
• first we apply **skew**, then we do **split** if necessary

After a **split**, the middle node increases a level, which may create a problem for the original parent
• parent may need to **skew** and **split**

AA-Tree Removal

Rules:
1. if node to be deleted is a red leaf, e.g., 10, remove leaf, done
2. if it is parent to a single internal node, e.g., 5, it must be black; replace with its child (must be red) and recolor child black
3. if it has two internal-node children, swap node to be deleted with its in-order successor
 • if in-order successor is red (must be a leaf), remove leaf, done
 • if in-order successor is a single child parent, apply second rule
In both cases the resulting tree is a legit AA-tree
 (we haven’t changed the number of black nodes in paths)
3. if in-order successor is a black leaf, or if the node to be deleted itself is a black leaf, things get complicated ...
Black Leaf Removal

Follow the path from the removed node to the root
At each node \(p \) with 2 internal-node children do:
• if either of \(p \)'s children is two levels below \(p \)
 • decrease the level of \(p \) by one
• if \(p \)'s right child was a red node, decrease its level also
• skew(\(p \)); skew(\(p \rightarrow \text{right} \)); skew(\(p \rightarrow \text{right} \rightarrow \text{right} \));
• split(\(p \)); split(\(p \rightarrow \text{right} \));

In the worst case, deleting one leaf node, e.g., 15, could cause six nodes to all be at one level, connected by horizontal right links
• but the worst case can be resolved by 3 calls to skew(\(p \)), followed by 2 calls to split(\(p \)).
Randomized Search Trees

Motivations:

- when items are inserted in order into a BST, worst-case performance becomes $O(n)$
- balanced search trees either waste space or require complicated (empirically expensive) operations or both
- randomly permuting items to be inserted would ensure good performance of BST with high probability, but randomly permuting input is not always possible/practical, instead . . .

Randomized search trees balance the trees probabilistically instead of maintaining balance deterministically

Balanced BST Summary

AVL Trees: maintain balance factor by rotations

2-3 Trees: maintain perfect trees with variable node sizes using rotations

2-3-4 Trees: simpler operations than 2-3 trees due to pre-splitting and pre-merging nodes, wasteful in memory usage

Red-black Trees: binary representation of 2-3-4 trees, no wasted node space but complicated rules and lots of cases

AA-Trees: simpler operations than red-black trees, binary representation of 2-3 trees
A **treap** is a binary tree that:

- has a **key** associated with each of its internal node:
 - the key in any node is greater than the keys in all nodes in its left subtree and less than the keys in all nodes in its right subtree
 - i.e., internal nodes are arranged in **in-order** with respect to their keys
- and simultaneously has a **priority** associated with each of its internal node:
 - the priority of a parent is higher than those of its descendants
 - i.e., internal nodes are arranged in **heap-order** with respect to their priorities

Treaps are a BST with heap-ordered priorities (but it is **not** a heap as it is **not** required to be a complete binary tree).

Treaps: Insert

1. a new item to be inserted into a treap is given a random, unique priority (no duplicates)
2. the new item is then inserted into a treap as a leaf node, just like it would be under a standard BST
3. if its priority violates the heap-order property of the treap, the new node is rotated up until it is in the correct heap-order priority, using one or more single left- or right-rotation

Example: insert \(p/5\) into the example treap

Example of a Treap

assuming min-heap ordering of the priorities:

![Example Treap Diagram](image)

Example Treap with \(p/5\) Inserted

assuming min-heap ordering of the priorities:

![Example Treap with \(p/5\) Inserted Diagram](image)
Treaps: Delete

Exact reverse of insert:
1. Rotate the node to be deleted such that its child with larger priority becomes the new parent
2. continue rotating until the node to be deleted is a leaf node
3. delete the leaf node

Example: delete \((p/5)\) from the example treap

Treaps: Search

Standard BST search

If it is desirable to keep frequently accessed items near the root, e.g., when the treap is used to maintain a cache, whenever an item is accessed, assign the item a new random number that gives it a higher priority and, if necessary, rotate its node up to maintain heap-order

If it is desirable for the treap of a set of keys to be unique, use one-way hash function on keys to generate priorities

Runtime Complexity

Various metrics to measure the complexity of an algorithm:
- asymptotic worst-case bound
- average-case bound
- amortized bound
- probabilistic expected-case bound

The expected depth of any node is \(O(\log n)\) \(\Rightarrow\) the expected running time of search, insert, delete (and tree split and join) are all \(O(\log n)\)

The expected number of rotations per insertion or deletion is less than 2 \(\Rightarrow\) fast implementation

Proof: relies on probabilistic analysis that is beyond the scope of this course . . .

Calls to random number generator usually incur non-trivial cost
Treap Exercise

Insert F, E, D, C, B, A with random priorities

• assuming min-heap ordering of the priorities