
Lecture 10: Multi-way Search Trees:!
•  intro to B-trees!
•  2-3 trees!
•  2-3-4 trees!

k1! k2! k3! …! kM–1!

Multi-way Search Trees!

A node on an M-way search tree
with M−1 distinct and ordered keys:
k1 < k2 < k3 < . . . < kM−1, has M
children {T0, T1, T2, . . . , TM−1}!
!
Every element in child Ti has a value
larger than ki and smaller than ki+1!
!
Number of valid keys doesn’t have
to be the same for every node on
the tree!

1,5,8

2 9,15

11

T:

T

…!

T0! T1! T2! T3! TM–1!
…!

M-Way Search Trees Representation!

A node of an M-way search tree can be represented as:!
!
int m; !m=3;!
struct mnode {!

int in_use;!
Key keys[m-1];!
mnode *children[m];!

}!
!
in_use: how many of the m keys of"

this node are currently in use!

2!

keys!

children!

9! 15! –!

M-Way Search!

Search on an M-way search tree is similar to that on
a BST, with more than 1 compares per node!
(a BST is just an M-way search tree with M = 2)!
!
If all nodes have M − 1 keys, with linear search on the
nodes, it takes O(M logM N) time to search an M-way
search tree of N internal nodes ((M − 1) N keys)!
!
With binary search on the nodes, it takes"
O(log2M logM N) time!

Advantage 1: External Search!

M-way search tree can be used as an index for
external (disk) searching of large files/databases!

Characteristics of disk access:!
• orders of magnitude slower than memory access!
•  for efficiency, data usually transferred in blocks of 512
bytes to 8KB!

To speed up external search, put as much data as
possible on each disk block, for example, by making
each node on an M-way search tree the size of a
disk block!

B-Trees!

Invented by Bayer and McCreight in 1972!
A B-tree is a Balanced M-way search tree, M ≥ 2
(usually ~100)!

Search takes O(log M log N)!
Insertion and removal each takes O(M log N) time!

B-Trees are covered in detail in EECS 484, here
we look at the in-memory versions: 2-3 trees and
2-3-4 trees (a.k.a., 2-4 trees)!

Advantage 2: Balanced Search Trees!

AVL trees keep a BST"
balanced by limiting how "
unbalanced a tree can be!

Perfect binary trees are "
by definition balance, but perfect binary trees of height h
have exactly 2h+1 – 1 internal nodes, so only trees with
1, 3, 7, 15, 31, 63, … internal nodes can be balanced . . .!

Balance M-way trees prevent a tree from becoming
unbalanced by storing more than 1 keys per node such
that the trees are always perfect (but not binary) trees!

BST! 2-3 Tree!

insert 39, 38, ... 32!

2-3 Trees!
Properties (balance condition) of 2-3 trees:!

1.  all leaf nodes at the same level and contain 1 or 2 keys!

2.  an internal node has either 1 key and 2 children"
(a 2-node) or 2 keys and 3 children (a 3-node)!

3.  a key in an internal node is “between” the keys in its
adjacent children!

Demo: http://slady.net/java/bt/view.php?w=600&h=450!

keys < S! keys > S!

2-node!

keys < S! keys > L!S < keys < L!

3-node!
[Carrano]

S: Small
L: Large

2-3 Tree Example!

[Carrano]!

2-3 Trees Search Times!
A 2-3 tree of height h has least number of nodes
when all internal nodes are 2-nodes (a BST)!
• since all leaves must be at the same level, the tree is a
perfect tree and the number of nodes (and therefore
keys) is n = 2h+1–1 ⇒ h = floor(log2 n)!

A 2-3 tree of height h has the largest number of
nodes when all internal nodes are 3-nodes!
• number of nodes:!

• number of keys (each node has 2 keys): "
n = 3h+1–1 ⇒ h = floor(log3 n)!

Search time on 2-3 trees: O(log n)!

N = 3i
i=0

h∑ = (3h+1 −1) 2

2-3 Trees Insert!
As with BST, a new node is always inserted as a leaf node!

1.  Search for leaf where key belongs; remember the search path!

2.  If leaf is a 2-node, add key to leaf!

3.  If leaf is a 3-node, adding the new key makes it an invalid node
with 3 keys, split the invalid node into two 2-nodes, with the
smallest and largest keys, and pass the middle key up to parent!

4.  If parent is a 2-node, add the child’s middle key with"
the two new children, else split parent by Step 3 above!

5.  If there’s no parent, create a new root"
(increase tree height by 1)!

Observation: whereas a BST increases height by extending
a single path, a 2-3 tree increases height globally by raising
the root, hence it’s always balanced!

Splitting a Leaf Node!

[Gordon-Ross]

Splitting a Non-Leaf Node!

[Gordon-Ross]

Splitting and Raising the Root!

[Gordon-Ross]

Insert 39!

insert into a 2-node leaf,
no splitting necessary!

[Gordon-Ross]

Insert 38!

insert to a 3-node leaf,
splitting necessary!

✗
[Gordon-Ross]

Insert 38: Split Leaf Node!

insert to a 3-node leaf,
splitting necessary!

[Gordon-Ross]

Exercise: Insert 15!
30 50

40 38 20 10

39 15

Exercise: Insert 75 Then 85!

1.  If item to be removed is not in a leaf node, swap with the max
of the child to the key’s right (the next bigger item, or in-order
successor)!

2.  If n is a 3-node, "
remove item, done!

3.  else if n is a 2-node:!
while (n has no item &&  

n is not root) {!
let p be the parent of n;!
let q be the adjacent  

sibling of n (left or right);!
if (q is a 3-node) rotate items;!
else merge nodes;!
n=p;!

} !!
if (n has no item, n must be root)!

the child of n becomes the new root, remove n;!

2-3 Trees Removal!

swap

Remove 70

next slide

[Carrano]!

Remove 65

✗

Removal: Leaf Node!

Merging:!
Sibling is not a 3-node:!
� merge nodes!
� move item from parent to sibling!
� merge to left to fill node left to right

(think: array)!
� merging could leave"

parent without"
any item!

[Singh,Carrano]!

S: Small
L: Large
P: Parent

Merge

n

n

Merge

Removal: Leaf Node!
Rotation:!

Sibling is a 3-node: !
� redistribute items"

between siblings
and parent!

� take from right to
empty parent right
to left (think: array
implementation)! 100 ✗

Remove 100

[Singh,Carrano]!

S: Small
L: Large
P: Parent

Rotate

n

Removal: Non-Leaf Node!

Rotation:!

Sibling is a 3-node: !
� redistribute"

items!
� adopt child!
!

Merging:!
Sibling is not a 3-node:
� merge nodes!
� move item from"

parent to sibling!
� adopt child of n!

If n’s parent ends up without item, apply process on parent!
[Singh,Carrano]!

S: Small
L: Large
P: Parent

PS: Parent of S
PL: Parent of L

n

n

If merging process reaches the root and root is
without item � remove root!
!
!
!
!
!
!
!
Observation: whereas a BST pushes “holes” down
to the leaves, a 2-3 tree percolates “holes” up and
decreases height globally by lowering the root!

Removal: Root!

[Singh,Carrano]!

Remove 80: Percolated Merging!

can’t redistribute,
must merge!

✗
[Carrano]!

swap!

merge!

Remove 80: Percolated Merging!

violates 2-3 tree property,
merge recursively up the
tree!

[Carrano]!

merge!

Remove 80: Percolated Merging!

root is now empty, set
tree to point to new root!

[Carrano]!

remove
root!

1.  Removal always begins at a leaf node!

2.  If item to be removed is not in a leaf node, "
swap with in-order successor!

3.  If n is a 3-node, "
remove item, done!

4.  if n is a 2-node:!
while (n has no item &&  

n is not root) {!
let p be the parent of n;!
let q be the adjacent sibling of n (left or right);!
if (q is a 3-node) rotate items;!
else merge nodes;!
n=p;!

} !!
if (n has no item, n must be root)!

the child of n becomes the new root, remove n;!

Remove 37 Then 70!

[Carrano]!

Remove 37!

[Carrano]!

swap!

Remove 37!

[Carrano]!

merge!

rotate!

Remove 70!

[Carrano]!

swap!

merge!

merge!

Remove 70!

[Carrano]!

50 80

38

2-3-4 Trees!

Similar to 2-3 trees!
• also known as 2-4 trees!
• demo: http://www.cse.ohio-state.edu/~bondhugu/acads/234-tree/index.shtml!
4-nodes can have 3 items and 4 children!
!
!
!
!
!
Why bother? Unlike with 2-3 trees, insertions and
removals in 2-3-4 trees can be done in one pass!

4-node!

[Singh,Carrano]!

2-3-4 Tree Example!

[Carrano]!

a 4-node

2-3-4 Trees Insert!
Items are inserted at leaf nodes!

Since a 4-node cannot take on another item, "
4-nodes are preemptively split up during the
insertion process!

On the way from the root down to the leaf: "
split up all 4-nodes “on the way”!
� insertion can be done in one pass"

(in 2-3 trees, a reverse pass is likely necessary)!
� no worrying about overflowing a node when we actually

do the insertion−the only kind of node that can
overflow (a 4-node) has been made a 2- or 3-node!

[Singh,Carrano]!

2-3-4 Trees Insert!

Splitting a 4-node!

S: Small
M: Medium
L: Large

[Carrano]!

2-3-4 Trees Insert!
Splitting a 4-node
whose parent is a
2-node!

S: Small
M: Medium
L: Large
P: Parent

[Carrano]!

Splitting a 4-node
whose parent is a"
3-node!

2-3-4 Trees
Insert!

S: Small
M: Medium
L: Large
P: Parent
Q: Parent

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100!

... 50, 40 ...!

20
pre-split

20

[Carrano]!

Inserting 50, 40, ...!

... 70, ...!

70
pre-split

2-3-4 Trees Insert Example!

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 70 ...!

... 80, 15 ...!

70

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 80, 15 ...!

... 90 ...!

90
pre-split

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 90 ...!

... 100 ...!

90

100
pre-split

raise
root

[Carrano]!

2-3-4 Trees Insert Example!

Inserting 100 ...!

100

[Carrano]!

2-3-4 Trees Removal!

Removal always begins at a leaf node "
� swap item of non-leaf node with in-order successor!

Whereas a 4-node can overflow during insertion,
a 2-node can become empty during removal!

On the way from root down to the leaf: "
turn 2-nodes (except root) into 3-nodes"
� prevents a 2-node from becoming an empty node!
� deletion can be done in one pass"

(in 2-3 trees, a reverse pass is likely necessary)!

[Singh,Carrano]!

Removal: 2-Node � 3-Node!

Rotate: if adjacent sibling is a 3- or 4-node "
� redistribute items from sibling!
� adopt child!

30 50

10 20 40

25 35

Rotate 20 50

30 40 10

25

delete 35

Merge: if adjacent sibling is a 2-node!
� redistribute item from parent "

parent has at least 2 items, unless it’s root!
� merge nodes!

30 50

40

25 35

10

Merge

10 30 40

35 25

50

Removal: 2-Node � 3-Node!

delete 35

Root merge: if parent is root and both parent
and adjacent sibling are 2-nodes!
� merge with parent and sibling!

40

25 35

10

30 Merge

10 30 40

35 25

Removal: 2-Node � 3-Node!

delete 35

2-3-4 Trees Removal Summary!
On the way from root down to the leaf: "
turn 2-nodes (except root) into 3-nodes!

Rotate: if adjacent sibling is a 3- or 4-node"
� redistribute items from sibling, take from right!
� adopt child!

Merge: adjacent sibling is a 2-node!
� redistribute item from parent;"

parent has at least 2 items, unless it’s root!
� merge nodes, merge left!

Exercise: remove"
32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

37 50!

39!30 35! 70 90!

10 20! 38! 40! 60! 80! 100!36!32 33 34!✗

Remove 32!

37 50!

39!30 34! 70 90!

10 20! 38! 40! 60! 80! 100!33! 35 36!✗

Remove 35!
pre-rotate!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 40!

pre-rotate!

37 50!

39!30 34! 70 90!

10 20! 38! 40! 60! 80! 100!36!33!

37 70!

90!30 34! 39 50!

10 20! 38! 40! 60! 80! 100!33! 36!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 40!

pre-merge! 37 70!

50!30 34!

38 39 40!10 20!

90!

60! 80! 100!36!33!

37 70!

90!30 34! 39 50!

10 20! 38! 40! 60! 80! 100!33! 36!

✗

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 38!

pre-rotate!

37 70!

50!30 34!

38 39!10 20!

90!

60! 80! 100!36!33!

34 70!

30!

38 39!

37 50!

10 20!

90!

60! 80! 100!36!33! ✗

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 39!

pre-merge!

34 70!

30! 37 50!

10 20!

90!

60! 80! 100!36! 39!33!

34 70!

30!

36 37 39!10 20!

90!

60! 80! 100!

50!

33! ✗

34 70!

30!

36 37!10 20!

90!

60! 80! 100!

50!

33!

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 37!

pre-merge!

36 37!

30 34 50!

10 20!

90!

60! 80! 100!

70!

33! ✗

Remove 32, 35, 40, 38, 39, 37, 60!

[Carrano]!

Remove 60!

pre-merge!

30 34 50!

10 20!

90!

60! 80! 100!

70!

33! 36!

30 34!

36 50 60!10 20!

90!

80! 100!

70!

33! ✗

root not pre-merged!!

Compared to 2-3 Trees!
Insertion and deletion are easier for 2-4 tree!
• one pass!
• no need to percolate over/under-flow node "

all the way back up to root!

But at the cost of:!
• extra comparison in each node!
• wasted space in each node (a 2-node is actually a"

4-node with two empty slots and 2 null pointers)!
• pre-emptive splitting of 4-nodes pre-allocates space that

may not be needed right away � further wasting space!
• number of NULL pointers in a tree with N internal

nodes is 4N – (N – 1) = 3N+1 !

[Rosenfeld,Brinton]!

Implementation!
While 2-3 trees and 2-4 trees are conceptually clean,
their implementation is complicated because!
• we need to maintain multiple node types and !
• there are a lot of cases to consider, such as whether we are!
•  redistributing from a left sibling or a right sibling!
•  merging with a 2-node or a 3-node!
•  merging with the small or the large item of the parent!
•  passing a node to a 2-node or to a 3-node parent!
•  filling the small, middle, or large item slot at the parent!
•  adopting a left child or a right child!
•  rotating left or right!
!
It would be nice if we could simplify these cases and reduce the
amount of wasted space by turning 2-3 and 2-4 trees into binary
trees …!

[Rosenfeld]!

