
Lecture 6: Trees!
Binary Search Trees (BST)!

Trees!

A tree is a “natural” way to represent hierarchical
structure and organization!
!
A lot of problems in computer systems can be
solved by breaking it down into smaller pieces and
arranging the pieces in some form of hierarchical
structure!
!
For example: binary search!

l!

Parent-Child!
Tree (T): a set of nodes storing"
elements in a parent-child"
relationship such that:!
• there is one root, the topmost node!
• the root node has no parent!
• all other nodes have exactly"
one parent!
• parent-child relationship is"
denoted by direct link in tree!
• subtrees:!
•  Tl: left subtree of root!
•  Tr: right subtree of root!
• we will use Tl, Tr to denote left and right subtrees

of a node in general, not just of the root node!

R!

a! b!

x! y!

r!

c! d!

T : Tl:

Tr : R!

l!

a! b!

x! y!

c! d!

r!

Extended Family!
T :

R: root node of tree T!
l is a child of root!

l is a parent of b!

b is a grandchild of root!

a, c, and d are siblings of b!

a, c, d, x, and y are leaf nodes!

degree of a tree: maximum
number of children each node
can have!

The example T is a binary tree!

y!

b!

l!

a!

x!

r!

c! d!

R!

Node Path!
T :

A path: the set of nodes visited to
get from a node higher up on the
tree to a node lower down, not
including the originating, higher up
node!
!
There is a unique path from one
node to another, e.g.,!
•  path from root to y is {l, b, y}!
•  the path length of root to y is 3 (hops)!
!
Path length may be 0, e.g., l going
to itself is a path!

y!

b!

l!

a!

x!

r!

c! d!

R!

Ancestors and Descendants!
T :

Ancestor: l and b are ancestors of
y: there is a path from l to y and b
to y!
•  each node is its own ancestor!
•  node i is a proper ancestor of node j if

the path length from i to j is not 0!
!
Descendant: b and y are
descendants of l: there is a path
from l to b and l to y!
•  node j is a proper descendant of node i

if the path length from i to j is not 0 !

x!

r!l!

b! d!

R!

a!

y!

c!

Depth and Height!
T : The depth of node i is the length of

the path from the root node to i!
•  depth(R) = 0, depth(x) = 3!

All nodes on a level of the "
tree have the same depth!
•  the root is at level 0!

The depth of a tree is the maximum
depths of all nodes, T is of depth 3!
!
The height of node i is the longest!
path from i to a leaf node!
•  height(x) = height(d) = 0,!
•  height(b) = height(r) = 1,!
•  height(l) = 2, height(R) = 3!

Binary Tree Characteristics!

Every node in a binary tree has"
0, 1, or 2 children!
!
Every node in a proper binary tree"
has 0 or 2 children!
!
Every level in a perfect binary tree"
is fully populated!
!
Every level except the lowest in a
complete binary tree is fully populated;
the lowest level is populated left to right!

Binary Tree Representation!

A binary tree can be represented"
as a linked structure:!

struct Node {!
Item item;!
Node *left, *right;!

};!
!
Efficient for moving down a tree"
from parent to child!

How to move up the tree?!

How to remove a node from, "
and add a node to, a binary tree?!

T
R!

l! r!

d!c!

y!x!

b!a! b!

x!

r!

d!

l!

R!

Binary Tree Representation!
A binary tree can also be represented"
as an ordered set:!

T: {R, {l, {a}, {b, {x}, {y}}}, {r, {c}, {d}}}!

which can be implemented using an array:!
!
!
!
!
For a binary tree:!
•  a node at index i has its children at which indices?!

•  a node at index i has its parent at which index?!

a!

y!

c!

T :

R! l! r! a! b! c! d! –! –! x! y!

b!

c!

*!

e!

/!

+!

Tree Traversal!
The expression a/b + (c – d)e"
has been encoded as T!

How would you traverse T "
to re-create (print out) "
the expression?!
•  to ensure correct evaluation"

precedence, enclose the"
printout of each subtree in "
parentheses, e.g., "
(((a)/(b)) + (((c) – (d)) * (e)))!

Write a pseudo-code recursive function to print T "
void rtraverse(Node *root)!

a!

d!

–!

T :

Tree Traversal!
In-order depth-first"
traversal with stack!
void!
itraverse(Node *root)!
{!
 Stack stack;!
 // node with ‘(‘ or ‘)’ as Item!
 Node lparen, rparen; !
 Node node = root;!
!
 print(lparen);!
 do {!
 if (!node->right &&!
 !node->left) {!
 print(node);!
 } else {!

 if (node->right) {!
 stack.push(rparen);!
 stack.push(node->right);!
 stack.push(lparen);!
 node->right = NULL;!
 }!
 push(node);!
 if (node->left) {!
 stack.push(rparen);!
 stack.push(node->left);!
 stack.push(lparen);!
 node->left = NULL;!
 }!
 }!
 } while (node = pop());!
 print(rparen);!
}!

b!

c!

*!

e!

/!

+!
Tree Traversal!
Aside from in-order depth-first"
traversal, we could also traverse"
the tree depth-first pre-order or"
post-order!
•  in-order: visit Tl, visit node, visit Tr!
•  pre-order: visit node, visit Tl, visit Tr!
•  post-order: visit Tl, visit Tr, visit node!
•  which traversal order will give you"

Reverse Polish Notation (RPN)? ab/cd–e*+!
•  and the Polish Notation? +/ab*–cde!

Breadth-first traversal visits the tree level by level!
• how would you implement breadth-first traversal?!

a!

d!

–!

T :

A tree may be empty!
!
External node: an empty node with no children!
!
Internal node: a node with children!
Leaf node: an internal node whose"
children are all external nodes!
[often, outside this course, internal node simply means non-leaf node]!

!
In general, how many external nodes"
does an N-ary tree with n internal nodes have?!
N-ary tree: a tree with degree N"
(each node can have a maximum of N children)!

Tree Sizes!

How many external nodes does an N-ary tree with n
internal nodes have?!
!
!
!
!
Every new internal node replenishes one external node
and brings with it N−1 new external nodes!

For n internal nodes, we have 1+n(N−1) external nodes!

For binary tree, n internal nodes means n+1 external
nodes ⇒ maximum ceil(n/2) leaf nodes!

How many internal nodes does an N-ary tree with m
external nodes have?!

Tree Sizes!

n! binary! tertiary! 4-ary!

0! 1! 1! 1!
1! 2! 3! 4!
2! 3! 5! 7!

1.  How many links are there in an N-ary tree with n internal nodes?!
2.  What is the maximum height of a binary tree of n internal nodes?!
3.  How many internal nodes does it take to fully populate level l of a binary

tree?!
4.  What do you call a tree of l levels that are fully populated?!
5.  Identify any proper, perfect, and"

complete binary tree in the figure:!
!

6.  How many internal nodes are there in a perfect binary tree of height h
(h+1 levels)?!

7.  How many levels of a binary tree are needed to hold n internal nodes?!
8.  What is the minimum height of a binary tree of n internal nodes?!

9.  Is the height of the root node of a subtree the same as the depth of the
subtree?!

Study Questions!

a b

d

c

fe

A BST is a binary tree that!
• has a key associated with each of
its internal node, and that!
• the key in any node is > the keys
in all nodes in its left subtree and!
•  < the keys in all nodes in its right
subtree, !
• where ‘<‘ and ‘>’ can be user
defined!
!
Implements sorted dictionary
with O(log N) complexity for
both insert and search!

f!

l!

p!

z!

d!

k!

Binary Search Trees (BST)!

a!

n!

m!

T :
Binary Search Trees Representation!

A binary search tree can be
represented as a linked structure:!

struct Node {!
Item item;!
Node *left, *right;!

};!
typedef Node *Link;!

!
Efficient for moving down a tree"
to search for an item!

How to remove a node from, and"
add a node to, a binary search tree?!

T
k!

d! p!

z!m!

h!e!

f!a!

BST Search: Recursive!
Item BST::!
rsearch(Node *root, Key &searchkey)!
{!
!

!
!
!
!
!
}!
!
BST::rsearch() called with pointer to root and key!

BST Search: Iterative!
Item BST::!
isearch(Node *root, Key &searchkey)!
{!
!

!
!
!
!
!
!
}!
!
BST::isearch() with minimal change to
BST::rsearch()!
We will refer to both as BST::search()!

BST Insert"
1st (Bad) "
Attempt!

•  If new item has a key smaller than root’s,
recursive call on left subtree!

•  Else recursive call on right subtree!
•  Insert new item as leaf node!

Example: insert(root, Item(‘b’));!
!
void BST::!
insert(Node *root, Item newitem)!
{!

if (root == NULL) {!
new Node(newitem);!
// how to update parent  
// to point to this new child?!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else if (newitem.key > root->item.key)!
insert(root->right, newitem);!

}!

T

k!

d!

root

b!

BST Insert!
void BST::!
insert(Link &root, Item newitem)!
{!

if (root == NULL) {!
root = new Node(newitem);!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else if (newitem.key > root->item.key)!
insert(root->right, newitem);!

}!
!
BST::insert() called with double pointer to
root and item to be inserted!
if at leaf, and only at leaf, insert"
(note the nifty use of reference args!)!
if new item has a key smaller than that of root’s,
recursive call on left subtree!
else recursive call on right subtree!

T

k!

d!

root

b!

What to do"
with duplicates?!

typedef Node *Link;!

BST Removal!
After the removal of a node, the tree must remain a BST!
!
1. Find the node to be removed!
2.  If node is a leaf node, remove, done!
3.  If node has a single child, replace node to be removed

with child, done!
4.  If node has 2 children, find the smallest element in right

child, called the in-order successor (find_ios())!
5. Swap with in-order successor, repeat Steps 2 and 3!
(Instead of in-order successor, Steps 4 and 5 can also use
in-order predecessor, the largest element in the left child)!

BST Removal!
After the removal of a node, "
the tree must remain a BST!
!
void BST::!
remove(Link &root, Key &searchkey)!
{!
if (root == NULL) return; // item not found!
key = root->item.key; // look for item!
if (searchkey < key)!
remove(root->left, searchkey);!

else if (searchkey > key)!
remove(root->right, searchkey);!

else if (searchkey == key)!
if (isleaf(root)) { // e.g., rm f, m, or y!
delete root; root = NULL;!

} else { // what to do? see next page!
}!

f!

p!

z!

d!

k!

m!

x!

y!

root

root

root

BST Removal!
else {!
if (root->right == NULL) { // rm z!
Node *temp = root;!
root = root->left;!
delete temp; return;!

}!
if (root->left == NULL) { // rm d!
Node *temp = root;!
root = root->right;!
delete temp; return;!

}!
Link *ios = find_ios(root->right); // rm p!
Node *temp = *ios;!
root->item = temp->item;!
*ios = temp->right; // null ok!
delete temp;!
// or swap root and *ios instead of copying item!

}!
}!

}!

f!

p!

z!

d!

k!

m!

x!

y!

root

temp

ios

BST Search Times!
Average case search times:!
!
!
!
!
!
!
expressed in terms of depth:!
successful search on BST takes O(depth of found node)!
unsuccessful search on BST takes O(depth of tree)!
!
Worst-case successful search time on BST: O(n)!
Worst-case unsuccessful search time on BST: O(n)!

successful! unsuccessful!

linked lists! n/2! n!
hashing! 1+L/2! L!
BST! log n! log n!

Worst-Case BST Performance!

Exercise: !
•  insert 4, 2, 6, 3, 7, 1, 5!
•  remove 2, insert 8, remove 5, insert 9, "
remove 1, insert 11, remove 3!

Moral: even a balanced tree "
can become unbalanced after "
a number of insertions and"
removals!

Demo: http://people.ksp.sk/~kuko/bak/index.html!

6!

4!

7!

9!

8!

11!

a search tree of "
maximum height!

3!

6!

7!

2!

4!

1! 5!
a search tree of
minimum height!

Sorted Dictionary!

What kind of operations can we not do with an
unsorted dictionary?!
!
Sort: return the values in order!
• example: return search results by item’s popularity!

Rank search: return the k-th largest item!
•  example: return the next building to be completed in a

strategy game!

Range search: return values between h and k!
•  example: return all the restaurants within 100 m of user!

BST Sort!
void BST::!
printsorted(Link root)!
{!
if (root == NULL) return;!
printsorted(root->left);!
print(root);!
printsorted(root->right);!

}!
!
What kind of tree traversal does"
BST::printsorted() perform?!

f!

l!

p!

z!

d!

k!

a!

n!

m!

T : BST Rank Search!

Given a BST, where is the
smallest item?!

Where is the largest item?!

Would the node containing
the largest/smallest item
always be a leaf node?!

How would you find the k-th
largest item? E.g., find 2nd,
3rd, and 6th largest items!

f!

p!

z!

d!

k!

a! m!

b! x!

T :

BST Add Count!

A BST node with count:!

struct Node {!
Item item;!
int count;!
Node *left, *right;!

};!
typedef Node *Link;!
!
Let count counts the number of
a node’s descendants (nodes at
and below the current node in
tree)!

T
9!

5! 3!

1!1!

1!1!

3!1!

BST Insert with Count!

void BST::!
insert(Link &root, Item newitem)!
{!

if (root == NULL) {!
root = new Node(newitem);!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else insert(root->right, newitem);!
}!

How would you modify BST::insert()
to keep track of the count?!

BST Rank Search: Idea!

If there are more than k items in the right subtree,
the k-th largest item must be in the right subtree!
!
Else, there are m (< k) items in the right subtree,
if the k-th item is not in the root node, find the
(k–m–1)-th largest item in the left subtree!

A:!

B:!

BST Rank Search!
Node.rightcount() returns!
right->count if right is!
non-null, else returns 0!
!
Link BST::!
findkth(Link root, int rank)!
{!

if (root == NULL) return root;!
!
if (root->rightcount() - rank >= 0) !
return findkth(root->right, rank);!

} else {!
rank -= (root->rightcount() + 1);!
if (rank == 0) return root;!
else return findkth(root->left, rank);!

}!
}!

1!

4!

2!

4!

9!

2! 1!

1! 1!

T :

Find 2nd, 3rd, and
6th largest items!
!
Find 2nd smallest
item?!

A:!

B:!

