
Lecture 6: Trees!
Binary Search Trees (BST)!

Trees!

A tree is a “natural” way to represent hierarchical 
structure and organization!
!
A lot of problems in computer systems can be 
solved by breaking it down into smaller pieces and 
arranging the pieces in some form of hierarchical 
structure!
!
For example: binary search!
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Parent-Child!
Tree (T): a set of nodes storing"
elements in a parent-child"
relationship such that:!
• there is one root, the topmost node!
• the root node has no parent!
• all other nodes have exactly"
one parent!
• parent-child relationship is"
denoted by direct link in tree!
• subtrees:!
•  Tl: left subtree of root!
•  Tr: right subtree of root!
• we will use Tl, Tr to denote left and right subtrees 

of a node in general, not just of the root node!
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Extended Family!
T : 

R: root node of tree T!
l is a child of root!

l is a parent of b!

b is a grandchild of root!

a, c, and d are siblings of b!

a, c, d, x, and y are leaf nodes!

degree of a tree: maximum 
number of children each node 
can have!

The example T is a binary tree!
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Node Path!
T : 

A path: the set of nodes visited to 
get from a node higher up on the 
tree to a node lower down, not 
including the originating, higher up 
node!
!
There is a unique path from one 
node to another, e.g.,!
•  path from root to y is {l, b, y}!
•  the path length of root to y is 3 (hops)!
!
Path length may be 0, e.g., l going 
to itself is a path!
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Ancestors and Descendants!
T : 

Ancestor: l and b are ancestors of 
y: there is a path from l to y and b 
to y!
•  each node is its own ancestor!
•  node i is a proper ancestor of node j if 

the path length from i to j is not 0!
!
Descendant: b and y are 
descendants of l: there is a path 
from l to b and l to y!
•  node j is a proper descendant of node i 

if the path length from i to j is not 0 !
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Depth and Height!
T : The depth of node i is the length of 

the path from the root node to i!
•  depth(R) = 0, depth(x) = 3!

All nodes on a level of the "
tree have the same depth!
•  the root is at level 0!

The depth of a tree is the maximum 
depths of all nodes, T is of depth 3!
!
The height of node i is the longest!
path from i to a leaf node!
•  height(x) = height(d) = 0,!
•  height(b) = height(r) = 1,!
•  height(l) = 2, height(R) = 3!

Binary Tree Characteristics!

Every node in a binary tree has"
0, 1, or 2 children!
!
Every node in a proper binary tree"
has 0 or 2 children!
!
Every level in a perfect binary tree"
is fully populated!
!
Every level except the lowest in a 
complete binary tree is fully populated; 
the lowest level is populated left to right!



Binary Tree Representation!

A binary tree can be represented"
as a linked structure:!
 

struct Node {!
Item item;!
Node *left, *right;!

};!
!
Efficient for moving down a tree"
from parent to child!

How to move up the tree?!

How to remove a node from, "
and add a node to, a binary tree?!
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Binary Tree Representation!
A binary tree can also be represented"
as an ordered set:!

T: {R, {l, {a}, {b, {x}, {y}}}, {r, {c}, {d}}}!

which can be implemented using an array:!
!
!
!
!
For a binary tree:!
•  a node at index i has its children at which indices?!

•  a node at index i has its parent at which index?!
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Tree Traversal!
The expression a/b + (c – d)e"
has been encoded as T!

How would you traverse T "
to re-create (print out) "
the expression?!
•  to ensure correct evaluation"

precedence, enclose the"
printout of each subtree in "
parentheses, e.g., "
(((a)/(b)) + (((c) – (d)) * (e)))!

Write a pseudo-code recursive function to print T "
void rtraverse(Node *root)!
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Tree Traversal!
In-order depth-first"
traversal with stack!
void!
itraverse(Node *root)!
{!
  Stack stack;!
  // node with ‘(‘ or ‘)’ as Item!
  Node lparen, rparen; !
  Node node = root;!
!
  print(lparen);!
  do {!
    if (!node->right &&!
        !node->left) {!
      print(node);!
    } else {!

      if (node->right) {!
        stack.push(rparen);!
        stack.push(node->right);!
        stack.push(lparen);!
        node->right = NULL;!
      }!
      push(node);!
      if (node->left) {!
        stack.push(rparen);!
        stack.push(node->left);!
        stack.push(lparen);!
        node->left = NULL;!
      }!
   }!
  } while (node = pop());!
  print(rparen);!
}!
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Tree Traversal!
Aside from in-order depth-first"
traversal, we could also traverse"
the tree depth-first pre-order or"
post-order!
•  in-order: visit Tl, visit node, visit Tr!
•  pre-order: visit node, visit Tl, visit Tr!
•  post-order: visit Tl, visit Tr, visit node!
•  which traversal order will give you"

Reverse Polish Notation (RPN)? ab/cd–e*+!
•  and the Polish Notation? +/ab*–cde!

Breadth-first traversal visits the tree level by level!
• how would you implement breadth-first traversal?!
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T : 

A tree may be empty!
!
External node: an empty node with no children!
!
Internal node: a node with children!
Leaf node: an internal node whose"
children are all external nodes!
[often, outside this course, internal node simply means non-leaf node]!

!
In general, how many external nodes"
does an N-ary tree with n internal nodes have?!
N-ary tree: a tree with degree N"
(each node can have a maximum of N children)!

Tree Sizes!

How many external nodes does an N-ary tree with n 
internal nodes have?!
!
!
!
!
Every new internal node replenishes one external node 
and brings with it N−1 new external nodes!

For n internal nodes, we have 1+n(N−1) external nodes!

For binary tree, n internal nodes means n+1 external 
nodes ⇒ maximum ceil(n/2) leaf nodes!

How many internal nodes does an N-ary tree with m 
external nodes have?!

Tree Sizes!

n! binary! tertiary! 4-ary!

0! 1! 1! 1!
1! 2! 3! 4!
2! 3! 5! 7!

1.  How many links are there in an N-ary tree with n internal nodes?!
2.  What is the maximum height of a binary tree of n internal nodes?!
3.  How many internal nodes does it take to fully populate level l of a binary 

tree?!
4.  What do you call a tree of l levels that are fully populated?!
5.  Identify any proper, perfect, and"

complete binary tree in the figure:!
!

6.  How many internal nodes are there in a perfect binary tree of height h 
(h+1 levels)?!

7.  How many levels of a binary tree are needed to hold n internal nodes?!
8.  What is the minimum height of a binary tree of n internal nodes?!

9.  Is the height of the root node of a subtree the same as the depth of the 
subtree?!

Study Questions!
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A BST is a binary tree that!
• has a key associated with each of 
its internal node, and that!
• the key in any node is > the keys 
in all nodes in its left subtree and!
•  < the keys in all nodes in its right 
subtree, !
• where ‘<‘ and ‘>’ can be user 
defined!
!
Implements sorted dictionary 
with O(log N) complexity for 
both insert and search!
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T : 
Binary Search Trees Representation!

A binary search tree can be 
represented as a linked structure:!
 

struct Node {!
Item item;!
Node *left, *right;!

};!
typedef Node *Link;!

!
Efficient for moving down a tree"
to search for an item!

How to remove a node from, and"
add a node to, a binary search tree?!
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BST Search: Recursive!
Item BST::!
rsearch(Node *root, Key &searchkey)!
{!
!

!
!
!
!
!
}!
!
BST::rsearch() called with pointer to root and key!

BST Search: Iterative!
Item BST::!
isearch(Node *root, Key &searchkey)!
{!
!

!
!
!
!
!
!
}!
!
BST::isearch() with minimal change to 
BST::rsearch()!
We will refer to both as BST::search()!



BST Insert"
1st (Bad) "
Attempt!

•  If new item has a key smaller than root’s, 
recursive call on left subtree!

•  Else recursive call on right subtree!
•  Insert new item as leaf node!

Example: insert(root, Item(‘b’));!
!
void BST::!
insert(Node *root, Item newitem)!
{!

if (root == NULL) {!
new Node(newitem);!
// how to update parent  
// to point to this new child?!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else if (newitem.key > root->item.key)!
insert(root->right, newitem);!

}!
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BST Insert!
void BST::!
insert(Link &root, Item newitem)!
{!

if (root == NULL) {!
root = new Node(newitem);!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else if (newitem.key > root->item.key)!
insert(root->right, newitem);!

}!
!
BST::insert() called with double pointer to 
root and item to be inserted!
if at leaf, and only at leaf, insert"
(note the nifty use of reference args!)!
if new item has a key smaller than that of root’s, 
recursive call on left subtree!
else recursive call on right subtree!
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What to do"
with duplicates?!

typedef Node *Link;!

BST Removal!
After the removal of a node, the tree must remain a BST!
!
1. Find the node to be removed!
2.  If node is a leaf node, remove, done!
3.  If node has a single child, replace node to be removed 

with child, done!
4.  If node has 2 children, find the smallest element in right 

child, called the in-order successor (find_ios())!
5. Swap with in-order successor, repeat Steps 2 and 3!
(Instead of in-order successor, Steps 4 and 5 can also use 
in-order predecessor, the largest element in the left child)!

BST Removal!
After the removal of a node, "
the tree must remain a BST!
!
void BST::!
remove(Link &root, Key &searchkey)!
{!
if (root == NULL) return; // item not found!
key = root->item.key; // look for item!
if (searchkey < key)!
remove(root->left, searchkey);!

else if (searchkey > key)!
remove(root->right, searchkey);!

else if (searchkey == key)!
if (isleaf(root)) { // e.g., rm f, m, or y!
delete root; root = NULL;!

} else { // what to do?  see next page!
}!
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BST Removal!
else {!
if (root->right == NULL) { // rm z!
Node *temp = root;!
root = root->left;!
delete temp; return;!

}!
if (root->left == NULL) { // rm d!
Node *temp = root;!
root = root->right;!
delete temp; return;!

}!
Link *ios = find_ios(root->right); // rm p!
Node *temp = *ios;!
root->item = temp->item;!
*ios = temp->right; // null ok!
delete temp;!
// or swap root and *ios instead of copying item!

}!
}!

}!
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BST Search Times!
Average case search times:!
!
!
!
!
!
!
expressed in terms of depth:!
successful search on BST takes O(depth of found node)!
unsuccessful search on BST takes O(depth of tree)!
!
Worst-case successful search time on BST: O(n)!
Worst-case unsuccessful search time on BST: O(n)!

successful! unsuccessful!

linked lists! n/2! n!
hashing! 1+L/2! L!
BST! log n! log n!

Worst-Case BST Performance!

Exercise: !
•  insert 4, 2, 6, 3, 7, 1, 5!
•  remove 2, insert 8, remove 5, insert 9, "
remove 1, insert 11, remove 3!

Moral: even a balanced tree "
can become unbalanced after "
a number of insertions and"
removals!

Demo: http://people.ksp.sk/~kuko/bak/index.html!

6!

4!

7!

9!

8!

11!

a search tree of "
maximum height!

3!

6!

7!

2!

4!

1! 5!
a search tree of 
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Sorted Dictionary!

What kind of operations can we not do with an 
unsorted dictionary?!
!
Sort: return the values in order!
• example: return search results by item’s popularity!

Rank search: return the k-th largest item!
•  example: return the next building to be completed in a 

strategy game!

Range search: return values between h and k!
•  example: return all the restaurants within 100 m of user!



BST Sort!
void BST::!
printsorted(Link root)!
{!
if (root == NULL) return;!
printsorted(root->left);!
print(root);!
printsorted(root->right);!

}!
!
What kind of tree traversal does"
BST::printsorted() perform?!
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T : BST Rank Search!

Given a BST, where is the 
smallest item?!

Where is the largest item?!

Would the node containing 
the largest/smallest item 
always be a leaf node?!

How would you find the k-th 
largest item?  E.g., find 2nd, 
3rd, and 6th largest items!
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BST Add Count!

A BST node with count:!
 
struct Node {!
Item item;!
int count;!
Node *left, *right;!

};!
typedef Node *Link;!
!
Let count counts the number of 
a node’s descendants (nodes at 
and below the current node in 
tree)!
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BST Insert with Count!

void BST::!
insert(Link &root, Item newitem)!
{!

if (root == NULL) {!
root = new Node(newitem);!
return;!

}!
if (newitem.key < root->item.key)!
insert(root->left, newitem);!

else insert(root->right, newitem);!
}!

How would you modify BST::insert() 
to keep track of the count?!



BST Rank Search: Idea!

If there are more than k items in the right subtree, 
the k-th largest item must be in the right subtree!
!
Else, there are m (< k) items in the right subtree, 
if the k-th item is not in the root node, find the 
(k–m–1)-th largest item in the left subtree!

A:!

B:!

BST Rank Search!
Node.rightcount() returns!
right->count if right is!
non-null, else returns 0!
!
Link BST::!
findkth(Link root, int rank)!
{!

if (root == NULL) return root;!
!
if (root->rightcount() - rank >= 0) !
return findkth(root->right, rank);!

} else {!
rank -= (root->rightcount() + 1);!
if (rank == 0) return root;!
else return findkth(root->left, rank);!

}!
}!
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T : 

Find 2nd, 3rd, and 
6th largest items!
!
Find 2nd smallest 
item?!

A:!

B:!


