AND ALGORITHMS

Lecture 6: Trees Binary Search Trees (BST)

Trees

A tree is a "natural" way to represent hierarchical structure and organization

A lot of problems in computer systems can be solved by breaking it down into smaller pieces and arranging the pieces in some form of hierarchical structure

For example: binary search

Binary Tree Characteristics

Every node in a binary tree has 0, 1, or 2 children

Every node in a proper binary tree has 0 or 2 children

Every level in a perfect binary tree is fully populated

Every level except the lowest in a complete binary tree is fully populated; the lowest level is populated left to right

the expression?

parentheses, e.g.,

if (node->right) { stack.push(rparen); stack.push(node->right); stack.push(lparen); node->right = NULL; } push(node); if (node->left) { stack.push(rparen); stack.push(node->left); stack.push(lparen); node->left = NULL: } } } while (node = pop()); print(rparen); ł

T:

x y

a

R

Tree Sizes

How many external nodes does an N-ary tree with n

internal nodes have?

п	binary	tertiary	4-ary
0	1	1	1
1	2	3	4
2	3	5	7

Every new internal node replenishes one external node and brings with it N-1 new external nodes

For *n* internal nodes, we have 1+n(N-1) external nodes

For binary tree, *n* internal nodes means n+1 external nodes \Rightarrow maximum ceil(n/2) leaf nodes

How many internal nodes does an N-ary tree with m external nodes have?

Study Questions

Tree Sizes

- I. How many links are there in an N-ary tree with n internal nodes?
- 2. What is the maximum height of a binary tree of n internal nodes?
- 3. How many internal nodes does it take to fully populate level *l* of a binary tree?
- 4. What do you call a tree of *l* levels that are fully populated?
- 5. Identify any proper, perfect, and complete binary tree in the figure:

- 6. How many internal nodes are there in a perfect binary tree of height h (h+1 levels)?
- 7. How many levels of a binary tree are needed to hold n internal nodes?
- 8. What is the minimum height of a binary tree of n internal nodes?
- 9. Is the height of the root node of a subtree the same as the depth of the subtree?

Binary Search Trees Representation

A binary search tree can be represented as a linked structure:

struct Node {
 Item item;
 Node *left, *right;
};
typedef Node *Link;

Efficient for moving down a tree to search for an item

How to remove a node from, and add a node to, a binary search tree?

BST Search: Recursive

Item BST:: rsearch(Node *root, Key &searchkey) {

}

BST::rsearch() called with pointer to root and key

BST Search: Iterative

Item BST:: isearch(Node *root, Key &searchkey)
{

}

BST::isearch() with minimal change to
BST::rsearch()
We will refer to both as BST::search()

BST Removal

After the removal of a node, the tree must remain a BST

- I. Find the node to be removed
- 2. If node is a leaf node, remove, done
- 3. If node has a single child, replace node to be removed with child, done
- 4. If node has 2 children, find the smallest element in right child, called the in-order successor (find_ios())
- 5. Swap with in-order successor, repeat Steps 2 and 3 (Instead of in-order successor, Steps 4 and 5 can also use in-order predecessor, the largest element in the left child)

BST Search Times

Average case search times:

	successful	unsuccessful
linked lists	n/2	n
hashing	1 + L/2	L
BST	log n	$\log n$

expressed in terms of depth: successful search on BST takes O(depth of found node)unsuccessful search on BST takes O(depth of tree)

Worst-case successful search time on BST: O(n)Worst-case unsuccessful search time on BST: O(n)

Sorted Dictionary

What kind of operations can we not do with an unsorted dictionary?

Sort: return the values in order

• example: return search results by item's popularity

Rank search: return the *k*-th largest item

• example: return the next building to be completed in a strategy game

Range search: return values between *h* and *k*

• example: return all the restaurants within 100 m of user

BST Insert with Count

How would you modify BST::insert() to keep track of the count?

```
void BST::
insert(Link &root, Item newitem)
{
    if (root == NULL) {
        root = new Node(newitem);
        return;
    }
    if (newitem.key < root->item.key)
        insert(root->left, newitem);
    else insert(root->right, newitem);
}
```

BST Rank Search: Idea

- A: If there are more than k items in the right subtree, the k-th largest item must be in the right subtree
- B: Else, there are m (< k) items in the right subtree, if the k-th item is not in the root node, find the (k-m-1)-th largest item in the left subtree

