
Lecture 5: Dictionary ADT and Hashing!
Recurrence Relations!

How do you use a dictionary?!
!
Used where you need to do
some sort of table lookup:!
• search for a key in a table!
• the key is usually associated with
some data/value of interest!
!
Also known as associative array!
!
Why search for key instead of
just searching for the data?!

Dictionary ADT!

Dictionary ADT!
Key space is usually more regular/structured
than value space, so easier to search!

Dictionary entry is a"
<const key_type, data_type> pair!
•  for example, <title, mp4_file>!
• <�Avatar�, avatar.mp4>!

Normally associate a given key with "
only a single value or a pointer to data!

Dictionary is optimized to quickly add "
<key, data> pairs, retrieve data by key!

Types of Dictionary!

Whether items are grouped by some category such
as by subject, by popularity, chronologically, etc.!
• unordered!

• ordered!

Whether items are listed by a collating sequence of
the key, e.g., numerical, alphabetical!
• unsorted!
• sorted!

Adding entries into an ordered (sorted) list must
retain the ordered (sorted) property of the list!

The AppStore!
What type of dictionary do we see at the AppStore?!

Implementation! Search! Insert!

Arrays! O(N)! O(1)!

Linked Lists! O(N)! O(1)!

Hashing (amortized)! O(1)! O(1)!

Implementation! Search! Insert!

Arrays! O(?)! O(?)!

Linked Lists! O(?)! O(?)!

Unsorted Dictionary Runtimes!

Hashing!
Access table items by their keys in relatively constant
time regardless of their locations!
!
Main idea: use arithmetic operations (hash function)
to transform keys into table locations!
• the same key is always hashed to the same location!
• such that insert and search are both directed to the same

location in O(1) time!

Hash table: an array of buckets, where each bucket
contains items assigned by a hash function!

Hashing Example!
In a text editor, to speed up search, we build a hash
table and hash each word into the table!

Let hash table size (M) = 16!

Let hash function (h()) = (sum all characters) mod 16!
•  by “sum all characters” we mean sum the ASCII (or UTF-8)

representation of the character!
•  for example, h(“He”) = (72+101)%16 = 13!

Let sample text be the following N=13 words:!
“He was well educated and from his"
portrait a shrewd observer might divine”!

Hashing Example!
(sum all characters) mod 16!
He � 13!
was � 11!
well � 4!
educated � 15!
and � 3!
from � 4!
his � 4!
portrait � 5!
a � 1!
shrewd � 13!
observer � 8!
might � 9!
divine � 15!
N = 13, M = 16!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

10!
11!
12!
13!
14!
15!

a!

and!

well! from!his!

portrait!

observer!

might!

was!

shrewd!He!

educated! devine!

Collision and Collision Resolution
Collision occurs when the hash function maps
two or more items—all having different search
keys—into the same bucket!
!
What to do when there is a collision?!
!
Collision-resolution scheme:!
• assigns distinct locations in the hash table to items
involved in a collision!

Separate Chaining
A collision resolution scheme that lets each
bucket points to a linked list of elements!

•  insertion:!
•  compute k = h(key)!
•  prepend to kth bucket in O(1) time"

(but may need to check for duplicates)!

•  search:!
•  compute k = h(key)!
•  search in kth container (e.g., check every element)!

Separate Chaining!

 a!

 and!
 his!

 portrait!

 observer!
 might!

 was!

 shrewd!

 divine!

 0!
 1!
 2!
 3!
 4!
 5!
 6!
 7!
 8!
 9!
 10!
 11!
 12!
 13!
 14!
 15!

from!

He!

educated!

well!

Performance Analysis!
Worst case!
•  all N elements in one bucket!
•  searching through a bucket : O(N) time!

Average-case analysis:!
• table size M, has N keys to store!
•  average bucket size is N/M!
• L = N/M is called the load factor!
•  average runtime of search: O(h()) + O(1) + O(L)!
•  unsuccessful search: 1+L comparisons!
•  successful search: 1+L/2 comparisons on average!
•  for good performance, want small load factor!

Why differentiate between successful and
unsuccessful search?!

How to Improve Runtime?!
Can set M > N so that L < 1!
•  then average search time is O(1)!

Space-time trade off:!
• very large table/array!

•  few collisions!
•  for the movie title example, can have millions of entries!

• small table/array!
•  many collisions, may need time to resolve!

Table Resizing!
If table size is fixed:!
•  search performance deteriorates with growth

(when load factor becomes high)!

When load factor becomes too high, "
resize by doubling the size of hash table!
• each entry must be re-hashed, not just moved,
into the new hash table!

• expensive worst-case; OK if amortized!

 0!
 1!
 2!
 3!
 4!

Table Resizing: Amortized Analysis!
Hash table of size 2M!
Assume O(1) operation to insert up to M−1 items: O(M)!
For the M-th item, create a new hash table of size 4M: O(1)!
Rehash all M−1 items to the new table: O(M)!
Insert new item: O(1)!
Total cost to insert M items: O(M + 1 + M + 1) = O(M)!
So, average cost to insert M items is O(1)!
⇒ Hash table doubling cost is amortized!

over individual inserts!
•  though the periodic high cost may not be acceptable to some

applications that require smooth running time!

Other Ways to Resolve Collisions!
Aside from separate chaining, other methods
have been proposed for collision resolution!
!
Two main motivations:!
1. scatter table: re-use empty spaces in the hash table"

to hold colliding items: coalesced chaining and open
addressing!

2. dynamic hashing: grow the hash table incrementally
so as not to take the performance hit of rehashing
everything when resizing: extendible hashing and
linear hashing!
•  more complicated hash function to allow for addressing of

incrementally grown hash table (not covered)!

Coalesced Chaining!

Keep the linked list used in separate chaining, but
store it in the unused portions of the hash table!
!
Hash table can only hold as many items as table size!
!
If an item hashes to an already occupied bin follow
the linked list and add item to the end!
!
If an item is deleted from the linked list, the rest of
the list must be “moved up”!
•  but be careful that an item is not moved up past its original

hash bucket!

Coalesced Chaining! 0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

10!
11!
12!
13!
14!
15!

a!

and!

well!

from!

his!

portrait!

observer!

might!

was!

shrewd!

He!

educated!

devine!

(sum all characters) mod 16!
He � 13!
was � 11!
well � 4!
educated � 15!
and � 3!
from � 4!
his � 4!
portrait � 5!
a � 1!
shrewd � 13!
observer � 8!
might � 9!
divine � 15!
N = 13, M = 16!

“portrait” must
never be moved
higher than 5!

Item Removal!

Removal on scatter tables is complicated:!
• must not move an element up the table"
beyond its actual hash location!

• must rehash the rest of chain!
• example: int%9!

then 11 is deleted, 05 cannot be moved up beyond position 5!

!
• or otherwise mark deleted entry as “deleted” (but not empty)!

01! 11! 02! 21! 05! 31!

01! 02! 21! 31! 05!

01! del! 02! 21! 05! 31!

✗

Open Addressing!
Idea: if there’s a collision, apply
another hash function from a pre-
determined set of hash functions
{h0, h1, h2, . . .} repeatedly until
there’s no collision!

To probe: to compare the key of
an entry with search key!

Linear probing: "
hi(key) = (h0(key)+i) mod M!
do a linear search from h0(key)
until you find an empty slot!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

10!
11!
12!
13!
14!
15!

a!

and!

well!

from!

his!

portrait!

observer!

might!

was!

shrewd!

He!

educated!

devine!

Open Addressing!

Clustering: when contiguous bins are all occupied!
!
Why is clustering undesirable?!
!
Assuming input size N, table size 2N:!
• What is the best-case cluster distribution?!
• What is the worst-case cluster distribution?!
• What’s the average time to find an empty slot in each case?!

Open Addressing!

Quadratic probing: hi(key) = (h0(key)+i2) mod M
less likely to form clusters, but only works when
table is less than half full because it cannot hit every
possible table address!
!
Double hashing: h(key) = (h1(key)+ih2(key)) mod M
uses 2 distinct hash functions!

Hash Functions!From Webster dictionary:!
Main Entry: hash!
Etymology: French hacher, from Old French hachier, "
from hache battle-ax, of Germanic origin;"
akin to Old High German hAppa sickle;"
akin to Greek koptein to cut – more at CAPON!
1a : to chop (as meat and potatoes) into small pieces!
!

Hash function (h()) maps search keys to buckets,
in two steps:!
•  maps the key into a hash code: t(key) � hashcode!
•  compression map, maps the hashcode into an address

within the table: c(hashcode) � bucket, "
i.e., maps into the range [0, M–1], for table of size M!

Given a key: h(key) � c(t(key)) � bucket/index!

Hash Functions!
Criteria for a good hash function:!
• must compute a hash for every key!
• must compute the same hash for the same key!
•  easy and quick to compute"
recall: average runtime of search: O(h()) + O(1) + O(L)!

•  involves the entire search key!
•  scatters “similar” keys that differ slightly!
• minimize collision!

•  distribute keys evenly in hash table!

Good hash function = avoiding worst case!
• we cannot guarantee this!
•  but can improve statistics"

by ensuring that buckets are used equally!

Hash Functions!
Common parts of hash functions:!
• truncation (hash code): exaggerate parts of key that
are more likely to be unique across keys (but hash
function must still involve entire key!), e.g.,!
•  734 763 1583!
•  141.213.8.193!
•  girard.eecs.umich.edu!

•  folding (hash code)!
• modulo arithmetic (compression map)!

•  a cheap way to reduce collision: "
make hash table size a prime number!

•  compression map: c(t(key)) = t(key) % prime_size!
•  consequence: avoid �regular� collisions, e.g., "

140 % 100 = 240 % 100 = 1040 % 100 = 40!

Hash Strings: Attempt 1!
How to hash keys that are not integers?!
• string: use the ASCII (or UTF-8) encoding of each char!
• float: treat it as a string of bits!
•  images, viral code snippets, malicious Web site URLs: "
in general, treat the representation as a "
bit-string and sum up or extract parts of it!
!
Let’s look at our string hashing function again,
this time with a prime number hash table size:!

h() = (sum all characters) mod 17!

How would the following strings hash? #
“stop”, “tops”, “pots”, “spot”!

Hash Strings: Attempt 2!
Polynomial hash code takes positional info into account:!

t(x[]) = x[0]ak–1 + x[1]ak–2 + . . . + x[k–2]a + x[k–1]!

If a = 33, the hashcodes are:!
•  t(“listen”) = ‘l’*335 + ‘i’*334 + ‘s’*333 + ‘t’*332 + ‘e’*33 + ‘n’!

•  t(“silent”) = ‘s’*335 + ‘i’*334 + ‘l’*333 + ‘e’*332 + ‘n’*33 + ‘t’!

This is operation is known as folding: partition the key into
several parts and combine them in a “convenient” way!

Good choices of a for English words: {33, 37, 39, 41}!
What does it mean for a to be a good choice?!
Why are these particular values good?!

Birthday Paradox!

What is the smallest number of people in a room
for a better-than-even odds (probability ≥ 0.5)
that two persons share the same birthday?!
!
Assumptions:!
• 366 days to a year!
• birthdays are independent (no twins)!
• birthdays are equally likely"
(actually more likely 9 months after a holiday)!

Birthday Paradox!

Probability that each person in the room has a
birthday different from all the other persons in
the room:!

Probability for the 1st person: 1

Probability for the 2nd person:
366 −1
366

Probability for the 3rd person:
366 − 2
366



Probability for the j-th person:
366 − (j −1)

366
= 367− j

366

Birthday Paradox!

Assuming independence, the probability that all k
people in the room have different birthdays is:!
!
!
!

The probability that not (all k people in the room
have different birthdays), i.e., at least 2 out of the
k persons have the same birthday is: ε = 1 – pk!

pk =1⋅

365
366

⋅ 364
366

⋅…⋅ 367− k
366

Birthday Paradox!
ε = 1 – pk !

By brute force calculations, we find that: "
for k = 22, ε ≈ 0.475, for k = 23, ε ≈ 0.506!

So you only need 23 people in a room for 2
persons to share the same birthday!!

More generally,!

!

For the birthday paradox, M = 366 !

k ≈ 2M log 1
1− ε

for ε = 0.5, k ≈1.17 M

Hashing Collision!
How many items (k) does it take to hash two items
into the same bucket for a table of size M, with
probability ≥ 0.5?!

Assuming:!
•  items are independent!
• all possible items are equally likely "
(clearly not true for English words, for example)!

For:!
M = 7, k = 4!
M = 9, k = 4!
M = 11, k = 4!
M = 240, k = 1 226 834!
M = 2n, it takes on the order of √M or 2n/2!

Study Questions!
1. What is the difference between"

sequential and associative containers ?!
2. What is a hash function ?!
3. What makes a good hash function ?!
4. What is a hash table ?!
5. Why do hash functions for strings use

polynomial code?!
6. What is the worst-case complexity of hash-

table ops?!
7. What is load factor and how does it affect "

complexity of hash-table ops?!
8. Why does one use average-case and amortized

complexity to evaluate hash-table ops ?!

Sorted Dictionary!

What kind of operations can we not do with an
unsorted dictionary?!
!
Sort: return the values in order!
• example: return search results by item’s popularity!

Rank search: return the k-th largest item!
•  example: return the next building to be completed in a

strategy game!

Range search: return values between h and k!
•  example: return all restaurants within 100 m of user!

Sorted Dictionary Runtimes!

Implementation! Search! Insert!

Arrays! O(?)! O(?)!

Linked Lists! O(?)! O(?)!

Binary Search: Iterative Version!
Given a sorted list, with unique keys, perform a
Divide and Conquer algorithm to find a key!

Find 31 in a[20 27 29 31 35 38 42 53 59 63 67 78]!

Write an iterative version of binary search:!
int ibinsearch(int *a, int n, int key)!

a[] assumed sorted"
n is array size "
return index of key!

What is the time complexity of the algorithm?!

Iterative Binary Search: Analysis!

One comparison for every halving of search interval!

Continue halving until there's only 1 element left:!

((. . . (((n/2)/2)/2) . . .)/2) = n/2k!

It takes k halvings to get to 1 element:!

n/2k = 1; n = 2k; log n = log 2k; k = log n!

Time complexity: O(log n)!

Accounting Rule 5!

Rule 5: Divide and Conquer: An algorithm is
O(log N) if each constant time O(1)
operation (e.g., CMP) can cut the problem
size by a fraction (e.g., half)!
!
Corollary: If constant time is required to
reduce the problem size by a constant
amount, the algorithm is O(N)!

Compute n! Iterative Version!

Iterative version (assume n ≥ 0):!
int ifact(int n)!
!

!
!
!

What is its time complexity?!

Recursion!

An alternative to iteration, which uses loops!

Recursion is an extremely powerful problem-
solving technique!

•  breaks large problem instance into smaller
instances of the identical problem!

•  a “natural way” (but not the only way!) to think
about and implement a divide and conquer strategy!

Recursive Function!

What are the characteristics of a recursive
function?!
•  a function that calls itself!
• each time with a smaller instance of the problem!
• must have a termination condition!

•  the solution to at least one smaller problem instance, the
base case, is known!

•  eventually, one of the smaller problem instances must be
the base case; reaching the base case enables the
recursive calls to stop!

Recursively Searching an Array: "
Finding the Largest Item in an Array!

if (anArray has only one item) // base case
 maxArray(anArray) is the item in anArray
else if (anArray has more than one item
maxArray(anArray) is the maximum of

 maxArray(left half of anArray) and
 maxArray(right half of anArray)

Recursive Solutions!

Four considerations in constructing
recursive solutions:!
1.  How can you define the problem in terms of a

smaller problem of the same type?!
2.  How does each recursive call reduce the size of

the problem instance?!
3.  What instance of the problem can serve as the

base case?!
4.  As the problem size diminishes, will you reach

this base case?!

Compute n! Recursive Version!
Recursive version of n! (assume n ≥ 0):!
int rfact(int n)!
!

!

How to compute its time complexity?!

Let T(n) be the operation-count complexity of rfact(n)!

Which operation shall we count?!

Complexity of Recursive n!!
What is the value of T(n)?!
!
!
!
!
!
What is the time complexity of rfact(n)?!
•  any constant operation count can be replaced by ’1’!

What is the space complexity of rfact(n)?!

Accounting Rule 6!
Definition: a recurrence relation is a mathematical
formula that generates the terms in a sequence
from previous terms!
Examples:!
• T(n) = 1+T(n – 1), T(0) = 1!
• T(n) = 2 ∗ T(n/2) + n, T(1) = 1!
• etc.!

Accounting Rule 6:!
Recurrence relations are “natural” descriptions of
the timing complexity of recursive algorithms!

Recursive Binary Search: Code!
int /* index of key */!
rbinsearch(int *a, int f, int n, int key) !
/* a[] sorted, f = 1st elt in a, n = sizeof(a) */!
{!
int mid;!
!
if (!n) return NOTFOUND;!
if (n == 1) return (a[f] == key ? f : NOTFOUND);!
mid = f+n/2;!
if (key < a[mid]) return(rbinsearch(a, f, n/2, key)); !
else return(rbinsearch(a, mid, n-n/2, key)); !

}!

What is the time complexity of the algorithm?!
•  recall: any constant per-level cost can be represented as ‘1’!

Recursive Binary Search: Analysis!

Recurrence relation: T(n) = 1 + T(n/2), T(1) = 1!
T(n) = 1 + T(n/2)!
!
!
!
!
!
!
!
Time complexity: O(?)!

When do we stop
the recurrence?!

What is k in the end?!

