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Introduction

1. Human vision and computer vision
e  Computer vision has a different way to see the world from humans

e Each system has its own pros and cons, and "capacity" and “vulnerability” are the distinct

properties that differentiates them
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Motivation

1. Computer vision models (CNNs) are vulnerable to adversarial
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2. Human eyes are more robust than computer vision

« Allowing models to fixate to different image regions can alleviate the effect of adversarial noise '
*  Non-uniform spatial sampling and varying receptive fields that mimic the retinal transformation

in the primate retina can also improve the robustness against adversarial attacks "

[1] Aleksander et al. Towards deep learning models resistant to adversarial attacks, 2017.
[2] Ricardo Gattass et al. Visual topography of v2 in the macaque, 1981.
[3] Pouya Bashivan et al. Neural population control via deep image synthesis, 2019.
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Methodology

1. Dorsal Stream: or the "where" pathway is responsible for processing information related to spatial
awareness and motion.

2. Ventral stream: or the "what" pathway, is responsible for object recognition, face recognition, and
determining the color and shape of objects.

(a) General Scheme (b) Crop-S (c) Crop-D (d) Retina (e) Our proposed part
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[4] Choi, Minkyu, et al. Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises, 2022
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Improvement

1. The hyper-parameter bin the model controls the degree of non-uniform sampling for the ventral
stream (authors use constant b=12)
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Figure 2. Examples of the effect of b on the retinal transformation, with fixation point centered at red x.

2. We implement 3 methods for adaptively changing the fovea size to improve robustness

Convolution Neural Network

Bounding Box Methods (YOLOV5)

82| X8Z|
8Z| X8Z|
ZEXZE

InputLayer Conv2D + BN + RelLu MaxPooling Linear
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Effect of b on the fovea size

(a) Size of Fovea
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Experiments

« Trained four models using various strategies Parameter Value
: : batch si 4
for adapting the fovea size ontimirer Adam
1. b=12: held beta constant like original paper e e e e
2. B-CNN: learned beta concurrently in an end-to-end {ﬁﬁgi‘lggﬁ‘(ﬂ“gfﬁ{;i Eff ey )
manner default b 12
3. C-BB: estimated beta from the closest valid bounding box
4. L-BB: estimated beta from the largest valid bounding box
ASR (e = 5e — 3)
. . . Model  Top-1 Acc  Targeted Untargeted
» Learned adversarial noise with 100 steps of T w90 s009  s00a
PGD over 1600 test images PONN- 380 7000 82.9%
C-BB 39.8% 78.9% 80.6%
L-BB 28.6% 78.4% 78.9%
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Conclusion

1. Successfully implemented 3 methods for adaptively setting the fovea size

2. Found that C-BB gave slightly higher robustness and better accuracy

Future work

1. Explore how to fine-tune bounding box model on target dataset.
2. Optimize the model efficiency and memory usage to allow for larger batch sizes and

better stability.

3. Explore using some reward to promote robustness for learning beta in the end-to-

end manner.
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Thank you !




