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Abstract 
Adaptive optics (AO) restore ideal imaging performance in complex samples by measuring and 

correcting optical aberrations, but often require custom-built microscopes with carefully aligned 

wavefront sensing/shaping devices and can be susceptible to sample motion. Here we describe 

NeAT, a computational framework using neural fields for AO two-photon fluorescence 

microscopy. NeAT estimates wavefront aberration and recovers sample structure from a 3D image 

stack without requiring external datasets for training. Incorporating motion correction in learning 

and correcting conjugation errors commonly found in commercial microscopes, NeAT is designed 

for deployment in biological laboratories for in vivo imaging. We validate NeAT’s performance 

using a custom-built microscope with a wavefront sensor under varying signal-to-noise ratios, 

aberration, and motion conditions. With a commercial microscope, we demonstrate real-time 

aberration correction for in vivo morphological and functional imaging in the living mouse brain, 



with NeAT improving signal and accuracy of glutamate and calcium imaging of synapses and 

neurons.  

  



Introduction 
Fluorescence imaging of living biological organisms provides mechanistic insights into their 

physiology. Two-photon (2P) fluorescence microscopy is an essential tool for live imaging, 

probing structure and function at subcellular resolution deep within complex tissues1. However, as 

2P excitation light propagates through tissue, its wavefront accumulates optical aberrations from 

refractive index mismatches, reducing fluorescence signal, resolution, and contrast. When these 

sample-induced aberrations are measured and corrected, the excitation light can form a diffraction-

limited focus, increasing fluorescence signal and improving the accuracy of structural and 

functional characterization.  

 Adaptive optics (AO)2–6 measure aberration and correct it with wavefront-shaping devices, 

such as deformable mirrors (DM) and liquid-crystal spatial light modulators (SLM). AO methods 

can be grouped into direct wavefront-sensing methods, which use wavefront sensors for aberration 

measurement, and indirect methods, including machine-learning-based wavefront estimation7–12.  

 Regardless of aberration measurement scheme, AO methods are generally developed for 

and deployed on custom-built microscopes, where individual optical components are carefully 

conjugated and aligned to ensure optimal imaging and correction. However, microscopes in a 

general laboratory setting often have imperfect conjugation and misalignment of optical 

components, with commercial microscopes additionally suffering from limited access and 

adjustability of their optical paths. Furthermore, sample motion during in vivo imaging creates 

artifacts that reduce aberration-measurement accuracy, especially in deep tissue imaging and for 

indirect wavefront sensing methods that utilize serial measurement of images and signals4. 

 Here, we describe NeAT, Neural fields for Adaptive optical Two-photon fluorescence 

microscopy. It utilizes neural fields to represent a sample’s three-dimensional (3D) structure and 

incorporates computational architectures to enhance AO performance for imperfect microscopes 

and living samples. By incorporating an image-formation model for 2P fluorescence microscopy 

that accounts for both aberration and sample motion as a physics prior, NeAT accurately estimates 

aberration from a single fluorescence image stack without external training datasets, even in the 

presence of motion artifacts. NeAT also corrects for conjugation errors in the microscope, ensuring 

that the corrective phase pattern displayed on a wavefront-shaping device accurately compensates 

aberration after propagation through imperfectly conjugated and misaligned optics. Lastly, NeAT 

jointly recovers sample structure and aberration. In scenarios where additional imaging with 



aberration correction is unnecessary, NeAT eliminates the need for corrective devices, further 

reducing system cost and complexity.          

The paper is structured as follows. First, we implement NeAT in a perfectly conjugated 2P 

microscope equipped with direct wavefront sensing (DWS) and compare NeAT’s performance 

with ground-truth aberration measurements by DWS both in vitro and in vivo. We then characterize 

its performance limits in terms of signal-to-noise ratio (SNR), aberration severity, and sample 

motion. Finally, we implement NeAT in a commercial microscope with imperfect conjugation and 

evaluate its real-time aberration correction for in vivo morphological and functional imaging in the 

mouse brain. 

 

Results 
NeAT, a general-purpose AO framework in 2P fluorescence microscopy using 

neural fields 
NeAT is designed to jointly estimate wavefront aberration and recover sample structure from a 3D 

2P fluorescence image stack (Fig. 1, Methods). It represents the sample structure using neural 

fields (Extended Data Fig. 1a) – implicit functions implemented as a coordinate-based neural 

network across spatial coordinates14. NeAT also incorporates a mathematical image-formation 

model for 2P fluorescence microscopy into the learning process, which involves aberration and 

structural estimation, as well as motion correction through learnable image transformations. 

During the learning process, NeAT aims to reproduce an image stack closely resembling the input 

by iteratively adjusting its parameters, without external supervision. Code implementing the 

procedures described here is available in the repository15. 

 The input for NeAT is an image stack (𝑔) acquired through scanning (Fig. 1a). Artifacts 

caused by sample motion (e.g., body movement, breathing, or heartbeat) in the z stack, if present, 

are corrected using affine transformations (A) whose parameters are optimized during the learning 

process (Fig. 1b, Extended Data Fig. 1b). When motion is negligible, 𝐴 is set as an identity 

operator and excluded from optimization.  

 The image-formation model comprises three components: point spread function (PSF, h), 

structure (s), and baseline (b) (Fig. 1c). The PSF h is modeled as16: 
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Here, 𝒓 represents the spatial coordinates (𝑥, 𝑦, 𝑧) near the focal plane. 𝑃(𝑢, 𝑣) and 𝜑(𝑢, 𝑣; 𝛼) 

denote the amplitude and phase maps in the coordinates (𝑢, 𝑣) within the circular pupil of the 

objective lens, respectively. 𝜑(𝑢, 𝑣; 𝛼) is a linear combination of Zernike modes with coefficients 

𝛼 , with 𝜑(𝑢, 𝑣; 𝛼) = ∑ ∑ 𝛼12𝑍12(𝑢, 𝑣)0
13+|2|56 . Here 𝑚  and 𝑛  are the angular meridional 

frequency and radial order, respectively, following the American National Standards Institute 

(ANSI) standard convention for Zernike modes. 𝛼 , a 1D tensor, is a set of learned Zernike 

coefficients (Extended Data Fig. 1c). We constrain our aberration estimation to up to fourth-order 

Zernike modes, excluding tip, tilt, defocus, and quadrafoil (i.e., 𝑍12 with 2 ≤ 𝑛 ≤ 4	and	|𝑚| ≤ 3), 

based on prior studies17–21. Tip, tilt, and defocus do not affect 2PFM image quality. Quadrafoil is 

excluded as its inclusion often yields inaccurate estimations under low-signal in vivo imaging 

conditions.  

 3D structure s is represented by a neural field (Fig. 1c, Extended Data Fig. 1a). It takes the 

spatial coordinates 𝒓 as input and involves both Fourier-domain spatial encoding22,23 and a multi-

layer perceptron13,24. This formulation follows the original neural field framework13. The spatial 

coordinates are mapped to radial Fourier features22 (i.e., 𝛾(𝒓) =

[sin(27𝑹8𝒓), cos(27𝑹8𝒓)]739,⋯,;*< , where 𝑹8 = LMcos
(𝜃/) − sin(𝜃/)

sin(𝜃/) cos(𝜃/)
PQ
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=

, 𝐿  controls the 

maximum radial frequency depth, and 𝐾 determines the number of angular samples over 2𝜋.) The 

encoded features are passed through a multi-layer perceptron 𝑓8, which represents the underlying 

signal as a continuous function. s is parametrized by the network weights 𝜃 and expressed as 

𝑓8V𝛾(𝒓)W. 

 The baseline term 𝑏(𝒓) is modeled as the multiplication of three 2D tensors that represent 

baseline elements along each of the x, y, and z axes (Fig. 1c, Extended Data Fig. 1d). This term 

accounts for both the offset due to background fluorescence and noise and, if present, signal 

decrease along the z-axis due to scattering and absorption by tissue. 

 The image-formation model computes an image stack 𝑔Y from PSF ℎ(𝒓; 𝛼), structure 𝑠 =

𝑓8V𝛾(𝒓)W, and baseline 𝑏(𝒓) by convolving PSF with structure before summation with baseline:  

𝑔Y(𝒓) = 𝑓8V𝛾(𝒓)W ⊛ ℎ(𝒓; 𝛼) + 𝑏(𝒓). (2) 



 NeAT then compares the input stack g (or more generally with motion correction, 𝐴𝑔) and 

the computed stack 𝑔Y. It runs an optimization process to update the learnable parameters over 

iterations to minimize the loss function (Fig. 1c, Extended Data Fig. 1e): 

min	
8,(,>,?

Vℒ(𝐴𝑔, 𝑔Y) + ℛ(𝑠)W. (3) 

The fidelity term ℒ(𝐴𝑔, 𝑔Y) is a weighted sum of SSIM (Structural Similarity Index Metric)25 and 

rMSE (relative Mean-Squared Error)26–28 between the two stacks. SSIM evaluates similarity 

between 𝐴𝑔 and 𝑔Y and has been widely used as both an image quality metric25,29–34 and a loss 

function in computational imaging35–37. The rMSE term computes a weighted L2 loss that reduces 

the influence of bright pixels and places greater emphasis on minimizing errors in dark regions. 

The regularization term ℛ(𝑠) incorporates a generic prior on the spatial piecewise smoothness of 

the structure and is the summation of three regularizations based on second-order total 

variation38,39, L1, and nonlinear diffusion40. Second-order total variation and L1 regularizations 

are chosen for rendering spatially sparse structural features (e.g., sparsely labeled neurons). 

Nonlinear diffusion regularization is employed to avoid both low- and high-frequency artifacts in 

the structure recovered by NeAT. 

 

Performance validation with DWS-AO 
To evaluate the accuracy of NeAT’s aberration estimation, we compared the aberration output by 

NeAT with the ground-truth aberration from DWS with a Shack-Hartmann wavefront sensor of 

fluorescence from 2P-excited guide stars41,42, using a custom-built 2P microscope with perfect 

conjugation between optics, including between the X and Y galvos (Extended Data Fig. 2a). 

System aberrations were measured with DWS and corrected by a DM prior to all experiments.  

 We first validated NeAT using fixed Thy1-GFP line M mouse brain slices. A #1.5 coverslip 

was placed above a brain slice at a 3° tilt, which introduced aberrations similar to those typically 

induced by a cranial window during in vivo mouse brain imaging43. We set the correction collar of 

the objective lens to 0.17, the nominal thickness of the coverslip. From an input image stack (Fig. 

2a), NeAT output 3D neuronal structures whose lateral (xy) and axial (xz) maximal intensity 

projections (MIPs) showed neuronal processes as well as synaptic structures such as boutons and 

dendritic spines (Fig. 2b). The estimated aberration had a similar phase map to the DWS 

measurement with a root mean square (RMS) difference of 0.09 wave (Fig. 2c) and comparable 



coefficients in the dominant aberration modes, e.g., primary coma 𝑍6
±< and spherical 𝑍09 (Fig. 2d). 

Additional performance validation with DWS shows that NeAT produces aberration estimation 

comparable to DWS measurement, with RMS differences of less than ~0.1 waves for both beads 

and brain slices (Supplementary Figs. 1, 2). 

 Next, we applied NeAT to in vivo 2P imaging of the mouse cortex. In one mouse, breathing 

caused lateral shifts between images at different z (Fig. 2e). Without correcting for sample motion 

during the acquisition of the input image stack, the algorithm misinterpreted the laterally displaced 

images of the same structure at different z as separate structures, leading to striated appearance in 

the axial MIP of its structural output (Fig. 2f). NeAT addressed this by using affine transformations 

A to register the image stack, with the transformation matrices jointly learned alongside other 

parameters (Eq. 3). With sample motion corrected, the structural output was free of striation 

artifacts (Fig. 2g), and the aberration output much more closely resembled the ground truth (an 

RMS error of 0.07 wave) than the output without motion correction (an RMS error of 0.16 wave) 

(Fig. 2h,i). 

 The effectiveness of sample motion correction depends on the SNR of fluorescence images 

and the magnitude of sample motion (Extended Data Fig. 3). For high SNR images (e.g., SNR of 

12), NeAT could handle sample motions of ±1 µm of maximum displacement. For noisier images 

(e.g., SNR of 3), its accuracy decreased and could only handle sample motions with ±0.25 µm 

displacement. This finding offers practical guidance for optimizing surgical preparation or 

controlling anesthesia level to minimize sample motion during image acquisition for AO, 

particularly during deep tissue imaging when SNR is low. 

 

Performance limit characterizations 
 After validating NeAT both in vitro and in vivo, we evaluated how robustly it performed at 

varying SNR levels. We varied post-objective power and acquired image stacks of 1-µm-diameter 

fluorescence beads at different SNRs (Extended Data Fig. 4a,b), while introducing either primary 

astigmatism (𝑍+*+) or primary coma (𝑍6*<) via DM. At low SNRs (e.g., SNR < 1.5), beads were 

poorly visualized and NeAT’s structure outputs appeared fragmented as they were fitted to noise. 

Only at sufficiently high SNRs did the structure resemble beads. We quantitatively evaluated 

NeAT’s performance to identify the cutoff SNR below which its performance deteriorated 

abruptly36. We computed the Pearson correlation coefficient (PCC) between the recovered 



structures at different SNRs and that from an image stack acquired with no aberration and high 

SNR (SNR > 7, Extended Data Fig. 4a,b). By fitting the PCC values to a piecewise linear curve 

with two distinct slopes, we identified the cutoff SNR as 1.51 for astigmatism (Fig. 2j) and 1.60 

for coma (Fig. 2k). Below these thresholds, structural fidelity decreased, as indicated by an abrupt 

drop of PCC values (blue curve, Fig. 2j,k); aberration estimation accuracy also degraded, as 

indicated by an increase in wavefront error (quantified by the RMS error between NeAT’s estimate 

and ground-truth aberrations; green curve, Fig. 2j,k).     

 We repeated the experiment on a fixed Thy1-GFP line M mouse brain slice (Extended Data 

Fig. 4c, d) to determine whether similar limits applied to spatially extended biological structures. 

In this case, we applied primary coma (𝑍6*< ) and secondary astigmatism (𝑍0*+ ) to the DM 

separately. Similarly to beads, low-SNR images were associated with structures dominated by 

artifacts. As before, we calculated the PCC between the recovered structures at different SNRs and 

the ground truth from an image stack acquired with no aberration and high SNR (SNR > 5, 

Extended Data Fig. 4c, d). We found that the cutoff SNR was 1.92 for coma (Fig. 2m) and 1.52 

for astigmatism (Fig. 2n), similar to the cutoff SNRs from the bead data. This suggests that at 

sufficiently high SNRs (SNR ≳ 3 for aberrations tested here), NeAT achieves accurate structural 

recovery, independent of feature characteristics.  

 Moreover, we characterized NeAT’s performance limit in terms of aberration severity. We 

randomly generated Zernike coefficients to obtain mixed-mode aberrations with RMS values 

ranging from 0.05 to 0.65 waves. We then applied each aberration to the DM and acquired images 

of beads and brain slices at SNR > 8. With the increase in aberration, fluorescence images became 

more degraded in resolution and contrast (Extended Data Fig. 5). At the largest aberrations tested 

(e.g., 0.65 waves for beads and 0.43 waves for brain slices), the recovered structures no longer 

accurately represented the features of the beads or neurons. We computed the PCC between the 

structures retrieved by NeAT from images with varying levels of external aberration and the 

structure from an image stack without aberration. Similar to above, we defined the cutoff RMS as 

the value above which the PCC exhibited a sudden drop, as identified by fitting the PCC values to 

a piecewise linear curve with two distinct slopes. We found a cutoff RMS of 0.47 wave for 1-µm 

beads (Fig. 2n) and 0.30 wave for the brain slice (Fig. 2o), respectively. This difference in cutoff 

RMS values is expected as 3D extended structures generally pose greater challenges than beads. 



 Lastly, we characterized NeAT’s performance limit in terms of sampling rate by varying the 

pixel sizes of input image stacks. We downsampled both in vitro and in vivo image stacks of 

neurons by different factors to vary the input pixel size along the lateral (dx, dy) and axial (dz) 

axes, and compared NeAT’s performance in structural recovery and aberration estimation 

(Extended Data Figs. 6, 7). When pixel size exceeded the Nyquist sampling criterion, the 

structure outputs from NeAT became inaccurate. The aberration estimation also deviated from the 

ground truth measured by DWS, with the estimated aberration matching the DWS measurement 

until lateral pixel size exceeded 0.20 µm and axial pixel size exceeded 0.67 µm, values dictated 

by the Nyquist condition, for both in vitro and in vivo cases.  

 

NeAT corrects for conjugation errors in a commercial microscope 
Having demonstrated the successful application of NeAT in a custom-built 2P microscope and 

acquired a thorough understanding of its performance in relation to SNR, motion, aberration 

severity, and input pixel size, we next tested whether NeAT worked on a commercial 2P 

microscope. This step is essential for extending AO beyond specialist setups to general laboratory 

settings, where microscopes often have imperfect conjugation, optical misalignment, and limited 

access or adjustability in the optical paths. Code implementing the procedures described below is 

available in the repository15. 

 We integrated a liquid-crystal SLM into the beam path between an excitation laser and a 

commercial 2P microscope (Bergamo II, Thorlabs) (Extended Data Fig. 2b). This system differs 

from our custom-built microscope in several ways. First, the DM, x galvo, and y galvo of the 

custom-built system were conjugated with pairs of lenses (Extended Data Fig. 2a) to ensure that 

the corrective phase pattern displayed on the DM was accurately relayed to the back focal plane 

(BFP) of the objective lens and stayed stationary during beam scanning. But the commercial 

microscope, as typical for microscopes in biological laboratories, did not conjugate the two galvos 

but placed them close to each other. Second, while the optics of the custom-built system were 

carefully arranged and aligned to ensure the registration between the x and y axes of the SLM 

surface and the fluorescence images, the commercial microscope had multiple mirrors in an 

enclosed optical path whose placement and alignment were preset and not adjustable. Finally, the 

commercial system was designed to have the whole microscope body move in 3D to accommodate 

large samples, which causes alignment errors between the SLM on the optical table and the 



objective lens in the microscope that for heavily shared microscopes can vary daily. As a result, a 

wavefront applied to SLM is translated, rotated, scaled, and/or sheared at the objective BFP, which 

in turn degrades aberration correction performance.  

 To address this, we incorporated into NeAT a procedure to estimate and correct conjugation 

errors (Fig. 1a). Corrective wavefront displayed on the SLM, 𝜑ABCC , becomes 𝜑DEF  at the 

objective BFP, with  

𝜑DEF = 𝐻𝜑ABCC + 𝛷GHI. (4) 

Here 𝛷Sys represents the system aberration and H is a linear geometric transformation describing 

the effects of conjugation errors on 𝜑ABCC (Fig. 3a). We model H as an affine transformation with 

parameters for translational, rotational, scaling, and shear transformation (Fig. 3b). For perfectly 

conjugated microscopes, H = I, the identity operator (i.e. translations are 0 pixels in x and y, 

rotation is 0 deg, scaling is 1, and shear is 0). For microscopes with conjugation errors, the 

procedure of accounting for them requires finding the transformation H and system aberration 𝛷Sys.  

 We determine system aberration 𝛷Sys by inputting into NeAT an image stack of 200-nm-

diameter fluorescence beads acquired with a flat SLM phase pattern. The estimated system 

aberration from NeAT is 𝜙f9, with  

𝛷Sys = 𝜙f9 + 𝜀9. (5) 

Here 𝜀9 represents estimation error by NeAT, assumed much smaller than 𝛷GHI in RMS magnitude.  

 To determine H, we apply 5 calibration aberrations 𝛷1  (n = 1 to 5) including primary 

astigmatism (𝑍+
±+), coma (𝑍6

±<), and spherical aberration (𝑍09), to the SLM. These calibration 

aberrations allow us to detect translation, scaling, rotation, and shear errors in conjugation. At the 

objective BFP, these aberrations became 𝐻𝛷1 + 𝛷GHI. With image stacks of 200-nm fluorescence 

beads acquired under these external aberrations as inputs (Fig. 3c), NeAT returns 𝜙f1 (n = 1 to 5), 

with 

𝐻𝛷1 + 𝛷GHI = 𝜙f1 + 𝜀1. (6) 

Here 𝜀1 represents estimation error by NeAT. Subtracting (5) from (6) and assuming 𝜀1 − 𝜀9 ≈ 0, 

we have 

𝐻𝛷1 ≅ 𝜙f1 − 𝜙f9, 𝑛 = 1,2, … , 5. (7) 



Now with 𝛷1 (n = 1 to 5) known, and 𝜙f1 and 𝜙f9 from NeAT, we determine the parameters of H 

by minimizing  

𝐻n = argmin
M

qrs𝐻𝛷1 − V𝜙f1 − 𝜙f9Ws
N

13<

t. (8) 

𝐻n, the estimate for H, describes how conjugation errors distort SLM wavefront patterns en route 

to the objective BFP. To correct these errors, we apply the inverse of 𝐻n, or 𝐻n*<, to the aberration 

estimation 𝜙f from NeAT and use 𝐻n*<𝜙f as the corrective SLM pattern (Fig. 1d). 

 For example, to correct for system aberration of the commercial microscope, we used an 

image stack of 200-nm fluorescence beads as input to NeAT, returning 𝜙f9  as the aberration 

estimation. Directly applying 𝜙f9 to the SLM increased the signal of a fluorescent bead by 1.7-fold 

(“AO1, w/o H”, Fig. 3d,e). By also correcting for conjugation errors, 𝐻n*<𝜙f9 increased the signal 

by 2.2-fold (“AO1, w/ H”, Fig. 3d,e). Using the image stack acquired with 𝐻n*<𝜙f9 as input into 

NeAT, we obtained the residual aberration 𝜙f9′ and applied 𝐻n*<V𝜙f9 + 𝜙f9′W to the SLM, leading 

to a 3.0-fold signal gain over no aberration correction (“AO2, w/ H”, Fig. 3d,e). From the image 

stacks acquired with these corrective patterns, NeAT estimated the residual aberrations (Fig. 3f). 

Consistent with the fluorescent signal measurements, conjugation error correction substantially 

reduced residual aberration, with 0.14 and 0.12 wave RMS after the first and second iterations of 

AO correction, while the residual aberration without conjugation correction had a 0.22 wave RMS.  

 We further tested our approach on correcting known astigmatism, coma, and spherical 

aberrations introduced to the SLM. From bead image stacks acquired with these aberrations 

applied, NeAT returned estimated aberrations (“Estimated w/o H”, Fig. 3g), which represented the 

wavefront distortion at the objective BFP and substantially differed from the applied aberrations 

(“Applied aberration”, Fig. 3g) due to conjugation errors. Transforming the estimated aberration 

with 𝐻n*< , we obtained aberrations with phase maps (“Estimated w/ H”, Fig. 3g) that closely 

matched the given aberrations in all three cases, leading to much smaller RMS errors (astigmatism:  

0.087 and 0.19 wave RMS with and without H correction; coma: 0.14 and 0.19 wave RMS with 

and without H correction; spherical: 0.16 and 0.23 wave RMS with and without H correction). 

Once characterized, the same 𝐻n*< can be applied as long as the conjugation of the microscope 

remains unchanged. Below, the system aberration of the commercial microscope was always 



corrected for “No AO” images so that improvement by AO arose from the correction of sample-

induced aberrations alone.  

 

Real-time aberration correction for in vivo structural imaging of mouse brain 
 We evaluated NeAT’s capacity to improve in vivo structural imaging with the commercial 

microscope. We acquired an image stack of a tdTomato-expressing dendrite at 350 µm depth in 

the primary visual cortex (V1) of a head-fixed mouse (“No AO”, Fig. 4a) and used it as input to 

NeAT. By applying the resulting corrective wavefront to the SLM, with both motion and 

conjugation corrections, we imaged the same dendrite and observed a marked improvement in 

brightness (up to 1.8´ for dendritic spines), resolution, and contrast (“Full correction”, Fig. 4a).  

 Correcting for both sample motion and conjugation error was necessary for the observed 

improvement. Corrective wavefronts with motion correction alone or conjugation correction alone 

differed substantially from the wavefront with full correction (Fig. 4b) and yielded only modest 

improvements (“Without H” and “Without motion correction”, Fig. 4a). These trends were 

quantitatively observed in the lateral and axial intensity profiles of three example dendritic spines 

(Fig. 4c).  

 We investigated further whether image-registration software such as the StackReg plugin in 

ImageJ can work similarly well to the motion correction method integrated into the learning 

process of NeAT. We introduced simulated motion to image stacks of beads acquired with 

aberrations, pre-registered them using StackReg, and then processed the resulting stacks by NeAT. 

Although structural recovery was moderately successful for beads (Extended Data Fig. 8a, b), 

aberration estimation accuracy was inferior to that obtained by directly inputting un-registered 

stacks to NeAT (Extended Data Fig. 8c). Similar results were observed in vivo, where StackReg-

based pre-registration yielded smaller brightness improvements than NeAT’s motion-aware 

correction (Extended Data Fig. 8d,e). This can be explained by whether motion correction 

considers the existence of aberration. While NeAT learns motion correction jointly with aberration 

(Eq. 3), conventional registration is unaware of aberrations and aligns adjacent planes by feature 

matching, potentially diminishing or amplifying them (e.g., StackReg may straighten the axially 

curved comatic tail).  

 Having established the necessity of both conjugation and motion corrections, we further 

evaluated NeAT’ for in vivo morphological imaging deep within the brain of a Thy1-GFP line M 



mouse using the commercial microscope. We first used an image stack acquired at a depth of 280 

µm as input to NeAT (“No AO”, Fig. 4d) to obtain the corrective wavefront (Fig. 4e, 0.36 wave 

RMS), which led to resolution improvement as well as an ~2´ increase in spine brightness (“AO”, 

Fig. 4d,f), where AO substantially enhances the resolution and contrast of fine structures such as 

dendritic spines (for more examples, see Extended Data Fig. 9a). We then acquired an image 

stack at 500 µm depth while applying to the SLM the corrective wavefront at 280 µm (“AO280 µm”, 

Fig. 4g). Using the image stack as input to NeAT, we obtained a corrective wavefront, which was 

then added to the corrective wavefront at 280 µm to obtain the final corrective pattern (Fig. 4h, 

0.49 wave RMS). This corrective wavefront has a larger RMS magnitude than that at 280 µm, 

consistent with previous observation of stronger aberrations at larger imaging depths for the mouse 

brain44. Compared to the image stacks acquired without AO (“No AO”, Fig. 4g) and with 

corrective wavefront at 280 µm (“AO280 µm”, Fig. 4g), images corrected at 500 µm (“AO500 µm”, 

Fig. 4g) had the best resolution and contrast, with up to a 2.4-fold increase in brightness for 

dendritic and synaptic structures (Fig. 4i). By using the corrective wavefront at a shallower depth 

when acquiring the input image stack at a deeper depth, we overcame the limit on aberration 

severity and used NeAT to correct large aberrations experienced in deep tissue imaging.  

 

NeAT improves in vivo glutamate imaging from the mouse brain 
We next used NeAT with motion and conjugation correction to improve in vivo functional imaging 

in head-fixed mice. We expressed the genetically encoded glutamate indicator iGluSnFR345 

sparsely in V1 neurons (Methods). From an image stack of dendrites at 400-µm depth (Fig. 5a), 

NeAT returned a corrective wavefront (Fig. 5b) that substantially increased image resolution and 

contrast, resulting in approximately two-fold improvement in brightness as shown by axial profiles 

of dendritic spines (i,ii; Fig. 5c) and resolving a dendritic spine from its nearby dendrite (iii; Fig. 

5c) (for more examples, Extended Data Fig. 9b). 

 Subsequently, we presented gratings drifting in eight different directions 

(0∘, 45∘, ⋯ , 315∘; 10	repetitions) to the mouse and recorded 2D time-lapse images of dendritic 

spines in the same FOV as in Fig. 5a at a 60 Hz frame rate, with and without the corrective 

wavefront applied to the SLM. With iGluSnFR3 labeling, changes in fluorescence brightness 

reflected glutamate release and thus synaptic input strength at these dendritic spines. Consistent 

with the above result, AO increased the brightness of dendrites and spines in the averaged time-



lapse image (Fig. 5d;  Fig. 5e, zoomed-in views of white boxes in Fig. 5d). For four representative 

dendritic spines (ROI 1-4, Fig. 5e), AO correction doubled the basal intensity (F0) of their trial-

averaged fluorescent traces and led to more prominent glutamate transients with larger amplitudes 

(∆F/F0) (left and middle panels, Fig. 5f). Fitting the glutamate responses to the 8 drifting grating 

stimuli with a bimodal Gaussian curve46, we obtained the orientation-tuning curves for these spines 

(right panels, Fig. 5f). Here AO increased the response amplitudes to the preferred grating 

orientations and led to a higher orientation sensitivity index (OSI) for these spines. Correcting 

aberration also shifted  the preferred orientation of some spines (e.g., ROI 3 and 4, Fig. 5f), 

resulting in more similar tuning preference for neighboring spines (Fig. 5g), consistent with 

previous findings47. Consistently across spine populations (52 orientation-sensitive ROIs out of 86 

spines, Methods), aberration correction by NeAT significantly increased basal fluorescence F0 by 

1.9-fold on average (two-sided paired t-test, p < 0.001, Fig. 5h). It also increased ∆F/F0 and OSI 

values as indicated by pairwise comparison (two-sided paired t-test, p < 0.001, Fig. 5i,j) and the 

cumulative OSI distributions (Kolmogorov-Smirnov test, p < 0.001, Fig. 5k).  

 

NeAT improves in vivo calcium imaging in densely labeled brains 
We further demonstrated that NeAT is applicable to densely labeled brains, a common application 

scenario for in vivo calcium imaging of neuronal populations. As NeAT requires an input stack of 

sparse structures for aberration estimation, we used viral transduction to densely express the 

genetically encoded calcium indicator GCaMP6s48 and sparsely express tdTomato in L2/3 neurons 

of the mouse V1 (Methods). Because aberration estimation and correction generalizes across 

excitation wavelengths without compromising correction performance (Supplementary Fig. 3), 

we used an image stack of a tdTomato-expressing neuron (inside yellow box of Fig. 5l) acquired 

with 1000 nm excitation light as the input to NeAT (32×32×10	µm3 stack, “No AO”, Fig. 5m). 

With the resulting corrective wavefront (Fig. 5n), AO visibly improved image contrast and 

resolution of the tdTomato-expressing neuron (“AO”, Fig. 5m), yielding >2´ increases in intensity 

in both axial profiles at dendritic spines and lateral profiles across dendrites (Fig. 5o).  

 Next, we switched the excitation wavelength to 920 nm and acquired 2D images of 

GCaMP6s-expressing neurons over a 484×484	µm2 FOV (green channel of Fig. 5l) at 15 Hz 

without and with the corrective wavefront obtained by NeAT, while presenting drifting gratings 

to the head-fixed mouse to evoke calcium responses. The standard deviation images of the time-



lapse stacks showed greater intensity differences across time frames after aberration correction 

(Fig. 5p, zoomed-in views on the white boxes in Fig. 5l), indicative of larger calcium transient 

magnitude. Indeed, for five representative ROIs (1-5, Fig. 5p), calcium transients were more 

apparent and had larger magnitudes in both trial-averaged fluorescence (F) and ∆F/F0 traces with 

AO (left and middle panels, Fig. 5q), leading to higher orientation selectivity indices for these 

structures (right panels, Fig. 5q).  

 Over the population of 125 orientation-selective ROIs out of 255 somatic and neuronal 

structures within the whole FOV, we found statistically significant differences between No AO 

and AO conditions for both basal fluorescence F9 (two-sided paired t-test, p < 0.001, Fig. 5r) and 

∆F/F0 (p < 0.05, Fig. 5s). Here the increase in basal fluorescence was less than what we observed 

for glutamate imaging of dendritic spines, because aberration decreases signal brightness of 

smaller structures such as dendritic spines more than larger structures such as somata44,49,50. 

Similar to glutamate imaging, AO increased the OSIs of neuronal structures (two-sided paired t-

test, p < 0.001, Fig. 5t; for cumulative distributions of OSI, Kolmogorov-Smirnov test, p < 0.001, 

Fig. 5u).  

 

Discussion 
In this work, we describe NeAT, a general-purpose AO framework for aberration measurement 

and correction for 2P fluorescence microscopy using neural fields. While neural fields have been 

used for various computational imaging applications22,36,51–55, NeAT is distinguished by its 

incorporation of a physics-based prior specific to 2P fluorescence microscopy, its estimation and 

correction of sample motion and conjugation errors, and its joint recovery of 3D structural 

information and aberration estimation without external supervision (Supplementary Table 1). 

 For purely structural applications, NeAT’s capability to recover 3D structure eliminates 

the need for wavefront-shaping devices or additional imaging with AO correction, greatly lowering 

system complexity and cost. Additionally, NeAT identifies and compensates for conjugation errors 

– common misalignments in laboratory microscopes that degrade AO performance – by 

preemptively transforming the corrective phase pattern after calibration. These functionalities 

ensure NeAT is compatible with existing custom-built and commercial 2P fluorescence 

microscopy systems in general. 



 We rigorously validated NeAT across various SNRs, aberration severities, and motion 

artifacts to establish guidelines for accurate and reliable operation. We demonstrated NeAT’s 

capability to improve image quality in demanding real-life biological applications through in vivo 

mouse brain imaging using a commercial microscope. NeAT effectively improved resolution in 

the morphological imaging of synapses and the signal accuracy of functional glutamate and 

calcium imaging. 

Requiring only a single z-stack and a few minutes of computation (Supplementary Table 

2), NeAT’s simple implementation, robust performance, and unique functionalities offer great 

potential for broader adoption and impact across biological research than many hardware-based 

AO methods (Supplementary Note 1).   
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Figure 1. NeAT estimates aberration and recovers structure from a 3D input image stack. (a) 
Schematic of NeAT’s function and integration into an adaptive optics (AO) imaging pipeline. Lateral (xy) 
and axial (xz) maximum intensity projections (MIPs) of a 3D two-photon (2P) fluorescence image stack (g)  
as the input to NeAT. The learning process of NeAT corrects for sample motion, and outputs an estimated 
aberration (Zernike coefficients 𝛼!") and sample structure (𝑠). Aberration output is then used to calculate a 
corrective wavefront to be applied to a deformable mirror (DM) or liquid-crystal spatial light modulator 
(SLM) for aberration correction. If present, microscope conjugation errors are measured by NeAT and 
compensated for before applying corrective wavefront. Scale bar: 5 µm. (b) If present, sample motion 
artifacts in 𝑔 are corrected by applying learnable transformations 𝐴. (c) NeAT optimizes network weights 
(𝜃), 𝛼!", and 𝐴 to minimize loss function ℒ(𝐴𝑔, 𝑔)) + ℛ(𝑠) that compares the input image stack 𝐴𝑔 with 
an image stack 𝑔). 𝑔) is computed from a structure represented by a neural field (𝑠 = 𝑓#(𝒓))	and a 3D point 
spread function	 calculated from	𝛼!" 	(PSF h; axial MIP shown). (d) If present, conjugation errors are 
estimated as 𝐻5 and compensated for by applying 𝐻5$% to the corrective phase pattern (𝜑)). Scale bars: 5 µm. 

 

Figure 2. Performance characterization with direct wavefront sensing (DWS) AO in a custom-built 
2P microscope. (a) Lateral (xy) and axial (xz) maximal intensity projections (MIPs) of an input image stack 
to NeAT from a fixed Thy1-GFP line M mouse brain slice. (b) Lateral and axial MIPs of the 3D neuronal 
structure recovered and (c) aberration estimated by NeAT, as well as aberration measured by DWS. (d) 
Zernike coefficients of aberrations in c. (e) Lateral and axial MIPs of an input image stack acquired in vivo 
from a Thy1-GFP line M mouse brain, with motion artifacts visible in xz. (f,g) Lateral axial MIPs of the 
structures recovered by NeAT without (f) and with (g) motion correction. (h) Aberrations estimated by 
NeAT without and with motion correction, respectively, and measured by DWS. (i) Zernike coefficients 
for aberrations in h. (j,k) Performance versus SNR using 1-µm-diameter beads under primary astigmatism 
(j) and primary coma (k). PCC: Pearson correlation coefficient between recovered structures; WFE: 
wavefront error. (l) Performance versus aberration severity evaluated using 1-µm-diameter beads. (m,n) 
Performance versus SNR using a fixed mouse brain slice under primary coma (m) and secondary 
astigmatism (n). (o) Performance versus aberration severity evaluated using brain slice. Red dashed lines: 
Cutoff SNRs (j,k,m,n) and cutoff aberration RMS (l,o) from piecewise linear fits (green and blue lines). 
(l,o) Data are presented as mean values +/- s.e.m. (N = 3 instances). Scale bars: 5 µm.  



Figure 3. NeAT corrects for conjugation errors in a commercial microscope. (a) Conjugation errors 
transform corrective pattern 𝜑Corr on SLM to 𝜑BFP = 𝐻𝜑Corr +𝛷Sys  at objective lens back focal plane. 
𝛷Sys: system aberration. (b) H (with example affine parameters) translates, rotates, scales, and shears a unit 
square (black dashed square) to a parallelogram (red). px: pixel. (c) H is determined from image stacks of 
200-nm-diameter beads acquired with calibration aberration 𝛷!	(𝑛 = 1,2,⋯ , 5) applied to SLM. Lateral 
(xy) and axial (xz) MIPs of the calibration image stacks are shown. (d) Lateral and axial MIPs of image 
stacks of 200-nm-diameter beads acquired without system aberration correction (‘No AO’), after one 
iteration of AO without (‘AO1 w/o H’) or with (‘AO1 w/H’) conjugation correction, and after two iterations 
of AO with conjugation correction (‘AO2 w/H’). (e) Axial signal profiles of the bead marked by yellow 
arrowhead in d. (f) Residual aberrations estimated by NeAT from image stacks in d. (g) Left to right: 
aberrations (with 0.3 wave RMS) applied to SLM, estimated aberration by NeAT without conjugation 
correction, and estimated aberration by NeAT with conjugation correction from bead image stacks acquired 
with the applied aberration. Numbers to the bottom right of estimated aberrations: difference (in wave RMS) 
between estimated aberration and applied aberration. Scale bars: 5 µm. 

 

Figure 4. Real-time aberration correction by NeAT for in vivo structural imaging. (a) Lateral (xy) and 
axial (xz) MIPs of image stacks of tdTomato-expressing dendrite and dendritic spines at 350 µm depth 
acquired with system aberration correction only (“No AO”, used as input to NeAT), with corrective 
wavefront estimated by NeAT with both conjugation and motion corrections (“Full correction”), motion 
correction only (“Without H”), or conjugation correction only (“Without motion correction”). (b) Estimated 
aberrations by NeAT without and with conjugation correction. (c) Lateral signal profiles along dashed lines 
and axial signal profiles of spine indicated by arrowhead in a. (d) Lateral and axial MIPs of Thy1-GFP line 
M mouse dendrites at 280 µm depth acquired with system aberration only (“No AO”, used as input to NeAT) 
and with correcting sample-induced aberration by NeAT. (e) Estimated aberration by NeAT. (f) Axial 
profiles of dendritic spines marked by arrowheads in d. (g) Lateral and axial MIPs of neuronal processes at 
500 µm depth, acquired with system aberration correction only (“No AO”), aberration correction at 280 
µm (“AO280 µm”, used as input to NeAT; wavefront in e), and aberration correction at 500 µm (“AO500 µm”) 
(h) Sample-induced aberration at 500 µm. (i) Lateral profiles along dashed line and axial profiles of spines 
indicated by arrowheads in g. Scale bars: 5 µm. 

  



Figure 5. Real-time aberration correction by NeAT for in vivo glutamate and calcium imaging. (a) 
Lateral (xy) and axial (yz) MIPs of input stacks to NeAT (“No AO”) and stacks acquired after aberration 
correction by NeAT (“AO”) of dendrites expressing iGluSnFR3 at 400 µm depth in mouse V1. (b) 
Estimated aberration by NeAT. (c) Axial profiles of spines indicated by arrowheads and lateral profiles 
along dashed line in a. (d) Averages of time-lapse xy images of dendrites measured without and with AO. 
(e) Zoomed-in views of structures in box in d. (f) Trial-averaged signal traces (F, 10 repetitions), glutamate 
transient traces (ΔF/F0), orientation tuning curves and OSI values of 4 ROIs (1-4 in e). Shade and error 
bars: s.e.m. (g) OS spines in d color-coded by their preferred orientations measured without and with AO. 
(h-k) Comparisons of basal fluorescence (F/; h), glutamate transient (ΔF/F0; i), OSIs (j,k) of 52 OS spines 
out of 86 total spines before and after AO correction. Error bars: mean values +/- SD. Two-sided paired t-
test, (h) p = 7.1 × 10-12, (i) p = 1.4 × 10-4, and (j) p = 3.1 × 10-9. Kolmogorov-Smirnov test, (k) p = 4.3 ×10-

8. (l) Superimposed xy images of sparse tdTomato-expressing neurons (1000-nm excitation) and dense 
GCaMP6s-expressing neurons (920-nm excitation) at 280 µm depth. (m) Lateral (xy) and axial (xz) MIPs 
of dendrites (yellow box in l) measured without (“No AO”, input to NeAT) and with AO. (n) Estimated 
aberration by NeAT. (o) Axial profiles for spines indicated by arrowheads and lateral profiles along dashed 
line in m. (p) Standard deviation of time-lapse images of GCaMP6s-expressing neurons in white box in l, 
acquired without and with AO. (q) Trial-averaged signal traces (F), calcium transient traces (ΔF/F0), 
orientation tuning curves, and OSI values of 5 ROIs (1-5 in p). Shade and error bars: s.e.m. (r-u) 
Comparisons of basal fluorescence (F/; h), calcium transient (ΔF/F0; s), OSIs (t,u) of 125 OS ROIs out of 
255 somatic and neuronal structures before and after AO correction. Error bars: mean values +/- SD. Two-
sided paired t-test, (r) p = 3.6 × 10-12, (s) p = 0.025, and (t) p = 2.9 × 10-8. Kolmogorov-Smirnov test, (u) p 
= 1.5 ×10-4. Scale bars: (a,d,e,g) 5 µm; (l,p) 100 µm; (m) 10 µm. 
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Methods  

Custom-built two-photon microscopy with direct wavefront sensing AO 
A custom-built two-photon fluorescence microscope was equipped with a wavefront sensor for 

DWS and described previously56,57 (Extended Data Fig. 2a). A Ti-Sapphire laser (Chameleon 

Ultra II, Coherent Inc.) was tuned to 920 nm output and scanned by a pair of carefully conjugated 

galvos (H2105, Cambridge). Pairs of achromatic doublet lenses (L3-L8) conjugated the surfaces 

of galvos with a DM (PTT489, Iris AO) and the BFP of an objective lens (CFI Apo LWD ×25, 1.1 

NA, 2.0 mm WD, Nikon). During imaging, 2P excited fluorescence was collected by the same 

objective, reflected by a dichroic mirror (D2, Di02-R785-25x36, Semrock), and detected by a 

GaAsP photomultiplier tube (H7422-40, Hamamatsu). For wavefront sensing, the emitted 2P 

fluorescence was descanned by the galvo pair, reflected by a dichroic mirror (D1, Di02-R785-

25x36, Semrock), and directed to a Shack-Hartmann (SH) sensor through a pair of achromatic 

lenses (FL = 60, 175 mm). The SH sensor consisted of a lenslet array (Advanced Microoptic 

Systems GmbH) conjugated to the objective BFP and a CMOS camera (Orca Flash 4.0, 

Hamamatsu) positioned at the focal plane of the lenslet array.  

 

Commercial two-photon fluorescence microscopy with an AO module 
The commercially available multiphoton microscope (Bergamo II, Thorlabs) used a Ti-Sapphire 

laser (Chameleon Ultra II, Coherent Inc.) tuned to 920 nm or 1000nm for 2P excitation. An AO 

module consisted of a liquid crystal SLM (1024 × 1024, HSP1K, Meadowlark Inc.) and two pairs 

of relay lenses (L1-L4, FL = 200, 50, 500, and 500mm) was added to the beam path on the optical 

table between the laser and the microscope. The laser output had its polarization rotated by an 

achromatic half-wave plate (AHWP05M-980, Thorlabs) to align with the SLM polarization 

requirement and was expanded 15 times using two beam expanders (GBE03-B, GBE05-B, 

Thorlabs) to fill the active area of the SLM. The two pairs of relay lenses demagnified the laser 

output and conjugated the SLM surface to the non-resonant galvo surface within the galvo-

resonant-galvo scanning head of the microscope. A pair of scan lenses within the Bergamo II 

microscope (L5-L6, FL=50 and 200mm) relayed the laser to the BFP of a water-dipping objective 

(25×, 1.05 NA, 2mm WD, Olympus). Fluorescence emission was collected through the objective 



and detected by two GaAsP photomultiplier tubes (PMT 2100, Thorlabs) for two-color imaging 

of green (525/50 nm emission filter) and red (607/70 nm emission filter) fluorescence, respectively. 

 

Animals and surgical procedures 
All animal experiments were conducted in accordance with the National Institutes of Health 

guidelines for animal research. Procedures and protocols involving mice were approved by the 

Institutional Animal Care and Use Committee at the University of California, Berkeley (AUP-

2020-06-13343). In vivo imaging experiments were performed using 2-4-month-old wild-type 

(C57BL/6J) or Thy1-GFP line M mouse lines.  

 Cranial window and virus injection surgeries were conducted under anesthesia (2% 

isoflurane in O2) following established procedures47,58. For in vivo glutamate imaging, sparse 

expression of iGluSnFR3 was achieved in V1 L2/3 by injecting a 1:1 mixture of diluted AAV2/1-

Syn-Cre virus (original titer 1.8 × 1013 GC/ml, diluted 10,000-fold in phosphate-buffered saline) 

and AAV-hSyn-FLEX-iGluSnFR3-v857-SGZ at multiple sites 150-250 µm below pia. 25 nl of the 

virus mixture was injected at each site. For in vivo calcium imaging, dense expression of GCaMP6s 

and sparse expression of tdTomato was achieved in V1 L2/3 by co-injecting a 1:1:1 mixture of 

diluted AAV2/1-Syn-Cre virus (original titer 1.8 × 1013 GC/ml, diluted 1,000-fold in phosphate-

buffered saline), AAV2/1-CAG-FLEX-tdTomato (6 × 1013 GC/ml), and AAV1-Syn-GCaMP6s-

WPRE-SV40 (1 × 1013 GC/ml) at multiple sites 150-250 µm below the pia. 25 nl of the virus 

mixture was injected at each site. A cranial window, made of a glass coverslip (Fisher Scientific, 

no. 1.5), was embedded in the craniotomy and sealed in place with Vetbond tissue adhesive (3M). 

A metal head post was attached to the skull using cyanoacrylate glue and dental acrylic. After 3 

weeks of expression and 3 days of habituation for head fixation, in vivo imaging was conducted in 

head-fixed mice under anesthesia (1% isoflurane in O2) for structural imaging and in lightly 

anesthetized mice (0.5% isoflurane in O2) for functional imaging. 

 

Loss function and regularization in self-supervised learning process 
The fidelity term ℒ(𝐴𝑔, 𝑔Y)	in the loss function (Eq. 3) is represented as a weighted sum of SSIM25 

and rMSE26–28 as follows: 

ℒ(𝐴𝑔, 𝑔Y) = 𝛾	(1 − SSIM(𝐴𝑔, 𝑔Y)) + (1 − 𝛾)	rMSE(𝐴𝑔, 𝑔Y), (9) 



where rMSE is defined as 

rMSE(𝐴𝑔, 𝑔Y) = �
𝐴𝑔 − 𝑔Y
sg(𝑔Y) + 𝜀7

�
+

. (10) 

Here sg(⋅) denotes a stop-gradient operation that treats its argument as a constant, employed for 

numerical stability during backpropagation26. This operation prevents the denominator from being 

differentiated with respect to the network weights, thereby avoiding division-by-zero instabilities 

or exploding gradients. The parameter 𝛾 controls the weight between the two terms. It is set to 

0.25 if the RMS contrast of the image stack’s background pixels, i.e., 𝜀7 = 𝜎?V𝑔?STW, is larger than 

0.03, where 𝜎?(⋅) computes the standard deviation of the background pixels of the operand. If the 

contrast is smaller than 0.02, 𝛾 is set to 1.0. Otherwise, 𝛾 is linearly interpolated between 0.25 and 

1.0. Here, 𝑔?ST represents a background-fluctuation-removed version of 𝑔, introduced to remove 

any unwanted low-frequency fluctuations in the images that could otherwise exaggerate the 

standard deviation.  

 The regularization term ℛ(𝑠) in the loss function (Eq. 3) is designed to render spatially 

sparse and smooth structural details, serving as a generic prior that reflects structural features of 

mouse brain neurons. It includes three regularization terms: second-order total variation (TV) 

ℛU&(𝑠)38,39, L1 regularization ℛV<(𝑠), and nonlinear diffusion (NLD) ℛWVX(𝑠)40. Since the 3D 

structure 𝑠(𝒓) = 𝑓8(𝛾(𝒓))  is represented implicitly by a neural field, the required spatial 

derivatives are evaluated directly through automatic differentiation using PyTorch’s autograd59 

during the learning process. The convergence behavior of the fidelity and regularization terms 

remains stable across epochs (Supplementary Fig. 4). 

 First, second-order TV ℛU&(𝑠)	aims to recover smooth profiles from noisy measurements 

by sparsifying the spatial gradient components. Unlike first-order TV60, which uses first-order 

derivatives, second-order TV uses second-order derivatives to avoid staircase artifacts38,39. In our 

implementation, we further applied a nonlinear tone mapping function26, an approximated 

logarithmic function (Eq. 12) that strongly penalizes errors in regions with low intensity values. 

For simplicity, the spatial coordinates (𝑥, 𝑦, 𝑧) are expressed as (𝑥<, 𝑥+, 𝑥6) below. 

where 𝑡𝑣(𝑠) includes all second-order TV terms across x, y, z, xy, yz, and zx dimensions. 

𝑡𝑣(𝑠) = ? TV0!0"(𝑠)
%121314

, with		TV0!0"(𝑠) = F
𝜕5𝑠
𝜕𝑥2𝜕𝑥3

F, (11) 



where	sg(⋅) indicates the same stop-gradient operation as above, and 𝜀U& is determined from the 

input image stack	𝑔 as the smallest standard deviation of second-order difference 𝑡𝑣(𝑔), that is, 

𝜀67 = min
%121314

L𝜎8 NTV0!0"(𝑔)OP . (13) 

 Second, L1 regularization ℛV<(𝑠)	helps to render the structure s with spatially sparse 

features by adding a penalty based on the absolute value of s as follows, 

ℛV<(𝑠) = log(|𝑠| + 𝜀;<) ≃
|𝑠|

sg(|𝑠|) + 𝜀;<
	. (14) 

Here, L1 regularization is applied to an entire 3D volume. 𝜀;<  = 𝜎?Vs𝑔?STsW  and the same 

logarithmic tone mapping function26 (Eq. 12) is applied on the top of the absolute value.  

 Lastly, NLD regularization40 ℛWVX(𝑠) constrains the first-order difference of the structure 

𝑠 along the depth axis z. It prevents axial features of the structure from fitting to the rapidly varying 

spatial components that sparsity-promoting regularizations (Eqs. 11, 14) might favor. This 

regularization balances the influence of the first two terms, allowing the structure to retain 

desirable details along the z-axis. It is written as 

ℛWVX(𝑠) = �
𝜕𝑠
𝜕𝑧��

	Z,[\,?]

, (15) 

where 𝑓|Z,[\,?] ≡ max(𝑓, 𝑏) + 𝛿	max(𝑎,min(𝑓, 𝑏)) + min(𝑓, 𝑎). For all results presented in this 

manuscript, 𝛿 = 0.1, 𝑎 = 0.005, 𝑏 = 2.0. 

 Together, the summation of the regularization terms is expressed as 

ℛ(𝑠) = 𝜆U&ℛU&(𝑠) + 𝜆V<ℛV<(𝑠) + 𝜆WVXℛWVX(𝑠), (16) 

where 𝜆U& = 0.005, 𝜆V< = 0.01, 	𝜆WVX = 10*^.  

 

Baseline term 𝒃 in image formation  
The baseline term b is modeled as a low-rank component to capture background fluorescence, 

which primarily arises from tissue autofluorescence and is typically slowly varying across the 

image.	𝑏 is represented as the sum of rank-1 tensors, and we set to 𝑅 = 5 here: 

ℛU&(𝑠) = log(𝑡𝑣(𝑠) + 𝜀U&) ≃
𝑡𝑣(𝑠)

sg(𝑡𝑣) + 𝜀U&
, (12) 



𝑏 =r𝑏-,T × 𝑏_,T × 𝑏`,T

a

T3<

, (17) 

where 𝑏`,T , 𝑏_,T , 𝑏-,T are learnable 2D tensors to represent baseline components along the 𝑥, 𝑦,	and 

𝑧  axes, respectively. These tensors are initialized with the value �0.1	𝜎?Vs𝑔?STsW�
</6
.  By 

constraining 𝑏 to low rank, we limit it to low-spatial-frequency features, effectively separating 

background fluorescence from fluorescent features of interest. For input stack g acquired from a 

mouse brain slice with GFP-expressing neurons (Extended Data Fig. 10a) and in vivo from a 

mouse brain with iGluSnFR3-expressing neurons (Extended Data Fig. 10b), respectively, the 

fluorescence baseline is much dimmer than labeled neurons and its low-rank nature is obvious. For 

the brain slice sample, autofluorescence only exists within the tissue slice and decrease close to 

zero outside the tissue (left edge of the yz image for Baseline plotted on a reduced scale in 

Extended Data Fig. 10a). 

 

Two-step learning process 
The weights of the neural network 𝜃 (representing structure 𝑠), Zernike coefficients 𝛼 (thus PSF 

ℎ(𝒓; 𝛼)), and baseline term b in the image-formation model are optimized in a two-step learning 

process36. The first step only adjusts neural network weights for s, while the Zernike coefficients 

𝛼 and baseline b remain fixed after initialization, where 𝛼 is randomly initialized with a random 

value from a uniform distribution in the range [0, 10-2]. It conditions the randomly initialized neural 

network, using the loss function: 

𝜃∗ = argmin	
8

�1 − SSIM�𝑐𝑔7d, 𝑓8(𝒓)�� , 𝑐 ≥ 1 (18) 

where 𝑔7d is a low pass filtered image stack with an isotropic Gaussian filter. Optimization is 

performed using the RAdam optimizer61 with an initial learning rate of 10*+, 𝛽< = 0.9, and 𝛽+ =

0.999 for 5000 epochs. The learning rate schedule follows an exponential decay down to 10*6 by 

the end of the epoch. 

The second step updates neural network weights 𝜃, Zernike coefficients 𝛼, and baseline b 

using the loss function (Eq. 3). For this learning process, the initial learning rate is set to 4 × 10*6 

with the same RAdam optimizer, keeping 𝛽< and 𝛽+ unchanged, running for 5000 epochs. The 



learning rate schedule again follows an exponential decay, this time down to 10*^ by the end of 

the epoch. 

All computational implementations are performed on a machine equipped with an NVIDIA 

RTX 4090 GPU, an Intel i9-13900K CPU, and 80 GB of RAM. The computation time for the 

results in the main figures is listed in Supplementary Table 2, along with their corresponding 

experimental settings. The scaling of NeAT’s computational time with respect to the input image 

size is described in Supplementary Note 2 and Supplementary Figs. 5,6. Overall, the 

computational cost of NeAT scales approximately linearly with the square root of total number of 

pixels in the XY images of the input stack, while remaining constant with respect to the axial depth 

(for a fixed number of z-slices).  

 

Preprocessing of 3D image stacks from in vivo experiments 
The raw 3D experimental fluorescence image stacks have dimensions of 𝑁S × 𝑁- × 𝑁_ × 𝑁` , 

where 𝑁S denotes the number of frames per 𝑧-axis slice (typical 𝑁S ~ 50), 𝑁- the number of 𝑧-axis 

slices, and 𝑁`	 and 𝑁_ the number of pixels along the 𝑥- and 𝑦-axes, respectively. Here 𝑁S frames 

are acquired per 𝑧-axis slice to reduce the effect of Gaussian noise through averaging. In a typical 

experiment, 𝑁S = 50 frames were acquired at a z-axis slice, before advancing to the next z-slice 

and acquiring another 𝑁S frames. Collecting 𝑁- (typically 50) z-axis slices in this manner required 

approximately 1.5 minutes in total. In in vivo imaging experiments, the frames acquired at the 

same z may need to be registered before averaging to correct for sample motion between frames. 

We used a customized ImageJ plugin (Supplementary Code 1) to register the frames for each 𝑧-

axis slice in 2D using the TurboReg plugin with a rigid body assumption and then to average the 

𝑁S registered frames to obtain the image stack with dimensions of 𝑁- × 𝑁_ × 𝑁`. The resulting 

stack is cropped to remove edge pixels and then used as input to NeAT. The input stack dimensions 

listed in Supplementary Table 2 reflect this preprocessing step. For the in vivo image stacks 

shown in Figs. 4 and 5, the dimensions are set to 50 × 200 × 200.  

 Typical input image stack extends 10 µm in z, within which aberrations are effectively 

constant, an assumption supported by observations that applying an aberration correction 

estimated at one depth substantially improves signal intensity and contrast across adjacent depths 

spanning at least ~100 µm (i.e., ±50 µm)44,49,50,62,63. 



 We explored whether denoising by Noise2Void64 could reduce frame averaging 

requirements, but found that at the SNR of our in vivo images, Noise2Void caused errors in 

aberration estimation when the number of averaged frames was too low (Supplementary Fig. 7, 

Supplementary Note 3). Therefore, for the SNR ranges that we explored, frame averaging 

remains the preferred approach for noise reduction. 

 

Motion correction of input image stacks by NeAT 
Image stacks acquired in vivo can contain motion artifacts caused by heartbeats, breathing, or body 

movements. Although preprocessing as described above removes the motion artifacts for frames 

acquired at the same z depth, motion between frames at different z depths also needs to be corrected 

to ensure that structural features are properly aligned for accurate aberration estimation by NeAT. 

Motion correction for the input z-stack therefore refers to registration across different z positions. 

Failing to so would lead to errors in aberration estimation and structural recovery (Extended Data 

Fig. 3). NeAT incorporates motion correction across z slices into its learning process by assigning 

an affine transformation matrix, 𝐴1# 	(𝑛- = 1,2,⋯ ,𝑁-) , to each z slice to correct translation, 

rotation, scaling, and shear caused by the sample’s motion. This is formulated as (𝐴𝑔)[𝑛-] =

𝐴1#𝑔[𝑛-], where 𝑔[𝑛-] denotes the 𝑛--th z-slice of the input image stack 𝑔. NeAT corrects motion 

by iteratively updating these matrices during the learning process. Each matrix is a 2 × 3 matrices 

with learnable elements and initialized as the identity. We used the RAdam optimizer61 for the 

motion correction process, with an initial learning rate of 0.07, 𝛽< = 0.9, and 𝛽+ = 0.999. More 

details are available in our public repository. Through aberration-aware motion registration, for 

image stacks with aberration, NeAT leads to different affine parameters from those estimated by 

StackReg in ImageJ (Supplementary Fig. 8) and achieves more accurate aberration measurement 

than pre-registering the image stack prior to learning using StackReg (Extended Data Fig. 8). 

 

Calculation of signal-to-noise ratio 
We assumed a linear relationship between the grayscale pixel value (d) and the photon count per 

pixel (pc), expressed as 𝑑 = 𝛽𝑝e, where β is the conversion factor. To compute β, we acquired 

multiple images (e.g., more than 100) of a fluorescein solution at the same imaging condition. We 



then calculated the variance and mean for d. Since pc theoretically follows a Poissonian distribution, 

where the variance equals the mean, 𝛽 is computed as the ratio of the variance to the mean of d. 

 For the cutoff SNR analysis, we calculated 𝛽 for the PMT in the custom-build microscope 

under different control voltages, observing gains of 7.83 at a control voltage of 0.7 V (used for 

acquiring images from 1-µm fluorescence beads, Figs. 2j-l) and 21.8 at a control voltage of 0.8 V 

(used for fixed Thy1-GFP mouse brain slice imaging, Figs. 2m-o).  

 Next, we classified the pixels in an image stack as either signal or background pixels using 

a classification method described previously36. We then calculated the SNR of the image stack as 

SNR	 = 	
𝑦� 𝛽⁄

¡𝑦� 𝛽⁄
= ¡𝑦�/𝛽, (19) 

where 𝑦� is the mean grayscale value of the signal pixels, and 𝑦� 𝛽⁄  represents the corresponding 

photon count. We developed an ImageJ plugin (Supplementary Code 2) to compute the SNR of 

a 3D image stack and determine whether it possesses sufficient SNR to be used as NeAT input 

(i.e., its SNR should exceed the SNR cutoff). 

 

In vivo imaging of visually evoked glutamate and calcium activity 
Visual stimuli were generated in MATLAB using the Psychophysics Toolbox65,66 and presented 

15 cm from the left eye of the mouse on a gamma-corrected, LED-backlit LCD monitor with a 

mean luminance of 20 cd·m−2. We divided the monitor into a 3 × 3 grid and presented 1-s-long 

uniform flashes in a pseudorandom sequence in one of the 9 grids, while recording fluorescence 

images with a 2 mm by 2 mm FOV. Analyzing these images allowed us to identify the cortical 

region that responded to the center of the monitor. We then imaged this cortical region at smaller 

pixel sizes to measure glutamate and calcium activity of synapses and neurons towards oriented 

drifting grating stimulation in mice under light anesthesia (0.5% isoflurane in O2). Full-field 

gratings of 100% contrast, a spatial frequency of 0.04 cycles per degree, and a temporal frequency 

of 2 Hz drifting in eight directions (0° to 315° at 45° increments) were presented in pseudorandom 

sequences. For glutamate imaging (x and y pixel size: 0.125 µm/pixel), each grating stimulus lasted 

2 s with a 1-s presentation of a gray screen before and after the stimulus. For calcium imaging (x 

and y pixel size: 0.945 µm/pixel), each grating stimulus lasted 2 s with a 1-s gray screen 

presentation before and a 3-s gray screen presentation after the stimulus. Each stimulus was 

repeated for 10 trials per imaging session. 



 

Functional image analysis 
Images were processed using custom Python code (see Supplementary Code 3.) Glutamate time-

lapse images were registered using iterative phase correlation with polar transform (implemented 

using the scikit-image Python package) to correct for non-rigid motions including translation, 

rotation, and scaling. The images from the first trial of visual stimulation (a 4-second-long 

recording) were used as the reference. Within this reference time series, each frame was registered 

to the first frame. Then an average was calculated from all registered frames therein and used as 

the reference. Images from subsequent trials were registered to this reference. Calcium time-lapse 

images were registered with the StackReg package67, with the first frame as the reference. In our 

case, the polar transform method proved more effective than StackReg for registering glutamate 

images, which were dimmer and noisier than calcium images. Regions of interest (ROIs) were 

manually drawn in ImageJ using the circular selection tool on the mean intensity projection of the 

glutamate time-lapse images and elliptical selection tool for the GCaMP6s time-lapse images. The 

ROIs were then imported into a Python environment to extract pixel values within the ROIs, which 

were averaged to obtain the raw fluorescence signal 𝐹 for each ROI.  

 The glutamate transient ∆𝐹/𝐹9  was calculated as (𝐹 − 𝐹9)/𝐹9 , where 𝐹9  represents the 

basal fluorescence, defined as the average fluorescence signal during the 1-s pre-stimulus gray-

screen presentation period, excluding the highest 5% of values in F from the calculation.  

 For calcium images, due to higher labeling density, we removed neuropil contamination. 

We calculated 𝐹neuropil as the averaged fluorescence signal from the neuropil area48 (defined as the 

pixels that were 2 to 20 pixels off the ROI border) and computed ∆𝐹neuropil  as 𝐹neuropil 	−

	𝐹9,		neuropil , where 𝐹9,		neuropil  is the mean of 𝐹neuropil  during the 1-s pre-stimulus period. Then, 

∆𝐹neuropil was multiplied by 0.7 and subtracted from 𝐹 to obtain 𝐹true. ∆𝐹/𝐹9 was then computed 

as (𝐹true − 𝐹9,true)/𝐹9,true , with 𝐹9,true  defined as the mean of 𝐹true  during the 1-s pre-stimulus 

period. 

 Trial-averaged ∆𝐹/𝐹9 was calculated as the average of 10 trials. Peak ∆𝐹/𝐹9 was defined 

as the maximal trial-averaged ∆𝐹/𝐹9 within the 2-s drifting grating presentation. Response 𝑅 for 

each drifting grating direction was defined as the averaged ∆𝐹/𝐹9 across the 2-s drifting-grating 

stimulus presentation, with negative responses set to zero.  



 For glutamate images, an ROI was considered responsive to visual stimulation if its peak 

∆𝐹/𝐹9 was greater than 3 times the standard deviation of the trial-averaged ∆𝐹/𝐹9 within the 2-s 

stimulus period68,69 and if the peak ∆𝐹/𝐹9  was above 5%70. For calcium images, an ROI was 

considered active if its maximal ∆𝐹/𝐹9 was above 10%58,71 and visually responsive if its activity 

during at least one visual stimulus type was significantly higher than its activity during the pre-

stimulus period, as determined by one-way ANOVA with 𝑝 < 0.01. All traces shown in Fig. 5 

were filtered using a Savitzky–Golay filter45. 

 

Orientation selectivity analysis 
For each ROI, its tuning curve 𝑅S!U(𝜃) was defined as the fitted curve to 𝑅(𝜃) with a bimodal 

Gaussian function46: 

𝑅S!U(𝜃) = 𝑅9 + 𝐴<	𝑒
*
\1op8*8$%&'q

"

+r" + 𝐴+	𝑒
*
\1op8*8$%&'s<t9∘q

"

+r" , (20) 

where 𝑎𝑛𝑔(𝑥) = min(|𝑥|, |𝑥 − 360∘|, |𝑥 + 360∘|) , which wraps the angular values onto the 

interval between 0∘ and 180∘. Responses to the different drifting direction 𝑅(𝜃) were fitted to the 

function to minimize the mean square error between the model and responses, with 𝑅9, 𝐴<, 𝐴+ 

constrained to non-negative values, and 𝜎 constrained to be larger than 22.5°72, given that the angle 

step was 45°.  

 ROIs were considered orientation-sensitive (OS) if their responses across 8 different 

drifting grating stimuli were significantly different by one-way ANOVA (𝑝 < 0.05)47,70 and if 

their responses were well-fit to the bimodal Gaussian model71. The goodness of the fit was assessed 

by calculating the error 𝐸 and the coefficient of determination ℜ+: 

𝐸 = r�𝑅(𝜃) − 𝑅S!U(𝜃)�
+
�
83(0N1)∘

u

139

, ℜ+ = 1 −
𝐸

∑ (𝑅(𝜃) − 𝑅�)+|83(0N1)∘u
139

, (21) 

where 𝑅� is the mean of 𝑅(𝜃). The criteria for a good fit were 𝐸 < 0.01 and ℜ+ > 0.5. The fitted 

response was used to calculate orientation sensitivity index (OSI) as apref	*	aortho
apref	s	aortho

, where 𝑅pref and 

𝑅ortho are the responses at θxCyz and 𝜃orthoV= θxCyz + 90∘W, respectively. 

 

Statistics 



Standard functions from the Scipy package in Python were used to perform statistical tests, 

including two-sided paired t-test, one-way ANOVA, and Kolmogorov-Smirnov test. Statistical 

significance was defined as *𝑝 < 0.05, ***𝑝 < 0.01, and ***𝑝 < 0.001. 

 

Data availability 
Data for conjugation error estimation/correction and aberration estimation from both brain-slice 

and in vivo experiments are available on Code Ocean under DOI: 10.24433/CO.2804276.v1. (URL: 

https://doi.org/10.24433/CO.2804276.v1) 

 

Code availability 
Code is available on Code Ocean under the DOI: 10.24433/CO.2804276.v1, along with metadata 

describing its functionality. (URL: https://doi.org/10.24433/CO.2804276.v1) 
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