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Abstract

Adaptive optics (AO) restore ideal imaging performance in complex samples by measuring and
correcting optical aberrations, but often require custom-built microscopes with carefully aligned
wavefront sensing/shaping devices and can be susceptible to sample motion. Here we describe
NeAT, a computational framework using neural fields for AO two-photon fluorescence
microscopy. NeAT estimates wavefront aberration and recovers sample structure from a 3D image
stack without requiring external datasets for training. Incorporating motion correction in learning
and correcting conjugation errors commonly found in commercial microscopes, NeAT is designed
for deployment in biological laboratories for in vivo imaging. We validate NeAT’s performance
using a custom-built microscope with a wavefront sensor under varying signal-to-noise ratios,
aberration, and motion conditions. With a commercial microscope, we demonstrate real-time

aberration correction for in vivo morphological and functional imaging in the living mouse brain,



with NeAT improving signal and accuracy of glutamate and calcium imaging of synapses and

neurons.



Introduction

Fluorescence imaging of living biological organisms provides mechanistic insights into their
physiology. Two-photon (2P) fluorescence microscopy is an essential tool for live imaging,
probing structure and function at subcellular resolution deep within complex tissues!. However, as
2P excitation light propagates through tissue, its wavefront accumulates optical aberrations from
refractive index mismatches, reducing fluorescence signal, resolution, and contrast. When these
sample-induced aberrations are measured and corrected, the excitation light can form a diffraction-
limited focus, increasing fluorescence signal and improving the accuracy of structural and
functional characterization.

Adaptive optics (AO)*>® measure aberration and correct it with wavefront-shaping devices,
such as deformable mirrors (DM) and liquid-crystal spatial light modulators (SLM). AO methods
can be grouped into direct wavefront-sensing methods, which use wavefront sensors for aberration
measurement, and indirect methods, including machine-learning-based wavefront estimation’ 2,

Regardless of aberration measurement scheme, AO methods are generally developed for
and deployed on custom-built microscopes, where individual optical components are carefully
conjugated and aligned to ensure optimal imaging and correction. However, microscopes in a
general laboratory setting often have imperfect conjugation and misalignment of optical
components, with commercial microscopes additionally suffering from limited access and
adjustability of their optical paths. Furthermore, sample motion during in vivo imaging creates
artifacts that reduce aberration-measurement accuracy, especially in deep tissue imaging and for
indirect wavefront sensing methods that utilize serial measurement of images and signals®.

Here, we describe NeAT, Neural fields for Adaptive optical Two-photon fluorescence
microscopy. It utilizes neural fields to represent a sample’s three-dimensional (3D) structure and
incorporates computational architectures to enhance AO performance for imperfect microscopes
and living samples. By incorporating an image-formation model for 2P fluorescence microscopy
that accounts for both aberration and sample motion as a physics prior, NeAT accurately estimates
aberration from a single fluorescence image stack without external training datasets, even in the
presence of motion artifacts. NeAT also corrects for conjugation errors in the microscope, ensuring
that the corrective phase pattern displayed on a wavefront-shaping device accurately compensates
aberration after propagation through imperfectly conjugated and misaligned optics. Lastly, NeAT

jointly recovers sample structure and aberration. In scenarios where additional imaging with



aberration correction is unnecessary, NeAT eliminates the need for corrective devices, further
reducing system cost and complexity.

The paper is structured as follows. First, we implement NeAT in a perfectly conjugated 2P
microscope equipped with direct wavefront sensing (DWS) and compare NeAT’s performance
with ground-truth aberration measurements by DWS both in vitro and in vivo. We then characterize
its performance limits in terms of signal-to-noise ratio (SNR), aberration severity, and sample
motion. Finally, we implement NeAT in a commercial microscope with imperfect conjugation and
evaluate its real-time aberration correction for in vivo morphological and functional imaging in the

mouse brain.

Results

NeAT, a general-purpose AO framework in 2P fluorescence microscopy using
neural fields

NeAT is designed to jointly estimate wavefront aberration and recover sample structure from a 3D
2P fluorescence image stack (Fig. 1, Methods). It represents the sample structure using neural
fields (Extended Data Fig. 1a) — implicit functions implemented as a coordinate-based neural
network across spatial coordinates'*. NeAT also incorporates a mathematical image-formation
model for 2P fluorescence microscopy into the learning process, which involves aberration and
structural estimation, as well as motion correction through learnable image transformations.
During the learning process, NeAT aims to reproduce an image stack closely resembling the input
by iteratively adjusting its parameters, without external supervision. Code implementing the
procedures described here is available in the repository!>.

The input for NeAT is an image stack (g) acquired through scanning (Fig. 1a). Artifacts
caused by sample motion (e.g., body movement, breathing, or heartbeat) in the z stack, if present,
are corrected using affine transformations (4) whose parameters are optimized during the learning
process (Fig. 1b, Extended Data Fig. 1b). When motion is negligible, A is set as an identity
operator and excluded from optimization.

The image-formation model comprises three components: point spread function (PSF, #),

structure (s), and baseline (b) (Fig. 1¢). The PSF £ is modeled as'®:
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Here, r represents the spatial coordinates (x,y, z) near the focal plane. P(u,v) and ¢(u, v; @)

denote the amplitude and phase maps in the coordinates (u, v) within the circular pupil of the
objective lens, respectively. ¢ (u, v; @) is a linear combination of Zernike modes with coefficients
a, with o, v;a) = Ymi<z Ln=2 an'Zi(w,v) . Here m and n are the angular meridional
frequency and radial order, respectively, following the American National Standards Institute
(ANSI) standard convention for Zernike modes. @, a 1D tensor, is a set of learned Zernike
coefficients (Extended Data Fig. 1¢). We constrain our aberration estimation to up to fourth-order
Zernike modes, excluding tip, tilt, defocus, and quadrafoil (i.e., Z* with 2 < n < 4 and |m| < 3),
based on prior studies!’2!. Tip, tilt, and defocus do not affect 2PFM image quality. Quadrafoil is
excluded as its inclusion often yields inaccurate estimations under low-signal in vivo imaging
conditions.

3D structure s is represented by a neural field (Fig. 1¢, Extended Data Fig. 1a). It takes the

22.23 and a multi-

spatial coordinates 7 as input and involves both Fourier-domain spatial encoding
layer perceptron!®?*, This formulation follows the original neural field framework'. The spatial

coordinates are mapped to radial Fourier features? (ie., y(r) =

cos(8,) —sin(6;)
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maximum radial frequency depth, and K determines the number of angular samples over 2m.) The
encoded features are passed through a multi-layer perceptron fy, which represents the underlying
signal as a continuous function. s is parametrized by the network weights 8 and expressed as
foly(m).

The baseline term b(r) is modeled as the multiplication of three 2D tensors that represent
baseline elements along each of the x, y, and z axes (Fig. 1¢, Extended Data Fig. 1d). This term
accounts for both the offset due to background fluorescence and noise and, if present, signal
decrease along the z-axis due to scattering and absorption by tissue.

The image-formation model computes an image stack g from PSF h(r; ), structure s =

fo (y(r)), and baseline b(r) by convolving PSF with structure before summation with baseline:

g = fo(y(@) ® h(r; a) + b(r). )



NeAT then compares the input stack g (or more generally with motion correction, Ag) and
the computed stack g. It runs an optimization process to update the learnable parameters over

iterations to minimize the loss function (Fig. 1c, Extended Data Fig. 1e):
Grgfgb(L(Ag, 9) + R(s)). 3)

The fidelity term L(Ag, §) is a weighted sum of SSIM (Structural Similarity Index Metric)* and
tMSE (relative Mean-Squared Error)’*?® between the two stacks. SSIM evaluates similarity

25,2934 and a loss

between Ag and g and has been widely used as both an image quality metric
function in computational imaging*~37. The rMSE term computes a weighted L2 loss that reduces
the influence of bright pixels and places greater emphasis on minimizing errors in dark regions.
The regularization term R(s) incorporates a generic prior on the spatial piecewise smoothness of
the structure and is the summation of three regularizations based on second-order total
variation®®3°, L1, and nonlinear diffusion*’. Second-order total variation and L1 regularizations
are chosen for rendering spatially sparse structural features (e.g., sparsely labeled neurons).

Nonlinear diffusion regularization is employed to avoid both low- and high-frequency artifacts in

the structure recovered by NeAT.

Performance validation with DWS-AO

To evaluate the accuracy of NeAT’s aberration estimation, we compared the aberration output by
NeAT with the ground-truth aberration from DWS with a Shack-Hartmann wavefront sensor of

fluorescence from 2P-excited guide stars*!#

, using a custom-built 2P microscope with perfect
conjugation between optics, including between the X and Y galvos (Extended Data Fig. 2a).
System aberrations were measured with DWS and corrected by a DM prior to all experiments.
We first validated NeAT using fixed Thy1-GFP line M mouse brain slices. A #1.5 coverslip
was placed above a brain slice at a 3° tilt, which introduced aberrations similar to those typically
induced by a cranial window during in vivo mouse brain imaging*. We set the correction collar of
the objective lens to 0.17, the nominal thickness of the coverslip. From an input image stack (Fig.
2a), NeAT output 3D neuronal structures whose lateral (xy) and axial (xz) maximal intensity
projections (MIPs) showed neuronal processes as well as synaptic structures such as boutons and

dendritic spines (Fig. 2b). The estimated aberration had a similar phase map to the DWS

measurement with a root mean square (RMS) difference of 0.09 wave (Fig. 2¢) and comparable



coefficients in the dominant aberration modes, e.g., primary coma Z ;—rl and spherical Z? (Fig. 2d).
Additional performance validation with DWS shows that NeAT produces aberration estimation
comparable to DWS measurement, with RMS differences of less than ~0.1 waves for both beads
and brain slices (Supplementary Figs. 1, 2).

Next, we applied NeAT to in vivo 2P imaging of the mouse cortex. In one mouse, breathing
caused lateral shifts between images at different z (Fig. 2e). Without correcting for sample motion
during the acquisition of the input image stack, the algorithm misinterpreted the laterally displaced
images of the same structure at different z as separate structures, leading to striated appearance in
the axial MIP of its structural output (Fig. 2f). NeAT addressed this by using affine transformations
A to register the image stack, with the transformation matrices jointly learned alongside other
parameters (Eq. 3). With sample motion corrected, the structural output was free of striation
artifacts (Fig. 2g), and the aberration output much more closely resembled the ground truth (an
RMS error of 0.07 wave) than the output without motion correction (an RMS error of 0.16 wave)
(Fig. 2h,i).

The effectiveness of sample motion correction depends on the SNR of fluorescence images
and the magnitude of sample motion (Extended Data Fig. 3). For high SNR images (e.g., SNR of
12), NeAT could handle sample motions of +1 um of maximum displacement. For noisier images
(e.g., SNR of 3), its accuracy decreased and could only handle sample motions with +£0.25 pm
displacement. This finding offers practical guidance for optimizing surgical preparation or
controlling anesthesia level to minimize sample motion during image acquisition for AO,

particularly during deep tissue imaging when SNR is low.

Performance limit characterizations

After validating NeAT both in vitro and in vivo, we evaluated how robustly it performed at
varying SNR levels. We varied post-objective power and acquired image stacks of 1-um-diameter
fluorescence beads at different SNRs (Extended Data Fig. 4a,b), while introducing either primary
astigmatism (Z;2) or primary coma (Z3 ') via DM. At low SNRs (e.g., SNR < 1.5), beads were
poorly visualized and NeAT’s structure outputs appeared fragmented as they were fitted to noise.
Only at sufficiently high SNRs did the structure resemble beads. We quantitatively evaluated
NeAT’s performance to identify the cutoff SNR below which its performance deteriorated

abruptly’®. We computed the Pearson correlation coefficient (PCC) between the recovered



structures at different SNRs and that from an image stack acquired with no aberration and high
SNR (SNR > 7, Extended Data Fig. 4a,b). By fitting the PCC values to a piecewise linear curve
with two distinct slopes, we identified the cutoff SNR as 1.51 for astigmatism (Fig. 2j) and 1.60
for coma (Fig. 2k). Below these thresholds, structural fidelity decreased, as indicated by an abrupt
drop of PCC values (blue curve, Fig. 2j,k); aberration estimation accuracy also degraded, as
indicated by an increase in wavefront error (quantified by the RMS error between NeAT’s estimate
and ground-truth aberrations; green curve, Fig. 2j,k).

We repeated the experiment on a fixed Thy1-GFP line M mouse brain slice (Extended Data
Fig. 4c, d) to determine whether similar limits applied to spatially extended biological structures.
In this case, we applied primary coma (Z3') and secondary astigmatism (Z;?) to the DM
separately. Similarly to beads, low-SNR images were associated with structures dominated by
artifacts. As before, we calculated the PCC between the recovered structures at different SNRs and
the ground truth from an image stack acquired with no aberration and high SNR (SNR > 5,
Extended Data Fig. 4¢, d). We found that the cutoff SNR was 1.92 for coma (Fig. 2m) and 1.52
for astigmatism (Fig. 2n), similar to the cutoff SNRs from the bead data. This suggests that at
sufficiently high SNRs (SNR = 3 for aberrations tested here), NeAT achieves accurate structural
recovery, independent of feature characteristics.

Moreover, we characterized NeAT’s performance limit in terms of aberration severity. We
randomly generated Zernike coefficients to obtain mixed-mode aberrations with RMS values
ranging from 0.05 to 0.65 waves. We then applied each aberration to the DM and acquired images
of beads and brain slices at SNR > 8. With the increase in aberration, fluorescence images became
more degraded in resolution and contrast (Extended Data Fig. 5). At the largest aberrations tested
(e.g., 0.65 waves for beads and 0.43 waves for brain slices), the recovered structures no longer
accurately represented the features of the beads or neurons. We computed the PCC between the
structures retrieved by NeAT from images with varying levels of external aberration and the
structure from an image stack without aberration. Similar to above, we defined the cutoff RMS as
the value above which the PCC exhibited a sudden drop, as identified by fitting the PCC values to
a piecewise linear curve with two distinct slopes. We found a cutoff RMS of 0.47 wave for 1-pm
beads (Fig. 2n) and 0.30 wave for the brain slice (Fig. 20), respectively. This difference in cutoff

RMS values is expected as 3D extended structures generally pose greater challenges than beads.



Lastly, we characterized NeAT’s performance limit in terms of sampling rate by varying the
pixel sizes of input image stacks. We downsampled both in vitro and in vivo image stacks of
neurons by different factors to vary the input pixel size along the lateral (dx, dy) and axial (dz)
axes, and compared NeAT’s performance in structural recovery and aberration estimation
(Extended Data Figs. 6, 7). When pixel size exceeded the Nyquist sampling criterion, the
structure outputs from NeAT became inaccurate. The aberration estimation also deviated from the
ground truth measured by DWS, with the estimated aberration matching the DWS measurement
until lateral pixel size exceeded 0.20 um and axial pixel size exceeded 0.67 um, values dictated

by the Nyquist condition, for both in vitro and in vivo cases.

NeAT corrects for conjugation errors in a commercial microscope

Having demonstrated the successful application of NeAT in a custom-built 2P microscope and
acquired a thorough understanding of its performance in relation to SNR, motion, aberration
severity, and input pixel size, we next tested whether NeAT worked on a commercial 2P
microscope. This step is essential for extending AO beyond specialist setups to general laboratory
settings, where microscopes often have imperfect conjugation, optical misalignment, and limited
access or adjustability in the optical paths. Code implementing the procedures described below is
available in the repository'’.

We integrated a liquid-crystal SLM into the beam path between an excitation laser and a
commercial 2P microscope (Bergamo 11, Thorlabs) (Extended Data Fig. 2b). This system differs
from our custom-built microscope in several ways. First, the DM, x galvo, and y galvo of the
custom-built system were conjugated with pairs of lenses (Extended Data Fig. 2a) to ensure that
the corrective phase pattern displayed on the DM was accurately relayed to the back focal plane
(BFP) of the objective lens and stayed stationary during beam scanning. But the commercial
microscope, as typical for microscopes in biological laboratories, did not conjugate the two galvos
but placed them close to each other. Second, while the optics of the custom-built system were
carefully arranged and aligned to ensure the registration between the x and y axes of the SLM
surface and the fluorescence images, the commercial microscope had multiple mirrors in an
enclosed optical path whose placement and alignment were preset and not adjustable. Finally, the
commercial system was designed to have the whole microscope body move in 3D to accommodate

large samples, which causes alignment errors between the SLM on the optical table and the



objective lens in the microscope that for heavily shared microscopes can vary daily. As a result, a
wavefront applied to SLM is translated, rotated, scaled, and/or sheared at the objective BFP, which
in turn degrades aberration correction performance.

To address this, we incorporated into NeAT a procedure to estimate and correct conjugation
errors (Fig. 1a). Corrective wavefront displayed on the SLM, @copr, becomes @gpp at the

objective BFP, with
@Brp = H(pCorr + <pSys- (4)

Here @g¢ represents the system aberration and / is a linear geometric transformation describing
the effects of conjugation errors on Q¢ (Fig. 3a). We model H as an affine transformation with
parameters for translational, rotational, scaling, and shear transformation (Fig. 3b). For perfectly
conjugated microscopes, H = I, the identity operator (i.e. translations are 0 pixels in x and y,
rotation is 0 deg, scaling is 1, and shear is 0). For microscopes with conjugation errors, the
procedure of accounting for them requires finding the transformation // and system aberration @gy.

We determine system aberration ®g,¢ by inputting into NeAT an image stack of 200-nm-
diameter fluorescence beads acquired with a flat SLM phase pattern. The estimated system

aberration from NeAT is ¢, with
Psys = GBO + &. (5
Here &, represents estimation error by NeAT, assumed much smaller than @gys in RMS magnitude.
To determine H, we apply 5 calibration aberrations @, (n = 1 to 5) including primary
astigmatism (Z;—rz), coma (Zgil), and spherical aberration (Z?), to the SLM. These calibration

aberrations allow us to detect translation, scaling, rotation, and shear errors in conjugation. At the

objective BFP, these aberrations became H®,, + ®gs. With image stacks of 200-nm fluorescence
beads acquired under these external aberrations as inputs (Fig. 3¢), NeAT returns ¢,, (n =1 to 5),
with

H®, + Psys = by, + n. (6)
Here ¢, represents estimation error by NeAT. Subtracting (5) from (6) and assuming €, — &y = 0,

we have

Ho, =, —p,, n=12..,5. (7)



Now with @, (n =1 to 5) known, and ¢,, and ¢, from NeAT, we determine the parameters of H
by minimizing
5

A = argmin (Z |H®, — (G5 — ¢‘>0)|>. (8)

n=1
H, the estimate for H, describes how conjugation errors distort SLM wavefront patterns en route
to the objective BFP. To correct these errors, we apply the inverse of H, or H=1, to the aberration
estimation ¢ from NeAT and use H~'¢ as the corrective SLM pattern (Fig. 1d).

For example, to correct for system aberration of the commercial microscope, we used an
image stack of 200-nm fluorescence beads as input to NeAT, returning ¢, as the aberration
estimation. Directly applying ¢, to the SLM increased the signal of a fluorescent bead by 1.7-fold
(“AO1, w/o H”, Fig. 3d,e). By also correcting for conjugation errors, H~1¢, increased the signal
by 2.2-fold (“AO1, w/ H”, Fig. 3d,e). Using the image stack acquired with H~1¢, as input into
NeAT, we obtained the residual aberration ¢’ and applied H=(p, + P,') to the SLM, leading
to a 3.0-fold signal gain over no aberration correction (“AO2, w/ H”, Fig. 3d,e). From the image
stacks acquired with these corrective patterns, NeAT estimated the residual aberrations (Fig. 3f).
Consistent with the fluorescent signal measurements, conjugation error correction substantially
reduced residual aberration, with 0.14 and 0.12 wave RMS after the first and second iterations of
AO correction, while the residual aberration without conjugation correction had a 0.22 wave RMS.

We further tested our approach on correcting known astigmatism, coma, and spherical
aberrations introduced to the SLM. From bead image stacks acquired with these aberrations
applied, NeAT returned estimated aberrations (‘“Estimated w/o H”, Fig. 3g), which represented the
wavefront distortion at the objective BFP and substantially differed from the applied aberrations
(“Applied aberration”, Fig. 3g) due to conjugation errors. Transforming the estimated aberration
with A=, we obtained aberrations with phase maps (“Estimated w/ H”, Fig. 3g) that closely
matched the given aberrations in all three cases, leading to much smaller RMS errors (astigmatism:
0.087 and 0.19 wave RMS with and without H correction; coma: 0.14 and 0.19 wave RMS with
and without H correction; spherical: 0.16 and 0.23 wave RMS with and without H correction).
Once characterized, the same A~ can be applied as long as the conjugation of the microscope

remains unchanged. Below, the system aberration of the commercial microscope was always



corrected for “No AO” images so that improvement by AO arose from the correction of sample-

induced aberrations alone.

Real-time aberration correction for in vivo structural imaging of mouse brain

We evaluated NeAT’s capacity to improve in vivo structural imaging with the commercial
microscope. We acquired an image stack of a tdTomato-expressing dendrite at 350 um depth in
the primary visual cortex (V1) of a head-fixed mouse (“No AO”, Fig. 4a) and used it as input to
NeAT. By applying the resulting corrective wavefront to the SLM, with both motion and
conjugation corrections, we imaged the same dendrite and observed a marked improvement in
brightness (up to 1.8x for dendritic spines), resolution, and contrast (“Full correction”, Fig. 4a).

Correcting for both sample motion and conjugation error was necessary for the observed
improvement. Corrective wavefronts with motion correction alone or conjugation correction alone
differed substantially from the wavefront with full correction (Fig. 4b) and yielded only modest
improvements (“Without A and “Without motion correction”, Fig. 4a). These trends were
quantitatively observed in the lateral and axial intensity profiles of three example dendritic spines
(Fig. 4c¢).

We investigated further whether image-registration software such as the StackReg plugin in
ImageJ can work similarly well to the motion correction method integrated into the learning
process of NeAT. We introduced simulated motion to image stacks of beads acquired with
aberrations, pre-registered them using StackReg, and then processed the resulting stacks by NeAT.
Although structural recovery was moderately successful for beads (Extended Data Fig. 8a, b),
aberration estimation accuracy was inferior to that obtained by directly inputting un-registered
stacks to NeAT (Extended Data Fig. 8c). Similar results were observed in vivo, where StackReg-
based pre-registration yielded smaller brightness improvements than NeAT’s motion-aware
correction (Extended Data Fig. 8d,e). This can be explained by whether motion correction
considers the existence of aberration. While NeAT learns motion correction jointly with aberration
(Eq. 3), conventional registration is unaware of aberrations and aligns adjacent planes by feature
matching, potentially diminishing or amplifying them (e.g., StackReg may straighten the axially
curved comatic tail).

Having established the necessity of both conjugation and motion corrections, we further

evaluated NeAT’ for in vivo morphological imaging deep within the brain of a Thy1-GFP line M



mouse using the commercial microscope. We first used an image stack acquired at a depth of 280
um as input to NeAT (“No AO”, Fig. 4d) to obtain the corrective wavefront (Fig. 4e, 0.36 wave
RMS), which led to resolution improvement as well as an ~2x increase in spine brightness (“AO”,
Fig. 4d.f), where AO substantially enhances the resolution and contrast of fine structures such as
dendritic spines (for more examples, see Extended Data Fig. 9a). We then acquired an image
stack at 500 um depth while applying to the SLM the corrective wavefront at 280 um (“AO280 um”,
Fig. 4g). Using the image stack as input to NeAT, we obtained a corrective wavefront, which was
then added to the corrective wavefront at 280 um to obtain the final corrective pattern (Fig. 4h,
0.49 wave RMS). This corrective wavefront has a larger RMS magnitude than that at 280 um,
consistent with previous observation of stronger aberrations at larger imaging depths for the mouse
brain**. Compared to the image stacks acquired without AO (“No AO”, Fig. 4g) and with
corrective wavefront at 280 pm (“AO2s0 um”, Fig. 4g), images corrected at 500 pm (“AOs00 um”,
Fig. 4g) had the best resolution and contrast, with up to a 2.4-fold increase in brightness for
dendritic and synaptic structures (Fig. 4i). By using the corrective wavefront at a shallower depth
when acquiring the input image stack at a deeper depth, we overcame the limit on aberration

severity and used NeAT to correct large aberrations experienced in deep tissue imaging.

NeAT improves in vivo glutamate imaging from the mouse brain

We next used NeAT with motion and conjugation correction to improve in vivo functional imaging
in head-fixed mice. We expressed the genetically encoded glutamate indicator iGluSnFR3%
sparsely in V1 neurons (Methods). From an image stack of dendrites at 400-um depth (Fig. Sa),
NeAT returned a corrective wavefront (Fig. Sb) that substantially increased image resolution and
contrast, resulting in approximately two-fold improvement in brightness as shown by axial profiles
of dendritic spines (i,ii; Fig. 5¢) and resolving a dendritic spine from its nearby dendrite (iii; Fig.
5¢) (for more examples, Extended Data Fig. 9b).

Subsequently, we presented gratings drifting in eight different directions
(0°,45°,-+-,315°%; 10 repetitions) to the mouse and recorded 2D time-lapse images of dendritic
spines in the same FOV as in Fig. 5a at a 60 Hz frame rate, with and without the corrective
wavefront applied to the SLM. With iGluSnFR3 labeling, changes in fluorescence brightness
reflected glutamate release and thus synaptic input strength at these dendritic spines. Consistent

with the above result, AO increased the brightness of dendrites and spines in the averaged time-



lapse image (Fig. 5d; Fig. Se, zoomed-in views of white boxes in Fig. 5d). For four representative
dendritic spines (ROI 1-4, Fig. 5e), AO correction doubled the basal intensity (Fo) of their trial-
averaged fluorescent traces and led to more prominent glutamate transients with larger amplitudes
(AF/Fy) (left and middle panels, Fig. 5f). Fitting the glutamate responses to the 8 drifting grating
stimuli with a bimodal Gaussian curve*®, we obtained the orientation-tuning curves for these spines
(right panels, Fig. 5f). Here AO increased the response amplitudes to the preferred grating
orientations and led to a higher orientation sensitivity index (OSI) for these spines. Correcting
aberration also shifted the preferred orientation of some spines (e.g., ROI 3 and 4, Fig. 5f),
resulting in more similar tuning preference for neighboring spines (Fig. 5g), consistent with
previous findings*’. Consistently across spine populations (52 orientation-sensitive ROIs out of 86
spines, Methods), aberration correction by NeAT significantly increased basal fluorescence £, by
1.9-fold on average (two-sided paired t-test, p < 0.001, Fig. Sh). It also increased AF/F and OSI
values as indicated by pairwise comparison (two-sided paired t-test, p < 0.001, Fig. 5i,j) and the

cumulative OSI distributions (Kolmogorov-Smirnov test, p < 0.001, Fig. 5k).

NeAT improves in vivo calcium imaging in densely labeled brains
We further demonstrated that NeAT is applicable to densely labeled brains, a common application
scenario for in vivo calcium imaging of neuronal populations. As NeAT requires an input stack of
sparse structures for aberration estimation, we used viral transduction to densely express the
genetically encoded calcium indicator GCaMP6s* and sparsely express tdTomato in L.2/3 neurons
of the mouse V1 (Methods). Because aberration estimation and correction generalizes across
excitation wavelengths without compromising correction performance (Supplementary Fig. 3),
we used an image stack of a tdTomato-expressing neuron (inside yellow box of Fig. 51) acquired
with 1000 nm excitation light as the input to NeAT (32x32%10 um? stack, “No AO”, Fig. Sm).
With the resulting corrective wavefront (Fig. 5n), AO visibly improved image contrast and
resolution of the tdTomato-expressing neuron (“AO”, Fig. Sm), yielding >2x increases in intensity
in both axial profiles at dendritic spines and lateral profiles across dendrites (Fig. So).

Next, we switched the excitation wavelength to 920 nm and acquired 2D images of
GCaMPé6s-expressing neurons over a 484x484 ym? FOV (green channel of Fig. 51) at 15 Hz
without and with the corrective wavefront obtained by NeAT, while presenting drifting gratings

to the head-fixed mouse to evoke calcium responses. The standard deviation images of the time-



lapse stacks showed greater intensity differences across time frames after aberration correction
(Fig. 5p, zoomed-in views on the white boxes in Fig. 5l), indicative of larger calcium transient
magnitude. Indeed, for five representative ROIs (1-5, Fig. Sp), calcium transients were more
apparent and had larger magnitudes in both trial-averaged fluorescence (F) and AF/F traces with
AO (left and middle panels, Fig. 5q), leading to higher orientation selectivity indices for these
structures (right panels, Fig. 5q).

Over the population of 125 orientation-selective ROIs out of 255 somatic and neuronal
structures within the whole FOV, we found statistically significant differences between No AO
and AO conditions for both basal fluorescence F, (two-sided paired t-test, p < 0.001, Fig. 5r) and
AF/Fo (p <0.05, Fig. Ss). Here the increase in basal fluorescence was less than what we observed
for glutamate imaging of dendritic spines, because aberration decreases signal brightness of
smaller structures such as dendritic spines more than larger structures such as somata®4%-30,
Similar to glutamate imaging, AO increased the OSIs of neuronal structures (two-sided paired t-

test, p < 0.001, Fig. 5t; for cumulative distributions of OSI, Kolmogorov-Smirnov test, p < 0.001,
Fig. Su).

Discussion

In this work, we describe NeAT, a general-purpose AO framework for aberration measurement
and correction for 2P fluorescence microscopy using neural fields. While neural fields have been
used for various computational imaging applications?>361-55 NeAT is distinguished by its
incorporation of a physics-based prior specific to 2P fluorescence microscopy, its estimation and
correction of sample motion and conjugation errors, and its joint recovery of 3D structural
information and aberration estimation without external supervision (Supplementary Table 1).
For purely structural applications, NeAT’s capability to recover 3D structure eliminates
the need for wavefront-shaping devices or additional imaging with AO correction, greatly lowering
system complexity and cost. Additionally, NeAT identifies and compensates for conjugation errors
— common misalignments in laboratory microscopes that degrade AO performance — by
preemptively transforming the corrective phase pattern after calibration. These functionalities
ensure NeAT is compatible with existing custom-built and commercial 2P fluorescence

microscopy systems in general.



We rigorously validated NeAT across various SNRs, aberration severities, and motion
artifacts to establish guidelines for accurate and reliable operation. We demonstrated NeAT’s
capability to improve image quality in demanding real-life biological applications through in vivo
mouse brain imaging using a commercial microscope. NeAT effectively improved resolution in
the morphological imaging of synapses and the signal accuracy of functional glutamate and
calcium imaging.

Requiring only a single z-stack and a few minutes of computation (Supplementary Table
2), NeAT’s simple implementation, robust performance, and unique functionalities offer great
potential for broader adoption and impact across biological research than many hardware-based

AO methods (Supplementary Note 1).
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Figure 1. NeAT estimates aberration and recovers structure from a 3D input image stack. (a)
Schematic of NeAT’s function and integration into an adaptive optics (AO) imaging pipeline. Lateral (xy)
and axial (xz) maximum intensity projections (MIPs) of a 3D two-photon (2P) fluorescence image stack (g)
as the input to NeAT. The learning process of NeAT corrects for sample motion, and outputs an estimated
aberration (Zernike coefficients a;;') and sample structure (s). Aberration output is then used to calculate a
corrective wavefront to be applied to a deformable mirror (DM) or liquid-crystal spatial light modulator
(SLM) for aberration correction. If present, microscope conjugation errors are measured by NeAT and
compensated for before applying corrective wavefront. Scale bar: 5 um. (b) If present, sample motion
artifacts in g are corrected by applying learnable transformations A. (¢) NeAT optimizes network weights
(), ayt, and A to minimize loss function L(Ag, §) + R(s) that compares the input image stack Ag with
an image stack §. g is computed from a structure represented by a neural field (s = f5(r)) and a 3D point
spread function calculated from a;* (PSF 4; axial MIP shown). (d) If present, conjugation errors are
estimated as H and compensated for by applying A~ to the corrective phase pattern (). Scale bars: 5 pm.

Figure 2. Performance characterization with direct wavefront sensing (DWS) AO in a custom-built
2P microscope. (a) Lateral (xy) and axial (xz) maximal intensity projections (MIPs) of an input image stack
to NeAT from a fixed Thy1-GFP line M mouse brain slice. (b) Lateral and axial MIPs of the 3D neuronal
structure recovered and (c¢) aberration estimated by NeAT, as well as aberration measured by DWS. (d)
Zernike coefficients of aberrations in c. (e) Lateral and axial MIPs of an input image stack acquired in vivo
from a Thy1-GFP line M mouse brain, with motion artifacts visible in xz. (f,g) Lateral axial MIPs of the
structures recovered by NeAT without (f) and with (g) motion correction. (h) Aberrations estimated by
NeAT without and with motion correction, respectively, and measured by DWS. (i) Zernike coefficients
for aberrations in h. (j,k) Performance versus SNR using 1-um-diameter beads under primary astigmatism
(j) and primary coma (k). PCC: Pearson correlation coefficient between recovered structures; WFE:
wavefront error. (I) Performance versus aberration severity evaluated using 1-um-diameter beads. (m,n)
Performance versus SNR using a fixed mouse brain slice under primary coma (m) and secondary
astigmatism (m). (0) Performance versus aberration severity evaluated using brain slice. Red dashed lines:
Cutoff SNRs (j,k,m,n) and cutoff aberration RMS (L,0) from piecewise linear fits (green and blue lines).
(1,0) Data are presented as mean values +/- s.e.m. (N = 3 instances). Scale bars: 5 um.



Figure 3. NeAT corrects for conjugation errors in a commercial microscope. (a) Conjugation errors

transform corrective pattern @corr 0n SLM to @gpp = H@corr + @Psys at objective lens back focal plane.

®sys: system aberration. (b) H (with example affine parameters) translates, rotates, scales, and shears a unit

square (black dashed square) to a parallelogram (red). px: pixel. (¢) H is determined from image stacks of
200-nm-diameter beads acquired with calibration aberration @, (n = 1,2,---,5) applied to SLM. Lateral

(xy) and axial (xz) MIPs of the calibration image stacks are shown. (d) Lateral and axial MIPs of image

stacks of 200-nm-diameter beads acquired without system aberration correction (‘No AQ’), after one

iteration of AO without (‘AO1 w/o H’) or with (‘AO1 w/H’) conjugation correction, and after two iterations

of AO with conjugation correction (‘AO2 w/H’). (e) Axial signal profiles of the bead marked by yellow

arrowhead in d. (f) Residual aberrations estimated by NeAT from image stacks in d. (g) Left to right:

aberrations (with 0.3 wave RMS) applied to SLM, estimated aberration by NeAT without conjugation

correction, and estimated aberration by NeAT with conjugation correction from bead image stacks acquired

with the applied aberration. Numbers to the bottom right of estimated aberrations: difference (in wave RMS)
between estimated aberration and applied aberration. Scale bars: 5 pm.

Figure 4. Real-time aberration correction by NeAT for in vivo structural imaging. (a) Lateral (xy) and
axial (xz) MIPs of image stacks of tdTomato-expressing dendrite and dendritic spines at 350 um depth
acquired with system aberration correction only (“No AO”, used as input to NeAT), with corrective
wavefront estimated by NeAT with both conjugation and motion corrections (“Full correction”), motion
correction only (“Without H”), or conjugation correction only (““Without motion correction’). (b) Estimated
aberrations by NeAT without and with conjugation correction. (¢) Lateral signal profiles along dashed lines
and axial signal profiles of spine indicated by arrowhead in a. (d) Lateral and axial MIPs of Thy1-GFP line
M mouse dendrites at 280 pm depth acquired with system aberration only (“No AO”, used as input to NeAT)
and with correcting sample-induced aberration by NeAT. (e) Estimated aberration by NeAT. (f) Axial
profiles of dendritic spines marked by arrowheads in d. (g) Lateral and axial MIPs of neuronal processes at
500 pum depth, acquired with system aberration correction only (“No AQO”), aberration correction at 280
um (“AOa2s0 um”, used as input to NeAT; wavefront in e), and aberration correction at 500 pm (“AOs00 ym”)
(h) Sample-induced aberration at 500 pm. (i) Lateral profiles along dashed line and axial profiles of spines
indicated by arrowheads in g. Scale bars: 5 um.



Figure 5. Real-time aberration correction by NeAT for in vivo glutamate and calcium imaging. (a)
Lateral (xy) and axial (yz) MIPs of input stacks to NeAT (“No AO”) and stacks acquired after aberration
correction by NeAT (“AQ”) of dendrites expressing iGluSnFR3 at 400 um depth in mouse V1. (b)
Estimated aberration by NeAT. (¢) Axial profiles of spines indicated by arrowheads and lateral profiles
along dashed line in a. (d) Averages of time-lapse xy images of dendrites measured without and with AO.
(e) Zoomed-in views of structures in box in d. (f) Trial-averaged signal traces (¥, 10 repetitions), glutamate
transient traces (AF/Fy), orientation tuning curves and OSI values of 4 ROIs (1-4 in e). Shade and error
bars: s.e.m. (g) OS spines in d color-coded by their preferred orientations measured without and with AO.
(h-k) Comparisons of basal fluorescence (Fy; h), glutamate transient (AF/Fy; i), OSIs (j,k) of 52 OS spines
out of 86 total spines before and after AO correction. Error bars: mean values +/- SD. Two-sided paired t-
test, (h) p=7.1 x 10" (i) p=1.4x 10" and (j) p = 3.1 x 10”. Kolmogorov-Smirnov test, (k) p = 4.3 x10°
¥ (1) Superimposed xy images of sparse tdTomato-expressing neurons (1000-nm excitation) and dense
GCaMP6s-expressing neurons (920-nm excitation) at 280 wm depth. (m) Lateral (xy) and axial (xz) MIPs
of dendrites (yellow box in 1) measured without (“No AO”, input to NeAT) and with AO. (n) Estimated
aberration by NeAT. (o) Axial profiles for spines indicated by arrowheads and lateral profiles along dashed
line in m. (p) Standard deviation of time-lapse images of GCaMP6s-expressing neurons in white box in I,
acquired without and with AQO. (q) Trial-averaged signal traces (F), calcium transient traces (AF/Fj),
orientation tuning curves, and OSI values of 5 ROIs (1-5 in p). Shade and error bars: s.e.m. (r-u)
Comparisons of basal fluorescence (Fy; h), calcium transient (AF/Fy; s), OSIs (t,u) of 125 OS ROIs out of
255 somatic and neuronal structures before and after AO correction. Error bars: mean values +/- SD. Two-
sided paired t-test, (r) p=3.6 x 102, (s) p = 0.025, and (t) p = 2.9 x 10", Kolmogorov-Smirnov test, (u) p
= 1.5 x10™. Scale bars: (a,d,e,g) 5 um; (Lp) 100 pm; (m) 10 pm.
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Methods

Custom-built two-photon microscopy with direct wavefront sensing AO

A custom-built two-photon fluorescence microscope was equipped with a wavefront sensor for
DWS and described previously®®>’ (Extended Data Fig. 2a). A Ti-Sapphire laser (Chameleon
Ultra II, Coherent Inc.) was tuned to 920 nm output and scanned by a pair of carefully conjugated
galvos (H2105, Cambridge). Pairs of achromatic doublet lenses (L3-L8) conjugated the surfaces
of galvos with a DM (PTT489, Iris AO) and the BFP of an objective lens (CFI Apo LWD x25, 1.1
NA, 2.0 mm WD, Nikon). During imaging, 2P excited fluorescence was collected by the same
objective, reflected by a dichroic mirror (D2, Di02-R785-25x36, Semrock), and detected by a
GaAsP photomultiplier tube (H7422-40, Hamamatsu). For wavefront sensing, the emitted 2P
fluorescence was descanned by the galvo pair, reflected by a dichroic mirror (D1, Di02-R785-
25x36, Semrock), and directed to a Shack-Hartmann (SH) sensor through a pair of achromatic
lenses (FL = 60, 175 mm). The SH sensor consisted of a lenslet array (Advanced Microoptic
Systems GmbH) conjugated to the objective BFP and a CMOS camera (Orca Flash 4.0,

Hamamatsu) positioned at the focal plane of the lenslet array.

Commercial two-photon fluorescence microscopy with an AO module

The commercially available multiphoton microscope (Bergamo II, Thorlabs) used a Ti-Sapphire
laser (Chameleon Ultra II, Coherent Inc.) tuned to 920 nm or 1000nm for 2P excitation. An AO
module consisted of a liquid crystal SLM (1024 x 1024, HSP1K, Meadowlark Inc.) and two pairs
of relay lenses (L1-L4, FL = 200, 50, 500, and 500mm) was added to the beam path on the optical
table between the laser and the microscope. The laser output had its polarization rotated by an
achromatic half-wave plate (AHWP05M-980, Thorlabs) to align with the SLM polarization
requirement and was expanded 15 times using two beam expanders (GBE03-B, GBE05-B,
Thorlabs) to fill the active area of the SLM. The two pairs of relay lenses demagnified the laser
output and conjugated the SLM surface to the non-resonant galvo surface within the galvo-
resonant-galvo scanning head of the microscope. A pair of scan lenses within the Bergamo II
microscope (L5-L6, FL=50 and 200mm) relayed the laser to the BFP of a water-dipping objective

(25%, 1.05 NA, 2mm WD, Olympus). Fluorescence emission was collected through the objective



and detected by two GaAsP photomultiplier tubes (PMT 2100, Thorlabs) for two-color imaging

of green (525/50 nm emission filter) and red (607/70 nm emission filter) fluorescence, respectively.

Animals and surgical procedures

All animal experiments were conducted in accordance with the National Institutes of Health
guidelines for animal research. Procedures and protocols involving mice were approved by the
Institutional Animal Care and Use Committee at the University of California, Berkeley (AUP-
2020-06-13343). In vivo imaging experiments were performed using 2-4-month-old wild-type
(C57BL/6J) or Thy1-GFP line M mouse lines.

Cranial window and virus injection surgeries were conducted under anesthesia (2%
isoflurane in O,) following established procedures*’-*®. For in vivo glutamate imaging, sparse
expression of iGluSnFR3 was achieved in V1 L2/3 by injecting a 1:1 mixture of diluted AAV2/1-
Syn-Cre virus (original titer 1.8 x 10'> GC/ml, diluted 10,000-fold in phosphate-buffered saline)
and AAV-hSyn-FLEX-iGluSnFR3-v857-SGZ at multiple sites 150-250 um below pia. 25 nl of the
virus mixture was injected at each site. For in vivo calcium imaging, dense expression of GCaMP6s
and sparse expression of tdTomato was achieved in V1 L2/3 by co-injecting a 1:1:1 mixture of
diluted AAV2/1-Syn-Cre virus (original titer 1.8 x 10'* GC/ml, diluted 1,000-fold in phosphate-
buffered saline), AAV2/1-CAG-FLEX-tdTomato (6 x 10'* GC/ml), and AAV1-Syn-GCaMP6s-
WPRE-SV40 (1 x 103 GC/ml) at multiple sites 150-250 um below the pia. 25 nl of the virus
mixture was injected at each site. A cranial window, made of a glass coverslip (Fisher Scientific,
no. 1.5), was embedded in the craniotomy and sealed in place with Vetbond tissue adhesive (3M).
A metal head post was attached to the skull using cyanoacrylate glue and dental acrylic. After 3
weeks of expression and 3 days of habituation for head fixation, in vivo imaging was conducted in
head-fixed mice under anesthesia (1% isoflurane in Oz) for structural imaging and in lightly

anesthetized mice (0.5% isoflurane in O2) for functional imaging.

Loss function and regularization in self-supervised learning process

The fidelity term L(Ag, §) in the loss function (Eq. 3) is represented as a weighted sum of SSIM?

and rMSEZ?28 a5 follows:

L(Ag,§) =y (1—-SSIM(Ag, §)) + (1 —y) rMSE(4g, 9), ©)



where rMSE is defined as

2

. Ag-g
rMSE(Ag, ) = (m) . (10)
Here sg(-) denotes a stop-gradient operation that treats its argument as a constant, employed for
numerical stability during backpropagation®. This operation prevents the denominator from being
differentiated with respect to the network weights, thereby avoiding division-by-zero instabilities
or exploding gradients. The parameter y controls the weight between the two terms. It is set to

0.25 if the RMS contrast of the image stack’s background pixels, i.e., & = 0y, ( Ib fr), is larger than

0.03, where gy, (-) computes the standard deviation of the background pixels of the operand. If the
contrast is smaller than 0.02, y is set to 1.0. Otherwise, y is linearly interpolated between 0.25 and
1.0. Here, gy, represents a background-fluctuation-removed version of g, introduced to remove
any unwanted low-frequency fluctuations in the images that could otherwise exaggerate the
standard deviation.

The regularization term R(s) in the loss function (Eq. 3) is designed to render spatially
sparse and smooth structural details, serving as a generic prior that reflects structural features of
mouse brain neurons. It includes three regularization terms: second-order total variation (TV)
R, (8)*%3, L1 regularization Ry, (s), and nonlinear diffusion (NLD) Ryp.p(s)*. Since the 3D
structure s(1) = fo(y(r)) is represented implicitly by a neural field, the required spatial
derivatives are evaluated directly through automatic differentiation using PyTorch’s autograd™’
during the learning process. The convergence behavior of the fidelity and regularization terms
remains stable across epochs (Supplementary Fig. 4).

First, second-order TV R, (s) aims to recover smooth profiles from noisy measurements
by sparsifying the spatial gradient components. Unlike first-order TV, which uses first-order
derivatives, second-order TV uses second-order derivatives to avoid staircase artifacts*®>°. In our
implementation, we further applied a nonlinear tone mapping function®®, an approximated
logarithmic function (Eq. 12) that strongly penalizes errors in regions with low intensity values.
For simplicity, the spatial coordinates (x, y, z) are expressed as (x;, X3, x3) below.

d%s

axiaxj

to(s) = 2 TV (), with TV, (s) =

1<i<j<3

, (11)

where tv(s) includes all second-order TV terms across x, y, z, xy, yz, and zx dimensions.



tv(s)

Ry (s) = log(tv(s) + &) = o P
tv

(12)

where sg(-) indicates the same stop-gradient operation as above, and &, is determined from the

input image stack g as the smallest standard deviation of second-order difference tv(g), that is,

ey = _min <ab (Tvxl.x,.cg))). (13)

1<i<j<3
Second, L1 regularization R;;(s) helps to render the structure s with spatially sparse
features by adding a penalty based on the absolute value of s as follows,
|s]

_ . 14
205D + 5, (14

Rp1(s) = log(ls| + €11) =

Here, L1 regularization is applied to an entire 3D volume. &4 = ab(| Ip frl) and the same
logarithmic tone mapping function?® (Eq. 12) is applied on the top of the absolute value.

Lastly, NLD regularization** Ry p(s) constrains the first-order difference of the structure
s along the depth axis z. It prevents axial features of the structure from fitting to the rapidly varying
spatial components that sparsity-promoting regularizations (Eqs. 11, 14) might favor. This
regularization balances the influence of the first two terms, allowing the structure to retain

desirable details along the z-axis. It is written as

) (15)
é,[a,b]

ds
Rnp(s) = ‘a

where |5 = max(f, b) + 6 max(a, min(f, b)) + min(f, a). For all results presented in this
manuscript, 6 = 0.1,a = 0.005,b = 2.0.
Together, the summation of the regularization terms is expressed as

R(S) = ApRep(S) + AL1R11(S) + AnLpRNLp (S), (16)

where /11.“1; = 0005, /1]_‘1 = 001, ANLD = 10_6.

Baseline term b in image formation
The baseline term b is modeled as a low-rank component to capture background fluorescence,
which primarily arises from tissue autofluorescence and is typically slowly varying across the

image. b is represented as the sum of rank-1 tensors, and we set to R = 5 here:



R
b= byyXbyy X by, (17)
r=1

where b, ., by, ,, b, , are learnable 2D tensors to represent baseline components along the x, y, and

v
: e . 1/3
z axes, respectively. These tensors are initialized with the value (0.1 O'b(l gbfrD) . By

constraining b to low rank, we limit it to low-spatial-frequency features, effectively separating
background fluorescence from fluorescent features of interest. For input stack g acquired from a
mouse brain slice with GFP-expressing neurons (Extended Data Fig. 10a) and in vivo from a
mouse brain with iGluSnFR3-expressing neurons (Extended Data Fig. 10b), respectively, the
fluorescence baseline is much dimmer than labeled neurons and its low-rank nature is obvious. For
the brain slice sample, autofluorescence only exists within the tissue slice and decrease close to
zero outside the tissue (left edge of the yz image for Baseline plotted on a reduced scale in

Extended Data Fig. 10a).

Two-step learning process

The weights of the neural network 8 (representing structure s), Zernike coefficients a (thus PSF
h(r; a)), and baseline term b in the image-formation model are optimized in a two-step learning
process’®. The first step only adjusts neural network weights for s, while the Zernike coefficients
« and baseline b remain fixed after initialization, where a is randomly initialized with a random
value from a uniform distribution in the range [0, 10-2]. It conditions the randomly initialized neural

network, using the loss function:
9* = argmin (1 — SSIM (cglp,fg(r))), c>1 (18)
6

where g;,, is a low pass filtered image stack with an isotropic Gaussian filter. Optimization is
performed using the RAdam optimizer®' with an initial learning rate of 1072, f; = 0.9, and 8, =
0.999 for 5000 epochs. The learning rate schedule follows an exponential decay down to 1073 by
the end of the epoch.

The second step updates neural network weights 6, Zernike coefficients a, and baseline b

using the loss function (Eq. 3). For this learning process, the initial learning rate is set to 4 x 1073

with the same RAdam optimizer, keeping f; and 8, unchanged, running for 5000 epochs. The



learning rate schedule again follows an exponential decay, this time down to 10~° by the end of
the epoch.

All computational implementations are performed on a machine equipped with an NVIDIA
RTX 4090 GPU, an Intel 19-13900K CPU, and 80 GB of RAM. The computation time for the
results in the main figures is listed in Supplementary Table 2, along with their corresponding
experimental settings. The scaling of NeAT’s computational time with respect to the input image
size is described in Supplementary Note 2 and Supplementary Figs. 5,6. Overall, the
computational cost of NeAT scales approximately linearly with the square root of total number of
pixels in the XY images of the input stack, while remaining constant with respect to the axial depth

(for a fixed number of z-slices).

Preprocessing of 3D image stacks from in vivo experiments
The raw 3D experimental fluorescence image stacks have dimensions of Ny X N, X N,, X N,
where Ny denotes the number of frames per z-axis slice (typical Ny ~ 50), N, the number of z-axis
slices, and N, and N,, the number of pixels along the x- and y-axes, respectively. Here Ny frames
are acquired per z-axis slice to reduce the effect of Gaussian noise through averaging. In a typical
experiment, Ny = 50 frames were acquired at a z-axis slice, before advancing to the next z-slice
and acquiring another Ny frames. Collecting N, (typically 50) z-axis slices in this manner required
approximately 1.5 minutes in total. In in vivo imaging experiments, the frames acquired at the
same z may need to be registered before averaging to correct for sample motion between frames.
We used a customized ImageJ plugin (Supplementary Code 1) to register the frames for each z-
axis slice in 2D using the TurboReg plugin with a rigid body assumption and then to average the
Ny registered frames to obtain the image stack with dimensions of N, X N,, X N,.. The resulting
stack is cropped to remove edge pixels and then used as input to NeAT. The input stack dimensions
listed in Supplementary Table 2 reflect this preprocessing step. For the in vivo image stacks
shown in Figs. 4 and 5, the dimensions are set to 50 x 200 x 200.

Typical input image stack extends 10 pm in z, within which aberrations are effectively
constant, an assumption supported by observations that applying an aberration correction
estimated at one depth substantially improves signal intensity and contrast across adjacent depths

spanning at least ~100 um (i.e., £50 pm)?#*+49.30:62.63,



We explored whether denoising by Noise2Void®* could reduce frame averaging
requirements, but found that at the SNR of our in vivo images, Noise2Void caused errors in
aberration estimation when the number of averaged frames was too low (Supplementary Fig. 7,
Supplementary Note 3). Therefore, for the SNR ranges that we explored, frame averaging

remains the preferred approach for noise reduction.

Motion correction of input image stacks by NeAT

Image stacks acquired in vivo can contain motion artifacts caused by heartbeats, breathing, or body
movements. Although preprocessing as described above removes the motion artifacts for frames
acquired at the same z depth, motion between frames at different z depths also needs to be corrected
to ensure that structural features are properly aligned for accurate aberration estimation by NeAT.
Motion correction for the input z-stack therefore refers to registration across different z positions.
Failing to so would lead to errors in aberration estimation and structural recovery (Extended Data
Fig. 3). NeAT incorporates motion correction across z slices into its learning process by assigning
an affine transformation matrix, 4, (n, =1,2,-+,N,), to each z slice to correct translation,
rotation, scaling, and shear caused by the sample’s motion. This is formulated as (Ag)[n,] =
A, gln,], where g[n,] denotes the n,-th z-slice of the input image stack g. NeAT corrects motion
by iteratively updating these matrices during the learning process. Each matrix is a 2 X 3 matrices
with learnable elements and initialized as the identity. We used the RAdam optimizerS! for the
motion correction process, with an initial learning rate of 0.07, f; = 0.9, and , = 0.999. More
details are available in our public repository. Through aberration-aware motion registration, for
image stacks with aberration, NeAT leads to different affine parameters from those estimated by
StackReg in ImageJ (Supplementary Fig. 8) and achieves more accurate aberration measurement

than pre-registering the image stack prior to learning using StackReg (Extended Data Fig. 8).

Calculation of signal-to-noise ratio
We assumed a linear relationship between the grayscale pixel value (d) and the photon count per
pixel (p.), expressed as d = p., where £ is the conversion factor. To compute S, we acquired

multiple images (e.g., more than 100) of a fluorescein solution at the same imaging condition. We



then calculated the variance and mean for d. Since p. theoretically follows a Poissonian distribution,
where the variance equals the mean, 8 is computed as the ratio of the variance to the mean of d.
For the cutoff SNR analysis, we calculated f for the PMT in the custom-build microscope
under different control voltages, observing gains of 7.83 at a control voltage of 0.7 V (used for
acquiring images from 1-pm fluorescence beads, Figs. 2j-1) and 21.8 at a control voltage of 0.8 V
(used for fixed Thy1-GFP mouse brain slice imaging, Figs. 2m-o).
Next, we classified the pixels in an image stack as either signal or background pixels using

a classification method described previously*®. We then calculated the SNR of the image stack as

SNR = y_ﬁ = /578, (19)
Jy/B
where ¥ is the mean grayscale value of the signal pixels, and ¥/ represents the corresponding
photon count. We developed an ImageJ plugin (Supplementary Code 2) to compute the SNR of
a 3D image stack and determine whether it possesses sufficient SNR to be used as NeAT input

(i.e., its SNR should exceed the SNR cutoff).

In vivo imaging of visually evoked glutamate and calcium activity

Visual stimuli were generated in MATLAB using the Psychophysics Toolbox5>:66

and presented
15 cm from the left eye of the mouse on a gamma-corrected, LED-backlit LCD monitor with a
mean luminance of 20 cd'm™2. We divided the monitor into a 3 X 3 grid and presented 1-s-long
uniform flashes in a pseudorandom sequence in one of the 9 grids, while recording fluorescence
images with a 2 mm by 2 mm FOV. Analyzing these images allowed us to identify the cortical
region that responded to the center of the monitor. We then imaged this cortical region at smaller
pixel sizes to measure glutamate and calcium activity of synapses and neurons towards oriented
drifting grating stimulation in mice under light anesthesia (0.5% isoflurane in O3). Full-field
gratings of 100% contrast, a spatial frequency of 0.04 cycles per degree, and a temporal frequency
of 2 Hz drifting in eight directions (0° to 315° at 45° increments) were presented in pseudorandom
sequences. For glutamate imaging (x and y pixel size: 0.125 pm/pixel), each grating stimulus lasted
2 s with a 1-s presentation of a gray screen before and after the stimulus. For calcium imaging (x
and y pixel size: 0.945 pm/pixel), each grating stimulus lasted 2s with a 1-s gray screen
presentation before and a 3-s gray screen presentation after the stimulus. Each stimulus was

repeated for 10 trials per imaging session.



Functional image analysis

Images were processed using custom Python code (see Supplementary Code 3.) Glutamate time-
lapse images were registered using iterative phase correlation with polar transform (implemented
using the scikit-image Python package) to correct for non-rigid motions including translation,
rotation, and scaling. The images from the first trial of visual stimulation (a 4-second-long
recording) were used as the reference. Within this reference time series, each frame was registered
to the first frame. Then an average was calculated from all registered frames therein and used as
the reference. Images from subsequent trials were registered to this reference. Calcium time-lapse
images were registered with the StackReg package®’, with the first frame as the reference. In our
case, the polar transform method proved more effective than StackReg for registering glutamate
images, which were dimmer and noisier than calcium images. Regions of interest (ROIs) were
manually drawn in ImageJ using the circular selection tool on the mean intensity projection of the
glutamate time-lapse images and elliptical selection tool for the GCaMP6s time-lapse images. The
ROIs were then imported into a Python environment to extract pixel values within the ROIs, which
were averaged to obtain the raw fluorescence signal F for each ROL.

The glutamate transient AF /F, was calculated as (F — Fy)/F,, where F, represents the
basal fluorescence, defined as the average fluorescence signal during the 1-s pre-stimulus gray-
screen presentation period, excluding the highest 5% of values in F' from the calculation.

For calcium images, due to higher labeling density, we removed neuropil contamination.
We calculated Fpeyropi as the averaged fluorescence signal from the neuropil area* (defined as the
pixels that were 2 to 20 pixels off the ROI border) and computed AF,eyropit @8 Fheuropii —
Fo, neuropil> Where Fo neyropit 18 the mean of Feyropil during the 1-s pre-stimulus period. Then,
AF,europil Was multiplied by 0.7 and subtracted from F to obtain Fy... AF/F, was then computed
as (Fyue — Fotrue)/Fo true» With Fg e defined as the mean of Fy during the 1-s pre-stimulus
period.

Trial-averaged AF /F, was calculated as the average of 10 trials. Peak AF /F, was defined
as the maximal trial-averaged AF /F, within the 2-s drifting grating presentation. Response R for
each drifting grating direction was defined as the averaged AF /F, across the 2-s drifting-grating

stimulus presentation, with negative responses set to zero.



For glutamate images, an ROI was considered responsive to visual stimulation if its peak
AF /F, was greater than 3 times the standard deviation of the trial-averaged AF /F, within the 2-s
stimulus period®®® and if the peak AF/F, was above 5%’°. For calcium images, an ROI was

considered active if its maximal AF /F, was above 10%°%"!

and visually responsive if its activity
during at least one visual stimulus type was significantly higher than its activity during the pre-
stimulus period, as determined by one-way ANOVA with p < 0.01. All traces shown in Fig. 5

were filtered using a Savitzky—Golay filter®.

Orientation selectivity analysis
For each RO, its tuning curve Rf;;(6) was defined as the fitted curve to R(8) with a bimodal
Gaussian function*:

_ang(9—9pref)2 ang(@—epref+180°)2 (20)
Rflt(e) = RO + A1 e 207 + AZ e 202 )

where ang(x) = min(|x|, [x — 360°|, |x + 360°|), which wraps the angular values onto the
interval between 0° and 180°. Responses to the different drifting direction R(6) were fitted to the
function to minimize the mean square error between the model and responses, with Ry, A1, 4,
constrained to non-negative values, and o constrained to be larger than 22.5°72, given that the angle
step was 45°.

ROIs were considered orientation-sensitive (OS) if their responses across 8 different
drifting grating stimuli were significantly different by one-way ANOVA (p < 0.05)*”7° and if
their responses were well-fit to the bimodal Gaussian model’!. The goodness of the fit was assessed

by calculating the error E and the coefficient of determination R?2:

7
2 E
E:Z R(6) — Ry 1,(6) ‘ . m2=1- _ @D
n=0 ( e ) 6=(45n)° 7=0(R(6) — R)?|g=(asny

where R is the mean of R(8). The criteria for a good fit were E < 0.01 and R? > 0.5. The fitted

pref — Rortho

. . o R
response was used to calculate orientation sensitivity index (OSI) as - , where Ry,.of and

pref + Rortho

Rortho are the responses at 0, and Hortho(z Opref + 90°), respectively.

Statistics



Standard functions from the Scipy package in Python were used to perform statistical tests,
including two-sided paired t-test, one-way ANOVA, and Kolmogorov-Smirnov test. Statistical

significance was defined as *p < 0.05, ***p < 0.01, and ***p < 0.001.

Data availability

Data for conjugation error estimation/correction and aberration estimation from both brain-slice
and in vivo experiments are available on Code Ocean under DOI: 10.24433/C0.2804276.v1. (URL:
https://doi.org/10.24433/C0O.2804276.v1)

Code availability

Code is available on Code Ocean under the DOI: 10.24433/C0.2804276.v1, along with metadata
describing its functionality. (URL: https://doi.org/10.24433/C0.2804276.v1)
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