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Noise-Tolerant Novel-View SAR Synthesis
via Denoising Diffusion

Amir Rahimi, Member, IEEE, Stella X. Yu, Member, IEEE

Abstract—Synthetic Aperture Radar (SAR) enables robust
imaging under all weather and lighting conditions, but the scarcity
of labeled SAR data limits the use of modern vision models. Novel-
view synthesis offers a promising way to augment training data,
yet existing methods struggle with speckle noise and radiometric
variability inherent to SAR imagery.

We introduce a SAR-specific self-supervised representation
learning framework based on co-domain augmentations that
operate directly on pixel magnitudes. By combining multiplicative
Rayleigh speckle and random monotonic intensity remapping, our
method learns features that are invariant to speckle realizations
while preserving structural and geometric cues. These learned
representations are then used to supervise a latent-diffusion novel-
view generator adapted from zero-1-to-3 through a projected
feature-matching loss, replacing fragile pixel-space comparisons
with noise-robust feature-space supervision.

Experiments on MSTAR and MSTAR-OOD demonstrate sub-
stantial improvements in identity preservation, pose consistency,
and perceptual quality for both seen and unseen targets. Although
evaluated on object-centric SAR for automatic target recognition,
the proposed framework is content-agnostic and naturally extends
to scene-level SAR novel-view synthesis.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) imaging is an essential
element of remote sensing, enabling the capture of high-

resolution images under any weather and lighting condition.
Its utility spans a wide variety of fields, including surveillance,
environmental monitoring, and disaster management. Yet, the
automatic interpretation of SAR images poses significant
challenges due to their unique, high imaging noise (Figure 1),
limited labeled data, and complex objects and scene structures.

Despite recent advances in supervised SAR-based automatic
target recognition (ATR), performance remains limited when
labeled data are scarce, particularly in single-view settings.
Simulated data have been used to mitigate this limitation [1], but
such approaches suffer from domain gaps between synthetic and
real SAR imagery and generalize poorly to novel objects. Given
the persistent scarcity of labeled SAR datasets, unsupervised
representation learning and single-image novel-view synthesis
have become increasingly important. In scenarios where multi-
view acquisition is impractical, generating additional views
from a single observation enables richer target characterization
and improves ATR robustness and accuracy.

We propose a latent diffusion-based framework for generat-
ing novel SAR views at varying azimuth and depression angles
from a single unseen target image, inspired by the zero-1-to-3
method [2]. Unlike conventional diffusion models that rely on
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Fig. 1: Novel-view synthesis for SAR imagery under high
imaging noise. a) Compared to RGB, low-light, and MRI
images, SAR exhibits substantially higher noise levels, posing
challenges for automatic target recognition and view synthesis.
b) Given a single SAR image and a relative pose, the task is to
synthesize a novel view. The RGB-oriented zero-1-to-3 baseline
relies on pixel-level comparisons, which perform poorly on
SAR, whereas our method employs noise-tolerant, feature-level
comparisons to enable effective SAR view synthesis.

pixel-space losses (e.g., mean squared error), our approach is
tailored to SAR imagery, whose speckle noise and nonuniform
illumination render such comparisons uninformative.

We introduce a feature-space similarity loss that compares
synthesized and real SAR images in a learned representation,
capturing the essential structural characteristics of SAR targets
while remaining invariant to particular speckle realizations.
To enable efficient training within a diffusion framework, we
further adopt a single-step approximation of the generated
image, avoiding the need for full sampling in optimization. We
term this objective the Projected Feature Matching (PFM) loss.

Leveraging feature-space comparisons enables our second
contribution: a SAR-specific data augmentation strategy. SAR
imagery exhibits complex speckle patterns and coherent
backscatter responses that are often distorted by conventional
image-space augmentations, such as geometric transformations.
In contrast, co-domain augmentations operate in a manner
that preserves the underlying spatial structural integrity and
statistical properties of SAR data, producing more realistic and
physically meaningful variations.
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Reverse step Forward step

Fig. 2: SAR novel view synthesis with Projected Feature Matching (PFM) loss. Conventional novel-view synthesis uses
image-space comparisons and is ill-suited for SAR imagery due to noise. We replace pixel-level losses in the zero-1-to-3 model
with a feature matching loss on a learned representation robust to SAR-specific noise. Top) Unsupervised representation learning
using SAR-specific co-domain augmentations, including multiplicative speckle noise and random monotonic transformations.
Bottom) During novel-view synthesis, to avoid backpropagation through the full reverse diffusion process, we adopt a single-step
approximation x̃0 of the generated image x0, used to compute the PFM loss in representation space.

We incorporate contrastive learning with custom co-domain
augmentation techniques, including speckle noise modulation
and a randomly sampled monotonic pixel-value transformation.
These augmentations model illumination variability while
preserving SAR structural consistency, yielding more robust
representations than conventional image-space methods such
as brightness or contrast jittering, without introducing artifacts.

Figure 2 illustrates our overall method. While these tech-
niques can improve data efficiency for SAR ATR, their primary
role in our framework is to support the synthesis of structurally
coherent SAR images from novel viewpoints, an objective not
fully addressed by existing augmentation-based approaches.

Extensive experiments show that our augmentation strat-
egy not only outperforms conventional methods in azimuth
angle regression and target classification, but also achieves
classification performance comparable to full SimCLR [3]
augmentations without relying on geometric transformations.
This result is particularly important for SAR analysis, as our
augmentations preserve orientation attributes that are critical for
interpreting target configurations. Moreover, when combined
with our proposed representation loss, the latent diffusion
model produces higher-quality novel views of previously unseen
objects, outperforming conventional diffusion models that do
not exploit representation learning.

While our experiments focus on object-centric SAR data
typical of SAR-ATR, the proposed framework is not limited
to object-level imagery. The augmentation strategy, diffusion
model, and feature learning are broadly applicable and extend
naturally to scene-level SAR synthesis. Extending the method
to complex scenes remains promising future work.

II. BACKGROUND

This section reviews the background and notation used in
this work, including representation learning with SimCLR and
diffusion-based image generation.

SimCLR [3] is an unsupervised contrastive representation
learning framework that encourages consistency between
representations of different augmentations of the same sample
via a contrastive loss. Given a minibatch of N samples {xi}Ni=1,
SimCLR generates two stochastic augmentations per sample,
resulting in 2N augmented views {x′

i}2Ni=1. A base encoder f(·)
maps each augmented view to a representation hi = f(x′

i),
which is further projected by a small MLP g(·) to zi = g(hi),
where the contrastive loss is applied. Let sim(·,·) denote
cosine similarity, τ ∈R+ a temperature parameter, and 1[·] the
indicator function. The contrastive loss is defined as

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

for a positive pair (i, j). In Section III-A, we introduce SAR-
specific augmentations in SimCLR.

Diffusion models are latent variable models whose for-
ward process is a fixed Markov chain that progressively
adds Gaussian noise to the data x0 according to a variance
schedule β1, . . . , βT . We follow [4] to index the Markov
chain by time step t, and compute the approximate posterior
q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1) using

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) . (1)

As the number of diffusion steps T increases, the noisy sample
xT converges to a standard Gaussian distribution, i.e., p(xT )=
N (xT ;0, I) as T → ∞. The goal is to learn a parametric
form of the reverse process pθ(xt−1|xt), enabling sampling
from a standard Gaussian and iteratively reversing the diffusion
process to generate samples from the data distribution:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) . (3)

A key property of the forward process is that, given x0, the
noisy sample xt can be drawn directly in closed form from a
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Gaussian distribution with known parameters. Defining αt :=
1− βt and ᾱt :=

∏t
s=1 αs, we obtain

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (4)

The training objective is to minimize the variational bound on
the negative log-likelihood of the data distribution:

E [− log pθ(x0)]≤Eq

−log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

. (5)

Assuming a fixed variance schedule βt, and the fact that xt−1

follows a Gaussian distribution given x0,xt:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI), (6)

where µ̃(xt,x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (7)

β̃t :=
1− ᾱt−1

1− ᾱt
βt , (8)

minimizing the right-hand side in Equation (5) is equivalent to

min Eq

L0 +
∑
t≥1

Lt−1

 (9)

where Lt−1 = DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt)) (10)
L0 = − log pθ(x0|x1). (11)

By fixing Σθ(xt, t) = σtI to time-dependent constants and
reparameterizing Equation (4) as

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ, (12)

where ϵ ∼ N (0, I), Ho et al. [4] further simplify the training
objective to a denoising loss in which the model predicts the
sampled Gaussian noise at time step t:

Lsimple(θ) :=Et,x0,ϵ

[∥∥ϵ− ϵθ
(√
ᾱtx0+

√
1−ᾱtϵ, t

)∥∥2]. (13)

In Section III-B, we use these equations to define the PFM
loss based on the previously learned SAR representation.

III. METHOD

Our method has two components: SAR-specific data augmen-
tation and diffusion-based novel-view synthesis. We introduce
co-domain augmentations for SAR imagery and a zero-1-to-
3-based diffusion framework enhanced with a novel feature
matching loss for feature-space view consistency.

A. SAR Data Augmentation in the Co-domain

SAR imagery exhibits characteristics distinct from natural
images, necessitating specialized augmentation strategies for
unsupervised representation learning. We define the co-domain
of a SAR image as the range of its pixel magnitudes, typically
normalized to [0, 1]. Unlike geometric augmentations that
modify the image domain (e.g., translations or rotations), co-
domain augmentations act directly on pixel intensities. These
transformations preserve spatial structure while introducing
radiometric variability, making them well suited for SAR
imagery dominated by noise and contrast variations. We
propose the following SAR-specific co-domain augmentations.

1. Random monotonic transformation augmentation. SAR
image intensities vary due to acquisition and environmental
factors, including sensor calibration, speckle realization, quanti-
zation, and surface conditions [5]. In particular, environmental
variables such as soil moisture strongly influence SAR backscat-
ter, with higher moisture levels producing increased returns
due to elevated dielectric constants [6].

Since these effects typically alter the global intensity
distribution but not the relative ordering of pixel values,
we introduce a family of monotonic intensity remapping
functions to simulate radiometric shifts without disturbing
spatial arrangements. This design encourages the learning of
order-invariant yet structurally faithful representations. Related
rank-based strategies have proven effective in SAR matching,
including the RLSS descriptor of Xiong et al. [7].

Similar observations are reported in [1] when comparing
simulated and measured SAR images. To mitigate these
variations and promote invariance in the learned representations,
we incorporate random monotonic pixel-value transformations.
By preserving intensity ordering while altering the global
radiometric scale, these augmentations encourage features that
are robust to variations in SAR intensity values.

We apply random monotonic transformations to the magni-
tude values, i.e., the co-domain, of SAR image pixels. With
a slight abuse of notation, we represent a SAR image as
a continuous function x : R2 → [0, 1], where the domain
corresponds to 2D spatial coordinates and the co-domain
represents the normalized pixel magnitude. For a pixel at
location (u, v), the magnitude is given by m = x(u, v).

A co-domain transformation T is a scalar mapping applied
pointwise to the image co-domain, yielding image x̃:

m 7→ m̃ = T (m), (14)
x̃(u, v) = T (x(u, v)). (15)

Definition 1. A function T : [0, 1] → [0, 1] is monotonic if
T (m0) ≤ T (m1) for all 0 ≤ m0 ≤ m1 ≤ 1. T is further
assumed to be boundary-preserving and range-covering, such
that T (0)=0 and T (1)=1. Such a T is denoted by Tmonotonic.

We construct random instances of Tmonotonic by sampling a
discrete monotonic mapping on Q uniformly quantized levels
over [0, 1], given by {0, 1

Q−1 ,
2

Q−1 , . . . , 1}. Specifically, we
draw Q− 1 independently and identically distributed random
values, form their cumulative sum to enforce monotonicity, and
normalize the result to [0, 1]. The resulting mapping preserves
intensity ordering and introduces bounded radiometric pertur-
bations, whose smoothness – but not necessarily amplitude –
is governed by the quantization resolution Q. Larger values
of Q yield smoother monotonic transformations by reducing
interpolation artifacts between discrete intensity levels.

To obtain a broader family of monotonic transformations,
we optionally apply a random gamma remapping of the form

Tγ(m) = meα ,where α ∼ N (0, γ). (16)

The resulting discrete mapping is applied to continuous pixel
magnitudes via linear interpolation. Algorithm 1 summarizes
the pseudocode, and Figure 3 illustrates 50 sampled transfor-
mations for γ ∈ {0, 1} and Q ∈ {16, 256}.
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Fig. 3: Effect of γ and Q on random monotonic trans-
formations Tγ · Tmonotonic. Each panel shows 50 randomly
sampled monotonic mappings generated with specific (γ,Q)
values. Larger values of Q yield smoother transformations while
preserving intensity ordering. γ increases the expressivity of the
transformations by introducing stronger nonlinear distortions.

Algorithm 1: Random monotonic co-domain transform
Input: Image x, quantization level Q, gamma γ
Output: Transformed image x̃

1. Construct a monotonic intensity mapping Tmonotonic by
cumulatively summing 0 and Q−1 random values,
followed by normalization to [0, 1].
2. If γ ̸= 0, further apply a random gamma remapping
Tγ(m) to the monotonic mapping Tmonotonic.
3. Apply the resulting monotonic mapping pointwise to the
magnitude image x via interpolation.
4. Return x̃ = Tγ(Tmonotonic(x)).

2. Speckle noise augmentation. The presence of speckle noise,
arising from the physics of coherent radar imaging, poses a
major challenge in modeling SAR images [8]. Speckle noise can
significantly degrade image quality and complicate interpreta-
tion, making its accurate modeling a critical component of SAR
image processing pipelines. By incorporating augmentation
strategies that mimic speckle noise, our unsupervised learning
framework is encouraged to learn representations that are more
robust and invariant to such distortions.

Similar to the monotonic transformation augmentation, we
apply speckle noise in the co-domain by perturbing pixel
magnitudes. We define multiplicative speckle noise as

Tspeckle(m;σ) := mϵσ, ϵσ ∼ Rayleigh(σ) (17)

where m denotes the original pixel magnitude and ϵσ is a
random variable drawn from a Rayleigh distribution with scale
parameter σ. We adopt the Rayleigh distribution since the
magnitude of complex Gaussian noise – commonly assumed
in SAR signal models – follows a Rayleigh distribution.

Although SAR intensities are not globally Rayleigh-
distributed, especially in the presence of dominant scatterers,
the use of Rayleigh-distributed speckle in our augmentation is
motivated by the classical multiplicative model of SAR image

formation [9], [10]. In that model, the observed intensity is
expressed as the product of a texture term and a speckle term,
with the latter commonly modeled as Rayleigh-distributed in
homogeneous or local patch regions [11]. While this approxima-
tion does not capture all scattering effects in object-centric SAR
imagery, it provides a practical and physically interpretable
mechanism for injecting realistic stochastic variation.

In our contrastive learning framework, each training instance
is augmented multiple times using independent speckle real-
izations. This diversity encourages the model to learn robust,
geometry-aware representations by exposing it to a range of
speckle patterns in local texture regions. Although more flexible
speckle models, e.g., the G0 distribution [11], could be explored
in future work, our simple Rayleigh-based augmentation has
proven effective in practice and aligns well with both SAR
imaging physics and representation learning objectives.

We follow [12] and adopt a weighted combination of the
original magnitude values and multiplicative speckle noise to
simulate realistic SAR distortions:

Tspeckle(m;σ, λ1, λ2) := λ1m+ λ2mϵσ , (18)

where λ1, λ2 are positive hyperparameters selected via cross-
validation. Compared to the conventional multiplicative
form mϵσ, this generalized formulation enables controllable
variability by independently adjusting the intensity scaling (λ1)
and speckle amplitude (λ2). We find this parameterization to
be more effective, as it facilitates the simulation of diverse yet
physically plausible SAR radiometric conditions.

In homogeneous regions, this transformation may produce
a variance slightly exceeding that predicted by the Rayleigh
model. Such mild overdispersion can be beneficial, as it exposes
the generative model to a broader range of noise conditions,
enhancing robustness without altering the main conclusions.

To stabilize training, we normalize the constructed mappings
to the range [0, 1] via min-max normalization, ensuring that all
transformations map [0, 1] to [0, 1]. The mappings are defined
independently of pixel values and applied to the image co-
domain through linear interpolation, as used in Algorithm 1
for the monotonic transformation.

Compared to additive Gaussian noise as a standard image-
space baseline, Figure 4 shows that, our two co-domain
augmentations – random monotonic transform and speckle
noise – better preserve object structure and fine details in SAR
images while introducing realistic radiometric variability.

When evaluated on downstream classification tasks, with all
hyperparameters selected via cross-validation, multiplicative
speckle augmentation preserves image structure most effectively
and yields strongest performance.

We adopt SimCLR for unsupervised representation
learning on SAR imagery. Specifically, we generate multiple
views of each SAR magnitude image by sampling combinations
of the random monotonic transformation Tmonotonic and the
speckle augmentation Tspeckle. The resulting encoder produces
a learned representation h=f(x) for a SAR image x, which
we subsequently use to define the projected feature matching
(PFM) loss within the zero-1-to-3 framework.
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Input Gaussian Difference Transform Monotonic Difference Transform Speckle Difference Transform

Fig. 4: Examples of co-domain augmentations. Each row shows a different MSTAR instance. Columns illustrate the input
image (Column 1), additive Gaussian noise (Columns 2-4), monotonic transform (Columns 5-7), and multiplicative Rayleigh
speckle (Columns 8-10), with corresponding difference images to their right. The “Transform” columns visualize the log-domain
pixel distributions before and after augmentation, along with the mapping function. Co-domain transformations avoid introducing
spatial artifacts, and Rayleigh speckle best preserves object structure, as seen in the difference images.

B. Zero-1-to-3 with Projected Feature Mapping Loss
Zero-1-to-3 [2] synthesizes novel object viewpoints from a

single RGB image using a conditional latent diffusion model.
It takes the input image and a relative camera transformation
– defined by rotation and translation – as conditioning inputs
and generates the corresponding target view of the object. It
leverages large-scale diffusion models pretrained on natural
images and fine-tuned on rendered images of synthetic 3D
objects to support viewpoint-conditioned generation.

When both the original and transformed object views are
clean RGB images, direct image-level comparison in zero-1-
to-3 is effective. In contrast, for noisy SAR imagery, such
pixel-space comparisons can degrade performance. To address
this limitation, we introduce a feature matching loss based on
unsupervised representation learning for SAR images.

For SAR data, the conditional inputs to the latent diffusion
model consist of a SAR image x′, a relative azimuth angle ϕ,
and a relative depression (or elevation) angle ψ. The model is
trained to generate a novel view x0 of the input x′ given the
relative angles ϕ and ψ (Figure 2).

To compute the feature matching loss, the diffusion model
would require executing the full reverse process to generate
the transformed image from noise. However, backpropagating
through the full reverse process is computationally intractable
during training. Recent methods based on distillation or ODE
formulations of diffusion models reduce the number of reverse
steps [13], [14], [15], but they still require running a solver
during training and backpropagating through it, which remains
expensive in our setting. Moreover, we cannot leverage a large-
scale pretrained model such as zero-1-to-3 for this task.

To address these challenges, we simply use Equation (13) to
replace ϵ in Equation (12) with ϵθ to obtain an approximation

x̃0 of x0 given the sample xt at time step t:

x̃0(ϵθ, t) =
xt√
ᾱt

−
√

1

ᾱt
− 1ϵθ . (19)

This procedure is analogous to DDIM sampling [16]; however,
we employ it during training rather than generation. This design
enables efficient supervision without incurring the computa-
tional cost of full reverse diffusion and backpropagation.

Since the representation network f is fixed, gradients
propagate only to the diffusion model parameters θ. We
introduce the Projected Feature Matching (PFM) loss as a
feature-space regularization of the diffusion denoising objective:

LPFM(θ) = Ex0,t,ϵ

[
∥f(x0)− f(x̃0(ϵθ, t))∥2

]
. (20)

The total training objective is then given by

Ltotal = Lsimple + λLPFM , (21)

where λ > 0 controls the strength of the feature-matching
regularization. See an analysis of its impact on benchmark
performance in Supplementary Material.

IV. RELATED WORK

Unsupervised representation learning aims to learn infor-
mative representations without relying on human annotations,
enabling effective transfer to downstream tasks [17], [18], [19],
[20], [3], [21]. Existing approaches are broadly categorized
into contrastive [17], [20], [3] and non-contrastive [22], [21]
methods. Both paradigms learn representations through diverse
input augmentations, and our work follows the contrastive
learning framework.
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Diffusion models [23], [4], [16], [24], [25], [26] have
emerged as state-of-the-art approaches for image genera-
tion [26], demonstrating strong performance in producing high-
fidelity and diverse samples. Their success is commonly at-
tributed to solid theoretical foundations in stochastic processes,
scalability to large-scale training, and an ability to capture
fine-grained details in generated images, making them well
suited for high-quality generative modeling tasks.

Latent diffusion models (LDMs) [27] perform the diffusion
process in the latent space of an autoencoder rather than
directly in pixel space. This choice substantially reduces
computational cost and inference time, since semantic and
structural information is preserved after compression, enabling
efficient yet effective image generation [28].

For SAR imagery, diffusion models have been applied to
tasks such as despeckling [29], [30], [31], [32], [12] and SAR-
to-optical translation [33], [34], which typically require access
to noise-free reference images. Diffusion-based methods have
also been explored for training-set expansion [35], [36], [37].
This work is the first to leverage a large-scale pretrained
diffusion model for novel-view synthesis of SAR images.

SAR automatic target recognition (ATR) is important
in environmental monitoring, disaster response, and remote
sensing. Early SAR ATR systems relied on hand-crafted
feature representations combined with classical classifiers
such as Support Vector Machines (SVMs) [38], [39] and k-
Nearest Neighbors (k-NN) [40]. With the rise of deep learning,
convolutional neural networks (CNNs) achieved substantial
performance gains by learning discriminative features directly
from data [41], [42], [43], [44], [45].

However, the scarcity of labeled training data remains
a persistent challenge for SAR ATR, motivating research
into semi-supervised and unsupervised approaches. Generative
Adversarial Networks (GANs), for example, have been used
to improve robustness to noise [46].

Recent advances also include transformer-based architec-
tures [45], [47] and self-supervised learning methods [48],
[49], [50], which helps capture complex spatial patterns in
SAR data without requiring extensive labeled datasets. Despite
this progress, speckle noise and varying imaging conditions
continue to challenge SAR ATR.

SAR novel view generation has become an important direc-
tion for improving target recognition in low-data regimes. Most
existing SAR image generation methods rely on Generative
Adversarial Networks (GANs) due to their strong synthesis
capabilities [51], [52], [53], [54], [55]. GAN-based approaches
have demonstrated the ability to synthesize realistic SAR
images from novel viewpoints [56], [57].

However, these methods often struggle with speckle noise
and image-space training limitations. They are also typi-
cally evaluated under restricted settings, e.g., sparse azimuth
sampling, and do not address the challenge of generating
novel views of previously unseen objects. In contrast, our
approach leverages a large-scale pretrained diffusion backbone,
SAR-specific co-domain augmentations, and feature-space
matching, enabling robust and geometrically consistent novel-
view synthesis even for unseen targets.

V. EXPERIMENTS

We describe the datasets, evaluate our co-domain repre-
sentation learning on classification and regression, assess
our representation learning for synthetic-to-real SAR image
classification, and evaluate our proposed PFM loss for novel-
view SAR synthesis on both seen and unseen targets.

A. Datasets

MSTAR is an X-band SAR dataset containing images of 10
target classes captured across varying azimuth and elevation
angles [58]. Following standard protocol, we use 6059 images
collected at a 17◦ elevation for training and 5392 images
collected at a 15◦ elevation for testing. Their azimuth angles
span the full 0◦ − 359◦ range.

MSTAR-OOD is constructed to test generalization to unseen
objects. We use a leave-one-class-out setting: 9 MSTAR classes
are used for training, and the remaining class (t72) is held out
for novel-view synthesis. Additionally, we exclude 12 randomly
selected 3◦ azimuth intervals from the training set and reserve
the corresponding images as a validation split for representation
learning. The resulting training and test sets contain 5003
and 5850 images, respectively. Figure 5 shows representative
images for each MSTAR class.

zsu234 zil131 t62

d7

brdm2 2s1

btr60 t72 btr70 bmp2

Fig. 5: Sample MSTAR-OOD images. Unseen class is t72.

SAMPLE (Synthetic and Measured Paired Labeled Experi-
ment) provides paired synthetic-measured images derived from
MSTAR [59]. The public release includes azimuth angles from
10◦ to 80◦. It has 1345 synthetic images paired with their
1345 real counterparts across 10 MSTAR categories. We use
the synthetic images for training and the corresponding real
images for evaluation in our synthetic-to-real experiments.

B. Augmentations for Unsupervised Representation Learning

Implementation. We perform unsupervised representation
learning in PyTorch [60] using a ResNet-18 backbone [61].
Training uses a batch size of 256 for 500 epochs on 128×128
images, with stochastic gradient descent, cosine annealing, an
initial learning rate of 0.06, and a weight decay of 5×10−4.

All augmentations are applied in the original magnitude do-
main, followed by a decibel transformation, m 7→ 20 log10(m+
10−3). This step is required to ensure compatibility with the
pretrained zero-1-to-3 model. The transformed pixel values
are then globally normalized to [0, 1] across the dataset.
Standard SimCLR augmentations, with and without geometric
transformations, are applied in the decibel domain.
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Augmentation CoD MLP 1-NN

Accu%↑ Error◦↓ Accu%↑ Error◦↓

SimCLR (full) 98.7 28.5 99.6 12.8
SimCLR (jitter only) 77.8 52.2 81.4 41.8

Additive Gaussian ✓ 97.6 12.7 98.9 5.0
Speckle Rayleigh ✓ 98.5 14.6 99.3 3.9
Monotonic ✓ 89.7 25.1 93.6 10.8
Additive Gaussian+Monotonic ✓ 97.9 21.3 99.4 4.9
Speckle Rayleigh+Monotonic ✓ 98.7 9.8 99.7 3.1

TABLE I: Co-domain augmentations yield the best joint per-
formance for both classification and azimuth regression on
MSTAR. We compare different augmentation strategies using
MLP and 1-NN probing of learned representations. All models
are trained with SimCLR using the specified augmentations.
Augmentations marked as “co-domain” (CoD) (✓) operate in
the co-domain of pixel intensities. The performance is reported
using classification accuracy (Accu%) and azimuth regression
error (Error◦). The MLP for linear probing on the learned
feature is trained without any data augmentation. Remarkably,
without geometric domain transformation, the combination
of multiplicative Rayleigh speckle and random monotonic
transformations proves most effective for both tasks.

We evaluate the learned representations h = f(x) using
lightweight multi-layer perceptron (MLP) probes for both target
classification and azimuth regression. A single linear layer
is used for classification, while a two-layer network with a
sigmoid activation is used for regression. Although the relative
importance of these tasks depends on the application, both
are critical for novel-view synthesis: Classification captures
categorical differences, while regression ensures accurate
viewpoint estimation. In addition to MLP probing, we also
apply K-nearest neighbor (KNN) probing for both classification
and regression in the representation space to compare different
augmentation strategies. Although our experiments focus on
object-centric SAR data due to dataset availability, our method
itself is applicable to scene-level SAR synthesis and can be
extended to more complex scenarios.

Results. We compare our augmentations with the original
SimCLR augmentations (SimCLR (full)) and a variant without
geometric transformations, which includes random brightness
and contrast jittering and Gaussian blur; this variant is denoted
by SimCLR (jitter only). Our co-domain augmentations –
random monotonic remapping, multiplicative Rayleigh speckle,
and additive Gaussian noise – are denoted by Monotonic,
Speckle Rayleigh, and Additive Gaussian, respectively.

Table I shows the classification and regression results on
MSTAR, obtained using different augmentations within the
SimCLR framework. In most cases, combining our random
monotonic transformation with other augmentations improves
performance for both MLP and KNN probing.

When geometric transformations are excluded, additive
Gaussian noise and multiplicative Rayleigh speckle consistently
outperform the SimCLR (jitter only) baseline. Although the full
SimCLR setting achieves the highest classification accuracy,
its geometric augmentations (e.g., horizontal flipping) severely
degrade azimuth regression. As shown in the t-SNE visual-
ization in Figure 6, object categories are well separated, yet

SimCLR ClassesSpeckle+Monotonic

Azimuth angles
￼2π

￼π

￼0

zsu23

zil131

t62

d7
brdm2

2s1

btr60

t72
btr70

bmp2

Fig. 6: Co-domain augmentations preserve both class
structure and azimuthal continuity in the learned represen-
tation. t-SNE visualizations compare SimCLR augmentations
(left) with our co-domain augmentations (Rayleigh speckle
+ monotonic, right). The top row is colored by object class
and the bottom row by azimuth angle. While SimCLR yields
strong class separation, it induces local mixing across azimuths,
whereas our co-domain augmentations maintain smooth az-
imuthal trajectories while retaining clear class clusters.

local neighborhoods exhibit confusion across azimuth angles.
In contrast, our co-domain augmentations preserve viewpoint
structure while maintaining strong class separation.

Overall, the combination of multiplicative speckle noise
using the Rayleigh distribution and random monotonic trans-
formations proves most effective.

C. Synthetic-to-real

We evaluate the impact of different augmentation strategies
on synthetic-to-real transfer. Specifically, we train full clas-
sification networks (i.e., without representation learning) on
synthetic SAR images using different augmentations and test
them on the corresponding real images in the SAMPLE dataset.

Table II shows that different augmentation strategies sub-
stantially improve synthetic-to-real transfer, with combinations
involving Monotonic achieving the best performance. For
example, combining additive Gaussian noise with monotonic
remapping increases accuracy from 79.6% to 91.8%. The
distributional gap between synthetic and real SAR images
has been analyzed in [1]. Our co-domain augmentations,
particularly Monotonic, effectively reduce this domain gap.

D. Novel View Synthesis

Implementation. We initialize zero-1-to-3 with the pre-
trained Objaverse model [62] after 105,000 iterations and
fine-tune it using our PFM loss. The model employs a latent
diffusion backbone with a fixed autoencoder [27]; the decoder
is frozen while gradients are applied to the diffusion parameters
θ. Only the conditioning and training objective are modified
for SAR data; the model architecture and sampling procedure
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Augmentation Co-domain Accuracy % Gain %

No Augmentation [1] 66.5
+Additive Gaussian [1] 85.2

+Additive Gaussian∗ ✓ 79.6
+Monotonic ✓ 78.0
+Speckle Rayleigh ✓ 80.3

+Additive Gaussian+Monotonic ✓ 91.8 12.2
+Speckle Rayleigh+Monotonic ✓ 87.5 7.2

TABLE II: Co-domain augmentations substantially improve
synthetic-to-real SAR classification. The model is trained on
SAMPLE synthetic data under different augmentation strategies,
and then tested on SAMPLE real images. Augmentations
marked as “co-domain” (✓) operate in the co-domain of pixel
intensities. Combinations involving our monotonic remapping
consistently outperform standard image-space augmentations,
with the best result achieved by Gaussian noise plus monotonic
remapping. Gains are reported relative to the corresponding
non-monotonic baseline. ∗ denotes our implementation.

follow zero-1-to-3. Training is performed for 20,000 iterations
with an effective batch size of 80. All models are trained on
two NVIDIA A40 GPUs.

Qualitative Results. Figures 7 and 8 present representative
novel-view synthesis results on MSTAR and MSTAR-OOD,
respectively. With our PFM loss, the generated images preserve
object identity (as verified by a trained classifier) and remain
consistent with the target class, whereas fine-tuned zero-1-to-
3 without PFM often alters object identity. In addition, the
last two samples of MSTAR and the last sample of MSTAR-
OOD show that incorporating PFM yields generated views
whose orientations more closely match the target images. Novel-
view synthesis for unseen categories also improves with PFM
compared to zero-1-to-3 fine-tuning alone. Despite these gains,
a performance gap between seen and unseen classes remains.

Quantitative Results. We evaluate novel-view synthesis
by comparing each generated image to a held-out ground-
truth image of the same object under the target viewpoint. For
classification-based evaluation, we use a ResNet-18 classifier
trained from scratch on real SAR images using supervised
learning. For azimuth regression, we use a ResNet-18 backbone
followed by a two-layer MLP head with 256 hidden units per
layer and a sigmoid output, trained to predict the azimuth
angle scaled by 2π. Note that these models are trained for
the sake of evaluation only and are different from the learned
representation for the PFM loss calculation. See an ablation
study of the evaluation models in Supplementary Material.

We report classification accuracy and azimuth regression
error to assess identity preservation and pose consistency. All
results are averaged over 1,000 generated samples, evenly
drawn from seen and unseen classes. Each sample is formed
by selecting two views of the same object from the test set,
one as input and the other as the target, and using their relative
pose as conditioning for the diffusion model. The generated
view is then compared with the target image to compute the
reported metrics. To further assess compliance with SAR image
statistics, we additionally report the following metrics.

• SFD: A SAR-specific FID-like metric [63], following the
protocol in [64], [65], computed as a Fréchet distance in a

input view w/o PFM with PFM target view

Fig. 7: Our PFM loss improves novel-view synthesis for seen
SAR targets. Columns 1-4 show the input view from MSTAR,
diffusion output without PFM (λ=0), diffusion output with
PFM (λ>0), and the target view, respectively. Compared to
the baseline diffusion model, adding PFM leads to sharper and
more stable reconstructions on targets observed during training.

SAR feature space. We extract features (before the regression
MLP head) from a ResNet-18 trained from scratch for
azimuth regression on real SAR data to compute SFD.

• Kuan+SSIM: To assess structural similarity between real
and generated SAR images, we use the SSIM metric [66] that
measures the similarity in luminance, contrast, and structure.
Because speckle noise degrades the reliability of SSIM on
SAR data, we follow prior work [67], [68] to first apply
7×7 Kuan filtering [69] to suppress speckle while preserving
structural content, yielding more interpretable SSIM scores
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input view w/o PFM with PFM target view

Fig. 8: PFM improves generalization in novel-view synthesis
for unseen SAR targets. Columns 1-4 show the input view
from MSTAR-OOD, diffusion output without PFM (λ= 0),
diffusion output with PFM (λ > 0), and the target view,
respectively. PFM substantially improves geometric consistency
and structural sharpness for previously unseen targets.

for SAR data. We evaluate on the 64 × 64 center crop to
focus on the target of interest in MSTAR images.

• MS-SSIM: We report Multi-Scale Structural Similarity (MS-
SSIM) [70] to evaluate perceptual quality across multiple
spatial scales. By capturing both fine details and global
structure, MS-SSIM is well suited for SAR imagery, where
target identity depends on both local texture and overall
shape. As with SSIM, evaluation is performed on the 64×
64 center crop. MS-SSIM is computed over three scales
using weights β = (0.0448, 0.3001, 0.1333), data range
1.0, kernel size 7, and a Gaussian kernel with standard
deviation 1.0, yielding a robust measure of image fidelity
under varying noise and resolution levels.
Table III compares novel-view synthesis on both seen and

unseen SAR targets. For seen classes, input and target views are
drawn from held-out MSTAR images at 15◦ elevation, while

Method Accu%↑ Error◦ ↓ SFD↓ MS-SSIM↑ Kuan+SSIM↑

Seen Classes (MSTAR)
zero-1-to-3 86.6 28.5 3.89 0.6680 0.7330
zero-1-to-3+PFM 89.0 23.5 1.84 0.6720 0.7374

Unseen Classes (MSTAR-OOD)
zero-1-to-3 25.8 53.4 8.43 0.6165 0.6731
zero-1-to-3+PFM 46.6 44.0 6.28 0.6195 0.6786

TABLE III: Our PFM significantly improves identity and
pose fidelity for both seen and unseen targets. We report
classification accuracy (Accu%), azimuth regression error
(Error◦), and image-quality metrics (SFD, MS-SSIM, Kuan-
SSIM) for novel-view synthesis on MSTAR (seen classes)
and MSTAR-OOD (unseen classes). Some metrics (e.g., MS-
SSIM, Kuan+SSIM) are computed on 64 × 64 center crops;
SFD refers to FID with SAR Encodings; see Section V-D
for metric-specific details. Adding PFM consistently improves
recognition accuracy, reduces pose error, and yields images
that better match the SAR statistics of the target views.

unseen-class results are evaluated on MSTAR-OOD objects
not used during training. Across all metrics, adding PFM
to zero-1-to-3 consistently improves performance, increasing
classification accuracy, reducing azimuth error, and improving
perceptual similarity, which indicates stronger structural and
semantic fidelity in the generated views.

Although perceptual metrics such as Kuan+SSIM and MS-
SSIM are useful statistical proxies for visual fidelity, they
are limited in SAR imagery because speckle introduces
stochastic pixel-level variation that is not tightly coupled to
semantic content. Regression error and classification accuracy
are more informative for semantics. Azimuth regression directly
measures viewpoint consistency, while classification reflects
preservation of target identity, both of which are critical for
the downstream use of novel-view synthesis in SAR ATR.

As expected, performance on seen classes exceeds that on
unseen classes across all metrics, since the model has access
to similar object instances and viewpoints during training.
Nevertheless, incorporating PFM consistently improves results
even for unseen classes, where generalization is more chal-
lenging. Note that unseen classes exhibit higher azimuth error,
often due to front–back ambiguity: Since the model has never
observed these objects during training, it may confuse opposing
orientations, leading to 180◦ errors. This also highlights the
benefit of semantic-level supervision in preserving both identity
and viewpoint. The remaining gap between seen and unseen
classes underscores the need for future work on more robust
and class-agnostic novel-view synthesis.

VI. DISCUSSION

We introduced co-domain augmentation strategies based
on random monotonic remapping and multiplicative Rayleigh
speckle for self-supervised representation learning in SAR
imagery. By operating directly on magnitude values, these aug-
mentations better preserve orientation and structural cues than
standard SimCLR transforms which also involves geometric
transformations, making them well suited for novel-view SAR
synthesis. When combined with other augmentations, random
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monotonic remapping improves both classification and azimuth
regression, particularly in synthetic-to-real settings.

We further leverage the learned representations to enhance
diffusion-based SAR novel-view synthesis. Using a single-
step approximation avoids backpropagation through the full
reverse process, while feature matching in representation space
provides a noise-robust alternative to pixel-space losses. Both
quantitative and qualitative results demonstrate consistent gains
from our feature matching loss on seen and unseen classes.

Although our approach is purely data-driven, it complements
physics-based SAR simulators. Physics-based models offer
interpretability and sensor control but require detailed scene and
sensor modeling and are computationally expensive. Moreover,
Table II and prior work [1] show that purely synthetic data can
suffer from domain shift, limiting downstream performance. In
contrast, learning directly from real SAR imagery enables
our method to produce viewpoint-consistent and identity-
preserving outputs that generalize across targets. Future work
could integrate physics-based modeling with our learned
augmentations to further improve realism and robustness.

In summary, carefully designed co-domain augmentations
and representation-level supervision substantially improve the
quality and generalization of SAR novel-view synthesis. This
work encourages deeper integration of data-driven and physics-
based methods across SAR applications.
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SUPPLEMENTARY MATERIAL

A. Augmentation Visualization

Higher resolution images are presented for augmentations using additive Gaussian in Figure 9, random monotonic in Figure 10,
and multiplicative speckle with Rayleigh distribution in Figure 11.

input Gaussian difference transform

Fig. 9: Additive Gaussian augmentations.
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input monotonic difference transform

Fig. 10: Random monotonic augmentations.
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input speckle difference transform

Fig. 11: Multiplicative Speckle noise augmentations.
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B. Effect of Evaluation Model Choice

To assess the robustness of our evaluation protocol, we compare multiple ResNet-18 azimuth regression models applied to
generated SAR images. All models share the same architecture but differ in how their representations are learned. Our primary
evaluation model is trained from scratch on real SAR data (denoted Scratch). We additionally evaluate three SimCLR-trained
models using different augmentation strategies, each followed by an MLP regression head.

We consider the following evaluation models:
• SimCLR: Trained using standard SimCLR augmentations.
• Speckle Rayleigh: SimCLR with Rayleigh speckle augmentation.
• Speckle Rayleigh+Monotonic: SimCLR with both Rayleigh speckle and monotonic augmentations.
• Scratch: A fully supervised model trained from scratch without data augmentation.
We report results for two settings: 1) without PFM loss (λ = 0) and 2) with PFM loss (λ = 4). Table IV shows that all models

trained with SAR-specific augmentations (Speckle Rayleigh, Speckle Rayleigh+Monotonic, and Scratch) achieve comparable
azimuth regression accuracy, whereas the model trained with standard SimCLR augmentations performs substantially worse.
This consistency across augmented models indicates that our evaluation protocol on generated images is robust and not overly
sensitive to the particular regression model, provided SAR-appropriate augmentations are used. In all cases, incorporating the
PFM loss further improves performance.

Azimuth Regression Error ◦ w/o PFM (λ = 0) with PFM (λ = 4)

SimCLR 44.00 40.22

Speckle Rayleigh 28.41 24.18
Speckle Rayleigh+Monotonic 29.36 24.04
Scratch 28.46 23.52

TABLE IV: PFM improves viewpoint accuracy across all evaluation backbones. Azimuth regression error (◦) measured on
generated SAR images using different ResNet-18 evaluation models. Incorporating PFM (λ = 4) consistently reduces angular
error relative to standard Zero-1-to-3 (λ = 0), regardless of the representation used for evaluation.

C. Hyperparameters

Figure 12 shows the effect of the weighting parameter λ in Equation (21) across multiple evaluation metrics. Values in
the range [0.5, 5] consistently yield strong performance, with λ = 4 providing the best overall trade-off. When λ = 0, the
model reduces to standard zero-1-to-3 fine-tuning without representation-level supervision. Introducing the PFM term (e.g.,
λ = 1) already improves both visual quality and downstream SAR classification, confirming the effectiveness of feature-space
regularization.

All remaining hyperparameters, including λ1, λ2, σ, and Q, are selected by cross-validation on a held-out validation split
(90% / 10% of the training set). Selection is based on linear-probe classification accuracy of the learned representation to ensure
generalization. For the Speckle Rayleigh+Monotonic setting, the chosen values are σ = 10, λ1 = 1, λ2 = 1, and Q = 512.
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Fig. 12: Effect of the PFM weight λ on novel-view synthesis performance. Plots show how varying λ in the total loss
(Eq. 21) affects classification accuracy (%), azimuth regression error (◦), SFD (FID with SAR-encoder), MS-SSIM, and SSIM
with Kuan filtering. The red marker indicates the best value for each metric. Moderate values of λ provide the best trade-off
between diffusion fidelity and feature-level consistency, improving both geometric accuracy and perceptual quality.
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