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Our Method: 3D-GS + Test-Time SVD Video Completion SVD Prior + GS Densification Improve Photorealism

Ours Has Better Geometric and Photometric Realism

Q: Sparse Input Views Challenge Novel View Synthesis

1.Integrate 3D-GS with stable video diffusion with uncertainty-aware 
modulation for controllable pseudo-view generation 

2.Gaussian primitive densification to enhance scene completeness 
3.SOTA: 2.5+ dB PSNR gain on DL3DV, strong on LLFF, DTU

First Test-Time Sparse Novel View Synthesis Method

A: Geometric Consistency+Spatiotemporal Visual Priors

Stable Video Diffusion

MVSplat 360 (feed-forward) Ours (test-time optimization) Ground-truth

1. Objective function: x̃0[i] = arg min
x

∥x − x̂0[i]∥2
2 + γt,i∥x − g[i]∥2
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2. Guidance generation and uncertainty 3. Uncertainty-aware diffusion

4. 3D-GS Optimization
Input views:  

L1+D-SSIM+Pearson Corr 𝐿𝑠 =

Generated views:  
LPIPS+D-SSIM+Pearson Corr 𝐿𝑔 =

Ui(p)=1−exp (−
1
s1

∥p − p′￼∥2
2 −

1
s2

∥Igs
i (p) − Iinp(q)∥2

2) - More consistency, less uncertainty 
- Diffusion follows the guide when 
confident, the generation when not

Baseline w/ pseudo view 
supervision

w/ pseudo view supervision 
 + GS primitive densification Ground-truth

FreeNeRF (implicit + heuristics)

3D-GS (explicit)

Ours (explicit + geo.&vis. priors)

Ground-truth

DNGaussian (explicit + geo. priors)

Initialization

Guidance Images and 
Uncertainty Masks

Uncertainty-Aware Modulation

Iterative Refinement

1
"#$

!
%"(')

!

# = k
&'(

6
)7(+) + -

"!,# = 1/('# ( + *)

"!,# = 0

Figure S-2: Illustration of the relation between threshold ⌧ and the uncertainty Ui. The boundary
between the red and blue regions is defined by ⌧ = k

HW

P
p(Ui(p)) + b.

To alleviate the outliers from depth estimation and reduce the computational burden, we uniformly
downsample the resultant point clouds and analyze the spatial distribution of the points obtained
from the depth maps to filter out those that significantly deviate from the global average distance to
neighboring points. We visualize the point clouds with and without this processing step in Fig. S-1.
Finally, we query existing Gaussian primitives within a fixed radius of each remaining point and only
add new Gaussian primitives at positions without nearby primitives to augment the current set. The
query radius is empirically set to the 85th percentile of the inter-point distances among the current
Gaussian primitives.

B.5 More Implementation Details

LLFF. Following FSGS [71], we select every eighth image as the test set, and evenly sample sparse
views from the remaining images for training. We utilize 3 views to train all the methods. We follow
previous methods to initialize the 3DGS with the point clouds from SfM [40].
DL3DV. We use DL3DV’s test set for evaluation and hold every eighth image as our test split, and
evenly sample sparse views (i.e., 3, 6, 9 views) from the remaining images for training. We implement
the 3D-GS baseline using the point clouds estimated with [52] from the sparse input views.
DTU. For the DTU dataset, we follow the protocol from RegNeRF [22], using 3 training views (IDs
25, 22, and 28) across 15 evaluation scenes. To focus on the object of interest, we mask out the
background during evaluation using the provided object masks, consistent with [58, 22].
Our training framework is conducted cyclically. In each cycle, we train the 3D-GS model with 10K
iterations and run the video diffusion model to update the pseudo-view images guided by the current
3D-GS. After each update of the pseudo-view images, we reset the learning rate schedule for 3D-GS
and start the training of the next cycle. We empirically conduct 3 cycles for our experiments, although
more optimization cycles can lead to better performance. In our implementation, we use DPT [39]
to predict pseudo depth ground truth for regularization in Lreg. For depth regularization on the
pseudo views, in the first 30% training iterations, we produce pseudo depth based on the generated
pseudo views. For the latter iterations, we generate pseudo-depth based on the color rendering from
3D-GS for better fidelity. For the experiments on LLFF and DTU datasets, the point clouds used for
initialization are estimated by SfM [40] using the sparse input views. All experimental results are
obtained on a single NVIDIA A40 GPU.
We illustrate the relation between the threshold ⌧ (used in Eq. (5) in the main draft) and the overall
uncertainty of an image. During the reverse sampling, the timestamp t decreases from the maximum
timestamp, e.g. 100, to 0. In the early stage, t � ⌧ , the �t,i in Eq. (6) (main paper) is set to
1/(Ui(p) + ✏), while after t < ⌧ , �t,i is set to 0. In the red region, the sampling process will rely
more on the synthesized guidance images, while in the blue region, the prediction from the U-Net U✓
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Table S-2: Results combined
LLFF (3 Views) DTU (3 Views) DL3DV (3 Views) DL3DV (6 Views) DL3DV (9 Views)

PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#
Mip-NeRF 16.11 0.401 0.460 8.68 0.571 0.353 10.92 0.191 0.618 11.56 0.199 0.608 12.42 0.218 0.600

3D-GS 17.43 0.522 0.321 10.99 0.585 0.313 10.97 0.248 0.567 12.34 0.332 0.598 12.99 0.403 0.546
DietNeRF 14.94 0.370 0.496 11.85 0.633 0.314 – – – – – – – – –
RegNeRF 19.08 0.587 0.336 18.89 0.745 0.190 11.46 0.214 0.600 12.69 0.236 0.579 12.33 0.219 0.598
FreeNeRF 19.63 0.612 0.308 19.92 0.787 0.182 10.91 0.211 0.595 12.13 0.230 0.576 12.85 0.241 0.573

SparseNeRF 19.86 0.624 0.328 19.55 0.769 0.201 – – – – – – – – –
SparseGS – – – 18.89 0.834 0.178 – – – – – – – – –

FSGS 20.31 0.652 0.288 – – – 12.22 0.296 0.535 13.73 0.429 0.540 15.52 0.468 0.416
DNGaussian 19.12 0.591 0.294 18.91 0.790 0.176 11.10 0.273 0.579 12.67 0.329 0.547 13.44 0.365 0.539

IPSM 20.44 0.702 0.207 – – – 11.70 0.279 0.534 12.82 0.332 0.521 13.41 0.361 0.529
Ours 20.61 0.705 0.201 20.51 0.840 0.137 14.62 0.471 0.491 17.35 0.566 0.396 19.19 0.616 0.335
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