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Abstract

Inspired by the success of generative pretraining in natu-
ral language, we ask whether the same principles can yield
strong self-supervised visual learners. Instead of training
models to output features for downstream use, we train
them to generate embeddings to perform predictive tasks
directly. This work explores such a shift from learning
representations to learning models. Specifically, models
learn to predict future patch embeddings conditioned on
past ones, using causal masking and stop gradient, which
we refer to as Next-Embedding Predictive Autoregression
(NEPA). We demonstrate that a simple Transformer pre-
trained on ImageNet-1k with next embedding prediction as
its sole learning objective is effective—no pixel recon-
struction, discrete tokens, contrastive loss, or task-specific
heads. This formulation retains architectural simplicity and
scalability, without requiring additional design complexity.
NEPA achieves strong results across tasks, attaining 83.8%
and 85.3% top-1 accuracy on ImageNet-1K with ViT-B and
ViT-L backbones after fine-tuning, and transferring effec-
tively to semantic segmentation on ADE20K. We believe
generative pretraining from embeddings provides a simple,
scalable, and potentially modality-agnostic alternative to
visual self-supervised learning.

1. Introduction
Visual pretraining is one of the core topic in computer vi-
sion. Self-supervised learning has become the cornerstone
of modern visual pretraining method, enabling scalable vi-
sual learners without manual labels. At its core, the ob-
jective is to learn representations: models are optimized to
map raw pixels to a fixed-dimensional representation, which
can later be used or fine-tuned for downstream tasks. This
philosophy unites methods based on instance discrimina-
tion [11, 29], self-distillation [8], and masked reconstruc-
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Figure 1. Next-Embedding Predictive Autoregression (NEPA). An
image is split into patches and embedded into a sequence. An
autoregressive model predicts the next embedding from previous
ones, mirroring next-token prediction in language models.

tion [5, 30]. The goal is to learn visual representations that
can be consumed by downstream modules at various scales,
from lightweight task-specific heads to large cascaded sys-
tems such as vision-language models.

A fundamentally different paradigm has underpinned the
success of modern natural language processing. Language
models are not pretrained to be feature extractors; they are
trained to be generative and predictive systems. The ob-
jective is not to produce a static embedding of a sentence,
but to model the data distribution itself through a simple,
causal objective [1, 7, 49, 50]. This training compels the
model to internalize the semantics and conditional depen-
dencies within language. Inference is no longer a two-stage
process of encoding followed by task-solving, but a single
predictive computation carried out by the model itself. This
distinction is fundamental. It suggests that generative pre-
diction, rather than representation learning, may offer a di-
rect route to scale up pretraining. A very recent line of re-
search has shifted to this philosophy, e.g., early pixel-level
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generative pretraining (iGPT) showed transferable features
but struggled with very long sequences and weak semantic
alignment [10]. JEPA [2] moves beyond pixels by predict-
ing latent targets and aligning more closely with semantic
structure. Still, JEPA trains by regressing to latent targets
from a momentum encoder, rather than using generative
prediction as the self-supervised objective.

We are thus tempted to ask whether minimal causal pre-
training might also give rise to strong vision learners. Con-
cretely, an image is decomposed into patches, which are
mapped into a sequence of patch-wise embeddings. A
causal transformer is then trained to predict the next em-
bedding given all previous ones, closely mirroring the next-
token prediction paradigm in language models. We use a
stop-gradient on the target embeddings to create a stable
predictive task. This formulation is deliberately minimalist.
It requires no pixel-level decoder, no discrete visual tok-
enizer, and none of the engineered data augmentations, neg-
ative pairs, or momentum encoders common in contrastive
learning. The entire learning signal is derived from the
model’s ability to anticipate the future in embedding space.
We call this new family of models Next-Embedding Predic-
tive Autoregression (NEPA).

The effectiveness of this simplicity is demonstrated
through its performance. A standard Vision Transformer,
pretrained on ImageNet-1K using only our next-embedding
prediction objective, achieves state-of-the-art classifica-
tion accuracy after standard fine-tuning. Furthermore,
the learned model transfers effectively to dense prediction
tasks, achieving strong results on ADE20K semantic seg-
mentation. These results validate that a purely predic-
tive model, free from the architectural complexity of other
paradigms, can learn the rich, contextual features required
for diverse visual tasks.

2. Related Work

Visual Self-Supervised Learning. Self-supervised learn-
ing has become the leading paradigm for visual learn-
ing, leveraging large unlabeled datasets to learn represen-
tations without annotations [24, 42, 47, 69, 77]. Early
progress was driven by contrastive and self-distillation ap-
proaches [6, 8, 11–13, 27–29, 33, 43, 73], which learn in-
variances across augmented views but often require large
batches or memory banks. A parallel line uses reconstruc-
tion objectives, where lightweight decoders recover masked
pixels or tokens at scale [5, 19, 30, 46, 68]. The limitations
of reconstruction have motivated predictive representation
learning, which forecasts semantic embeddings rather than
raw inputs, as in JEPA [2]. Yet JEPA remains fundamen-
tally representation-centric: its pretrained encoder produces
features that downstream modules must consumed with sep-
arate heads or fine-tuning, rather than directly driving task
behavior through prediction itself.

Generative Pretraining. Generative pretraining has
driven major advances in language [1, 7, 49, 50] and
has a long visual lineage. Early pixel-level generative
pretraining (iGPT) showed transferable features but
struggled with very long sequences and weak semantic
alignment [10]. Subsequent work introduced discrete
tokenizers [21, 36, 45, 59, 67] to compress images into
short code sequences amenable to transformer genera-
tive pretraining [21, 36, 52], enabling large-scale image
generation. Recent scaling efforts, such as VAR [63]
and LlamaGen [59], further close or surpass the diffu-
sion modeling performance. In parallel, tokenizer-free
generative pretraining operates directly in continuous
spaces [23, 39], and masked autoregression blends bidi-
rectional context with ordered generation for efficiency
and quality [9, 38, 39, 72]. Unlike these works, we treat
prediction itself as the learning signal and operate directly
in the embedding space without a generative decoder.

Representation Prediction. Predicting representations
instead of raw signals is a long-standing idea in both neu-
roscience and machine learning. Predictive coding sug-
gests that the brain forecasts latent causes of sensory in-
puts [53], while Contrastive Predictive Coding (CPC) and
related frameworks apply this principle in practice [6, 8, 11–
13, 27, 29, 33, 43, 73]. JEPA makes this explicit by pre-
dicting target embeddings from a context view in a shared
space [2], and CLIP can be interpreted as cross-modal
embedding prediction aligning text and image representa-
tions [51]. However, current JEPA-style systems typically
rely on auxiliary encoders and prediction heads and predict
in parallel rather than causally, contrasting with the sim-
ple, scalable next-token objective that underpins generative
pretrained language models, which is a formulation proven
both effective and efficient.

3. Method
In this section, we first introduce the next-embedding pre-
diction objective, followed by the architectural design that
enables both pretraining and downstream fine-tuning.

3.1. Next Embedding Prediction
Given an input image x, we divide it into T non-overlapping
patches and map each patch to an embedding using a shared
encoder f , resulting in a sequence of embeddings z =
{z1, z2, . . . , zT }. We consider next embedding prediction
as the training objective, where an autoregressive predictor
hθ aims to model the next embedding conditioned on the
previous ones:

ẑt+1 = hθ(z≤t), (1)

This is directly analogous to next-token prediction in lan-
guage modeling, but operates entirely in continuous embed-
ding space rather than over discrete tokens or pixel values.
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Algorithm 1 Next-Embedding Prediction

# f: embedding layer
# h: autoregressive model

for pixel_values in loader: # x, [B, H, W, C]
input_embed = f(pixel_values) # z, [B, T, D]
pred_embed = h(input_embed) # z_hat, [B, T, D]

loss = D(input_embed, pred_embed) # loss

loss.backward() # back-propagate
update(f.param, h.param) # update parameters

def D(z, z_hat):
target = z.detach() # stop gradient

pred = z_hat[:, 0:T-1, :] # shift, [B, T-1, D]
target = target[:, 1:T, :] # shift, [B, T-1, D]

# Use any suitable distance metric.
pred = normalize(pred, axis=-1) # l2-norm
target = normalize(target, axis=-1) # l2-norm
return -(pred * target).sum(dim=-1).mean()

To optimize this objective, we adopt a similarity-based
loss inspired by SimSiam [12]. At each position t, the
model predicts the next embedding ẑt+1 based on the con-
text z≤t, and compares it to the corresponding embedding
zt+1 obtained directly from the encoder. We treat ẑt+1 as
the query and zt+1 as the target. Both vectors are normal-
ized to unit length, and the similarity is measured via nega-
tive cosine similarity:

D(z, ẑ) = − 1

T − 1

T−1∑
t=1

(
zt+1

∥zt+1∥2
· ẑt+1

∥ẑt+1∥2
). (2)

To avoid degenerate solutions, we follow Chen et al. [12]
and apply a stop-gradient operation to the target embed-
dings. The final training loss is defined as:

L = D(stopgrad(z), ẑ). (3)

Intuitively, this objective encourages the model to predict
embeddings that are semantically aligned with the ground
truth, without requiring explicit reconstruction of the input.
The training can be easily implemented using Algorithm 1.

3.2. Model Architecture
We adopt a standard Vision Transformer (ViT) back-
bone [20] with causal attention masking. Unlike pixel-level
reconstruction methods [5, 30], our approach requires no
separate decoder. The Transformer predicts future patch
embeddings directly from past ones, using a single back-
bone for both context encoding and prediction, similar to
autoregressive language models. Images are split into non-
overlapping patches using a Conv2d patch embedding layer,
with learnable positional embeddings added before being
fed into the Transformer. We adopt a pre-norm design with
LayerNorm [3] and apply a final LayerNorm to the output

input

embedding layer

transformer

layer norm

head

label token ......
prediction targets layer norm

layer scale

swiglu

layer norm

layer scale
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q k v

norm
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Figure 2. Images are tokenized via a Conv2d patch embed-
der before entering a pre-norm Transformer with LayerNorm.
Modern stabilization components (RoPE [58], LayerScale [65],
SwiGLU [55], and QK-Norm [32]) are applied at all layers.

features. To improve stability and scalability, we incorpo-
rate modern training and normalization practices inspired
by DINOv3 [56] and VisionLLaMA [14], as shown in Fig-
ure 2. These modeling designs are helpful for training but
orthogonal to our core framework, and are included below
for reproducibility and completeness.

RoPE. We adopt Rotary Position Embedding (RoPE [58])
at all layers to encode relative positions via complex rota-
tions in attention. RoPE improves generalization and posi-
tional reasoning over varying sequence lengths [4, 56, 66].

LayerScale. We adopt LayerScale [65] to stabilize train-
ing by applying learnable per-channel scales (initialized to
10−5) to residual branches, thereby improving convergence
with minimal computational overhead.

SwiGLU. We replace the standard GeLU activation [31]
in vision transformer feed-forward networks [20] with the
SwiGLU activation [55]. While our experiments (Section 4)
show only modest improvements over GeLU, we retain
SwiGLU to align with recent architectures [14, 44, 56, 59]
and to ensure compatibility with prevailing designs in both
advanced vision models and large language models [4, 66].

QK-Norm. To further enhance training stability, we
adopt query-key normalization (QK-Norm [32]). This helps
mitigate issues such as gradient explosion or collapse in
attention and facilitates optimization in deeper transform-
ers [18, 22]. In our implementation, we apply Layer-
Norm [3] without bias and without learnable parameters,
ensuring a lightweight yet effective normalization scheme.
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3.3. Task-Specific Heads
Vision tasks such as image classification, semantic segmen-
tation, object detection, and generative modeling differ in
output structure and supervision signals. Among visual
tasks, image classification and semantic segmentation are
the most commonly used benchmarks for evaluating pre-
trained models, as they reflect global and dense prediction
capabilities. Thus, in our evaluation, we focus primarily on
these two tasks. To evaluate the downstream utility of our
pretrained model, we design task-specific heads for clas-
sification and segmentation, respectively. These heads are
lightweight, compatible with standard practices, and do not
modify the model architecture.

Classification Head. For image-level recognition tasks,
we adopt a standard linear classification head [2, 5, 8,
20, 30]. Specifically, given the final output hidden states
{z1, z2, . . . , zT } from the pretrained transformer, we select
the last embedding zT as a compact representation and ap-
ply a linear classifier to predict the category label. We train
this head using the cross-entropy loss over the predicted
logits ŷ and the ground-truth label y.

Segmentation Head. Following previous work [5, 30],
for semantic segmentation, we adopt a UPerNet head [74]
that operates on multi-scale features extracted from inter-
mediate transformer blocks. We supervise predictions using
the standard pixel-wise cross-entropy loss. To enable spa-
tial context modeling, we disable causal masking and allow
bidirectional attention during fine-tuning.

4. Experiments
We conduct comprehensive experiments to evaluate NEPA
of different sizes and configurations. All models are pre-
trained from scratch on the ImageNet-1K dataset [54] with-
out labels. We begin with a controlled study on the contri-
butions of key components in our next embedding predic-
tion algorithm, including causal masking, temporal shift-
ing, and stop-gradient. We then ablate a series of architec-
tural design choices that further improve performance. In
comparison to previous work, we evaluate NEPA on two
standard benchmarks: ImageNet-1K [54] for image classi-
fication and ADE20K [78] for semantic segmentation. To
better understand the model’s internal behavior, we exam-
ine the learned attention patterns and embedding.

4.1. Ablation Study on Core Algorithm Design
This section separately studies the impact of masking, au-
toregressive shifting, and stop-gradient, which are core al-
gorithm designs for the next embedding prediction ob-
jective. All models are pretrained with a batch size of
2048 for either 50k or 100k steps, and then fine-tuned for
downstream tasks; full training details are provided in Ap-

pendix D. All reported results are obtained using the expo-
nential moving average (EMA [62]) model with an EMA
decay rate of 0.9999. We report the top-1 accuracy on the
ImageNet-1K validation set to compare different settings.
Tables 1a and 1c outline the results.

Shifting. In our default setup, the model predicts the em-
bedding of the next token rather than copying the current in-
put. Removing this shift reduces the objective to an identity
mapping, which provides no meaningful prediction target.
After 50k steps of pretraining, this variant diverges during
fine-tuning and fails to converge to a usable model.

Causal masking. By default, each token attends only to
its predecessors, ensuring a causal prediction setup. Re-
moving the causal mask allows every token to attend bidi-
rectionally, effectively turning the model into a reconstruc-
tion model. After 50k steps of pretraining, this variant
achieves only 73.6% top-1 accuracy after fine-tuning, com-
pared to 76.8% with causal masking.

Stop-gradient. Following SimSiam [12], we stop gradi-
ents on the ground-truth embeddings to prevent collapse.
Without this operation, the training loss collapses to −1 dur-
ing pretraining, indicating all embeddings are the same.

Random masking. We also applied random masking to
the input embeddings, while still predicting all target em-
beddings. In Table 1c, we tested different masking ratios
at 100k pretraining steps and observed a clear performance
drop as masking increased: 0% masking achieved 78.2%
top-1 accuracy, 40% masking achieved 76.4%, and 60%
masking achieved 75.7%. This result highlights a key dif-
ference from masked image modeling paradigms such as
MAE, where masking is essential to prevent trivial recon-
struction. In contrast, our autoregressive setup naturally
avoids shortcut solutions. This suggests that random mask-
ing, while useful for preventing trivial reconstruction in
pixel-space objectives, is less compatible with embedding-
level prediction, where causal modeling already imposes
a meaningful learning signal. Masking in this context in-
troduces input corruption, disrupts sequence structure, and
creates a training-inference mismatch—none of which are
necessary when the prediction task is inherently non-trivial.
These findings reinforce the appeal of our approach: pre-
diction is sufficient, and masking, rather than helping, may
obscure the signal.

4.2. Ablation Study on Orthogonal Components
We ablate 4 architectural components (LayerScale, RoPE,
QK-Norm, and SwiGLU) introduced in Section 3.2. Start-
ing from a plain ViT backbone, we incrementally add each
component and report top-1 accuracy after 100k steps of
pretraining followed by fine-tuning. As shown in Table 1b,
each component contributes to performance gains, and their
combination yields the best result. Notably, enabling RoPE
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shifting causal masking stop-grad 50k acc (%)

✗ ✓ ✓ fail
✓ ✗ ✓ 73.6
✓ ✓ ✗ fail
✓ ✓ ✓ 76.8

(a) Effects of causal masking, autoregressive shifting, and stop-gradient. Re-
moving shifting leads to divergence during fine-tuning, while removing stop-
gradient results in training collapse during pretraining.

LayerScale RoPE QK-Norm GatedMLP 100k acc (%)

✗ ✗ ✗ ✗ 78.2
✓ ✗ ✗ ✗ 77.4
✓ ✓ ✗ ✗ 80.2
✓ ✓ ✗ ✓ fail
✓ ✓ ✓ ✗ 81.1
✓ ✓ ✓ ✓ 81.3

(b) Ablation of architectural components on 100k-step accuracy.

masking ratio 100k acc (%)

0 78.2
40 76.4
60 75.7

(c) Effect of input embedding masking ratio on
100k-step pretraining accuracy using a baseline
ViT backbone with embedding prediction.

freeze embedding 100k acc (%)

✗ 73.1
✓ 77.4

(d) Effect of freezing the patch embedding layer
in the base model with LayerScale on 100k-step
pretraining accuracy.

attn type 100k acc (%)

bidirect 82.5
causal 81.3

(e) Effect of attention type during fine-tuning for
our full model. We compare causal and bidirec-
tional attention on 100k-step pretraining accuracy.

Table 1. Ablations studies. Default settings are marked in gray . Experiments that fail to converge are marked with fail.

significantly boosts accuracy, while QK-Norm further im-
proves stability and final performance.

LayerScale. We employ LayerScale to enhance training
stability during pretraining. Although LayerScale slightly
reduces top-1 accuracy on ImageNet-1K after fine-tuning,
we find it plays a crucial role in stabilizing optimization
and helping the model converge faster to a lower training
loss during pretraining (Figure 3). We attribute the degra-
dation in fine-tuning performance to LayerScale’s tendency
to slow convergence in the supervised stage due to reduced
gradient magnitudes. To address this, we freeze the patch
embedding layer during fine-tuning, which accelerates con-
vergence and improves overall performance, in line with
previous observations [55, 65]. For these reasons, we re-
tain LayerScale in our final model. We note that this trade-
off between pretraining stability and fine-tuning speed is a
common theme in modern architectures.

RoPE. We use RoPE [58] to encode positional informa-
tion in a continuous and extrapolatable manner. Compared
to absolute position embeddings, RoPE leads to a signifi-
cant improvement in top-1 accuracy after fine-tuning.

QK-Norm. We use QK-Norm [32] to stabilize atten-
tion and prevent gradient explosion during pretraining with
SwiGLU as Section 3.2. Without QK-Norm, we observe
that the model becomes unstable when combined with
SwiGLU, either failing to converge or requiring a signifi-
cantly smaller learning rate to avoid divergence. However,
reducing the learning rate leads to underfitting and degraded
performance. By applying QK-Norm to the query and key
projections, we ensure smooth optimization even in deeper
configurations, allowing the model to benefit from SwiGLU
without sacrificing training stability.

SwiGLU. We adopt the Gated MLP variant with SwiGLU
activation [55], following the design used in many recent vi-

sion [14, 44, 56, 59] and language models [4, 66]. We find
that replacing GeLU with SwiGLU yields only marginal
performance improvements. Despite its limited empirical
gain in our setting, we retain SwiGLU to maintain architec-
tural alignment with modern transformer-based backbones
in both vision and language domains. This choice ensures
better compatibility with emerging model designs and facil-
itates future integration into unified frameworks.

4.3. Comparisons with Previous Results
In this section, we evaluate pretrained NEPA checkpoints
on two standard vision tasks: single-label image classifi-
cation and semantic segmentation. For classification, we
fine-tune on ImageNet-1K [54] and report top-1 accuracy.
For segmentation, we attach a UperNet [74] decoder to
the NEPA backbone and fine-tune on ADE20K [78], re-
porting mean Intersection-over-Union (mIoU). We experi-
ment with both Base and Large model variants, each pre-
trained on ImageNet-1K with a patch size of 14 (following
DINOv2 [44]) and a global batch size of 4096 (following
MAE [30]). We use the same pretrained checkpoint for
all downstream evaluations. Models are trained using the
HuggingFace Trainer with distributed data parallelism
(DDP) on 8 NVIDIA H100 GPUs. The Base model is
trained for 1600 epochs (approximately 3 days), and the
Large model for 800 epochs (approximately 5 days). Full
training and fine-tuning details are provided in Appendix D.

Scaling behavior. We show that our next embedding pre-
diction framework scales effectively with the size of the
model. As shown in Figure 4, model accuracy steadily
improves with increased training steps, and we observe no
signs of overfitting even under extended compute budgets.
Beyond verifying pretraining stability, the scaled models
serve as the foundation for subsequent analysis of attention
behavior and embedding structure, as well as for evaluating
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Figure 3. Ablation of key components in NEPA pretraining. Left: EMA accuracy with and without AR shift. Without the autoregressive
shift, training diverges early. Middle-left: Training loss with and without stop-grad; removing stop-grad causes representation collapse.
Middle-right: Training loss with and without LayerScale; LayerScale stabilizes optimization and accelerates convergence. Right: Gradi-
ent norm with and without QK-Norm; QK-Norm suppresses gradient explosion and improves smoothness.

downstream performance via standard fine-tuning on clas-
sification and segmentation tasks.

Fine-tuning practice. We find that enabling bidirectional
attention during fine-tuning improves classification perfor-
mance on ImageNet-1K when the model is pretrained for
100k steps, as shown in Table 1e. Nonetheless, NEPA
achieves competitive results even under causal attention,
indicating that autoregressive embeddings retain sufficient
global information for downstream tasks. To remain con-
sistent with the autoregressive formulation, we use causal
attention as the default setting in our experiments. How-
ever, we also report the results of bidirectional attention for
completeness. For semantic segmentation, we adopt bidi-
rectional attention during fine-tuning by default, as each
output embedding corresponds to a localized prediction and
requires access to the full spatial context of the input image.

Classification results. We follow standard protocols [5,
30, 64] and fine-tune NEPA on the labeled ImageNet-1K
dataset. We use similar hyperparameters as MAE [30], in-
cluding layer-wise learning rate decay [5, 15], RandAug-
ment [17], label smoothing [60], mixup [76], cutmix [75],
and DropPath [35]. Results are summarized in Table 2.
Compared to prior pretraining methods such as MAE [30],
BEiT [5], and MoCo [29], NEPA achieves competitive top-
1 accuracy, reaching 83.8% on the Base model and 85.3%
on the Large model. Our method does not require any task-
specific head, decoder, or auxiliary loss. Unlike contrastive
or masked prediction approaches, we adopt a single-stream
autoregressive formulation with one forward pass, no recon-
struction target, and no multi-branch architecture. More-
over, the strong performance under causal attention demon-
strates the effectiveness of embedding-level autoregression
in capturing transferable semantics.

Semantic Segmentation. We evaluate NEPA on
ADE20K by attaching a standard UperNet [74] decoder
and fine-tuning the model using bidirectional attention, as
described before. ADE20K is a challenging scene parsing
benchmark with dense pixel-wise annotations. We follow
the training recipe from MMSegmentation [16], using a
crop size of 512× 512, batch size of 16, and 160K training

320 640 960 1600
81.5

82.0

82.5

160 320 480 800
82.5

83.0

83.5

84.0

Figure 4. ImageNet-1K validation Top-1 accuracy versus training
epochs. For each epoch’s checkpoint, we perform a lightweight
hyperparameter search and report the best accuracy. Fine-tuning
uses causal attention. The top plot corresponds to the base model,
and the bottom plot to the large model.

iterations. As shown in Table 3, NEPA achieves com-
petitive performance with only ImageNet-1k pretraining,
reaching 48.3% mIoU for Base model and 54.0% mIoU for
Large model. Despite not using any decoder or pixel-level
objective during pretraining, NEPA transfers effectively
to dense prediction tasks. Unlike prior work relying on
contrastive learning or pixel reconstruction, our method
learns transferable representations purely through next
embedding prediction.

5. Quantitative Results
In this section, we investigate how NEPA organizes visual
information by analyzing its attention patterns and the struc-
ture of its learned embeddings. Our goal is to understand
whether the next-embedding prediction objective induces
meaningful global dependencies and semantic organization.

5.1. Attention Map Analysis
To better understand how NEPA exploits context when pre-
dicting future patches, we visualize representative attention
maps on ImageNet-1K images in Figure 5a. For each triplet,
the first column marks the current query patch in the origi-
nal image, and the second column shows the corresponding
attention maps from NEPA.

Interestingly, the attention maps are often long-ranged
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Model Pretrain Task Pretrain Framework Decoder # FWD / step Epochs Acc (%)
ViT-B
MoCo v3-B [13] contrastive learning siamese mlp proj. head 2 600 83.2
BEiT-B [5] masked token pred masked modeling linear pred. head 1 800 83.4
DINO-B [8] self-distillation siamese mlp proj. head N 1600 83.6
MAE-B [30] masked pixel pred masked autoencoder transformer decoder 1 1600 83.6
NEPA-B∗ autoreg. embed pred autoregression none 1 1600 82.5
NEPA-B autoreg. embed pred autoregression none 1 1600 83.8
ViT-L
MoCo v3-L [13] contrastive learning siamese mlp proj. head 2 600 84.1
iBot-L [79] self-dist & masked token pred siamese & masked modeling mlp proj. head 4 1000 84.8
BEiT-L [5] masked token pred masked modeling linear pred. head 1 800 85.2
MAE-L [30] masked pixel pred masked autoencoder transformer decoder 1 1600 85.6†

JEPA-L [2] masked embed pred siamese & masked modeling transformer predictor 2 300 85.2†

NEPA-L∗ autoreg. embed pred autoregression none 1 800 84.1
NEPA-L autoreg. embed pred autoregression none 1 800 85.3

Table 2. Comparison of different self-supervised learning frameworks on ImageNet-1K classification. Results are grouped by model scale,
with Base models in the upper block and Large models in the lower block. Effective pretraining epochs are used based on the actual number
of images or views seen during training; see [79] for details. ∗ indicates methods that use causal attention during fine-tuning. † Denotes
results based on our implementation.

Method Pre-train data ViT-B ViT-L
Supervised IN1K w/ labels 47.4 49.9
MoCo v3 [13] IN1K 47.3 49.1
BEiT [5] IN1K + DALLE 47.1 53.3
MAE [30] IN1K 48.1 53.6
NEPA IN1K 48.3 54.0

Table 3. Comparison of ADE20K semantic segmentation (mIoU)
under different pretraining methods.

and object-centric. Across a wide range of categories and
viewpoints, the model consistently allocates most of its at-
tention to regions that are semantically related to the query
patch. These regions typically include other parts of the
same object or nearby informative structures, rather than
uniformly attending to all patches or focusing only on local
neighbors. For example, when the query patch lies on the
head of an animal or the body of a person, the model tends
to attend to other body parts and task-relevant background
regions, even when they are spatially distant. In cluttered
scenes, NEPA suppresses distractors and concentrates on a
small subset of visually coherent patches. These qualitative
results suggest that the predictive objective encourages the
Transformer to form global, semantically meaningful de-
pendencies between patches, effectively learning to localize
and group object parts without any explicit supervision.

5.2. Embedding Analysis
We further analyze the embeddings produced by NEPA by
examining the similarity between the predicted embedding
of the next patch and all other patch embeddings within the
same image, shown in the third column of each triplet in
Figure 5a. We observe that the predicted embedding is most
similar to patches that belong to the same object or seman-
tic region as the current patch, while unrelated background

areas exhibit much lower similarity. This behavior emerges
even though NEPA is never trained with explicit labels or
region annotations.

The embedding similarity maps reveal that the model
does not merely memorize local texture; instead, it learns
to extrapolate object-level structure. When the query patch
lies on a distinctive part of an object, the predicted embed-
ding is highly similar to distant patches covering other parts
of that object, and often to patches that are occluded or out-
side the local neighborhood. In homogeneous backgrounds,
the similarity patterns become more diffuse but remain co-
herent, reflecting uncertainty in the visual context. Over-
all, these observations indicate that generative pretraining
with next-embedding prediction encourages NEPA to learn
embeddings that are both predictive and semantically or-
ganized, which likely contributes to its strong downstream
transfer performance.

6. Conclusion and Future Work

This work revisits the core idea of causal next-token predic-
tion, not in pixel or token space, but in the embedding space
of vision models. We demonstrate that simple next embed-
ding prediction is sufficient to learn transferable visual rep-
resentations that scale. By treating patch embeddings as
prediction targets, we avoid brittle design choices tied to
handcrafted pretext tasks, and instead rely on the structure
implicitly learned through the sequence. With only IN1K
self-supervised pretraining, NEPA matches or slightly out-
performs mainstream methods on classification and seg-
mentation transfer, while using a simpler training paradigm
(single forward pass, no decoder). What emerges is not just
an algorithm, but a different perspective: that the simplic-
ity of autoregression, when properly adapted to vision, can
help unify pretraining paradigms across modalities.

7
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(a) ImageNet-1K validation samples (unseen during pretraining).

query map attn. map cosine sim. query map attn. map cosine sim. query map attn. map cosine sim. query map attn. map cosine sim.

(b) MSCOCO validation samples (out of distribution during pretraining).

Figure 5. Attention and embedding analyses. Each example consists of three views: (i) the query patch (□) highlighted in the original
image, (ii) the attention map from the NEPA showing which patches the model attends to when predicting the next embedding, and (iii)
the embedding-similarity map showing the cosine similarity between the predicted embedding and all other patch embeddings in the
same image. Warmer colors indicate higher attention or greater similarity; cooler colors indicate lower values.

Modality-agnostic potentials. Recent Large Language
Models [66] increasingly adopt tied embeddings, where
the input and output embedding matrices are shared. This
mechanism is effectively equivalent to predicting the next
embedding in the latent space, which is precisely the prin-
ciple underlying our framework. From this perspective, our
work does not introduce a new paradigm, but rather reveals
a unifying view: different modalities can be trained under
the same objective, with embeddings serving as a common
representational currency.

Generative potentials. At the same time, our formulation
naturally extends toward generative modeling. By coupling
NEPA with a suitable image decoder or diffusion-based

generator [25, 34, 48, 57], the same autoregressive embed-
ding predictor could be used for image synthesis or edit-
ing. Exploring this direction, which bridges representation
learning and generation within a unified model, remains an
exciting avenue for future work.
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Next-Embedding Prediction Makes Strong Vision Learners

Supplementary Material

A. Broader Impacts
NEPA is a generic self-supervised visual pretraining
method and, like other large models, may inherit dataset
biases or be misused to create misleading visual content, so
care is needed in data selection, and deployment, including
appropriate safeguards and monitoring.

B. Methodology Comparisons
Relation to CPC [43]. CPC-style methods mainly train
an encoder with a contrastive loss, where a small autore-
gressive module just aggregates context. In NEPA, the main
learned object is the transformer predictor itself: we use a
simple shared embedding layer and directly regress the next
embedding without negatives or a contrastive head, which
makes the architecture easier to scale.

Relation to GPT [10, 49]. NEPA shares the causal pre-
diction idea of GPT, but works fully in the continuous em-
bedding space. We do not use task-specific decoders, tok-
enizers, or language heads during pretraining.

Relation to JEPA [2]. JEPA uses separate encoders for
context and target views plus a heavy head to score repre-
sentation pairs. As shown in Fig. 6, NEPA keeps the JEPA-
style latent prediction goal but simplifies the architecture to
a single embedding layer and an autoregressive transformer
predictor, without asymmetric branches or an extra head.

x-encoder y-encoder

predictor

embedding layer

predictor

(a) JEPA (b) NEPA

Figure 6. Comparison between JEPA and NEPA.

C. Implementation Details
We first prototyped and validated NEPA using the
timm [70] library. For large-scale experiments, we
switched to the Hugging Face ecosystem, relying on
transformers [71], datasets [37], and evaluate.
Our implementation is mainly based on the ViT code in
transformers.models.vit.modeling vit, and
the training scripts are adapted from the official run mim
and run image classification examples. For data
augmentation, we use the timm utilities, in particular
Mixup and create transform. All ImageNet exper-
iments use the ILSVRC/imagenet-1k dataset accessed
through Hugging Face datasets. ADE20K experiments

follow the standard recipes and data processing pipelines
from mmsegmentation [16]. Our code and model is
available at https://sihanxu.github.io/nepa.

D. Training Details

Pre-training. The full pre-training hyperparameters are
listed in Table 4. For all models we use the standard lin-
ear learning-rate scaling rule, i.e., lr = base lr × B/256,
where B is the global batch size.

config value
optimizer AdamW [40]
base learning rate 3e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [10]
batch size 4096
learning rate schedule cosine decay
warmup epochs [26] 40
augmentation RandomResizedCrop

Table 4. Pre-training setting.

End-to-end Fine-tuning. Fine-tuning settings are sum-
marized in Table 5. We use the same linear learning-rate
scaling rule as in pre-training and apply layer-wise learning-
rate decay. Instead of using a fixed decay factor, we linearly
increase the decay rate from a smaller value to 1.0 over the
course of training, which helps reduce overfitting at the be-
ginning while still allowing all layers to adapt later.

config value
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999

layer-wise lr decay [5, 30] 0.35 (B) 0.60 (L)
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100 (B), 50 (L)
augmentation RandAug (9, 0.5) [5, 30, 64]
label smoothing [60] 0.1
mixup [76] 0.8
cutmix [75] 1.0
drop path [35] 0.1 (B) 0.2 (L)

Table 5. Fine-tuning setting.

1
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E. Additional Experiments
E.1. Training Dynamics
We report the pre-training loss curves and the attention
maps from NEPA-L of intermediate checkpoints in this sec-
tion (Figure 7). The plots and figures illustrate the overall
training stability of NEPA and how the attention evolves as
pre-training progresses.
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query map attn. map attn. map attn. map attn. map

orig. 160 epoch 320 epoch 480 epoch0 epoch

attn. map

800 epoch

Figure 7. Pre-training dynamics of NEPA. Top: pre-training loss
curves; Bottom: evolution of NEPA-L attention maps.

E.2. Limitations and Failure Cases
Linear Probing. We evaluated two variants for linear
probing, one using the last embedding of the autoregres-
sive model and one using the average of all embeddings,
with results reported in Table 6. NEPA performs poorly
under standard linear probing. This is expected, as the out-
put representation is very close to the features right after
the embedding layer, thus the probing result mainly reflects
this shallow representation rather than the full capacity of
the predictor.

NEPA-B Last Embed Avg. Embed

Acc (%) 11.3 14.1

Table 6. Linear probing on NEPA-B. Top-1 accuracy using the
last autoregressive embedding or the average over all embeddings.

Quantitative Failure Examples. We also inspect typical
failure cases in Figure 8. Under the current scale, NEPA
often struggles with images that require non-trivial and
reasoning-intensive physical understanding, such as inter-
preting reflections, shading, and shadows, as well as scenes
containing many small or overlapping objects. In such
cases, the model tends to produce uncertain or inconsistent

query map attn. map cosine sim. query map attn. map cosine sim.

Figure 8. Quantitative Failure Examples. In a multi-object scene
with strong reflections, the model confuses highlights on metal
surfaces with object embeddings; under backlighting, shadowed
regions are misinterpreted as trees; for the animal, shaded skin is
treated as background; and in the last example, bright reflective
regions of the object are also mistaken for background.

predictions, suggesting room for improvement in reasoning
about complex spatial layouts. We hypothesize that this re-
flects the limitation of the ImageNet dataset on which we
train our current model [41, 61], and this could be addressed
as we scale up with more diverse datasets.

E.3. Ablations on MAE Baseline Components
Table 7 reports the effects of adding our orthogonal com-
ponents to a MAE baseline, where they bring little or no
gain in our experiments. We hypothesize masked recon-
struction is less sensitive to embedding/positional issues,
RoPE mainly helps autoregressive models, and QK-Norm
is only useful when paired with LayerScale.

MAE Our impl w/ LayerScale w/ RoPE w/ QK-Norm

Acc (%) 85.6 85.5 85.6 85.6

Table 7. Ablations on MAE with our components. Applying
LayerScale, RoPE, and QK-Norm to a strong MAE baseline brings
little additional gain on performance.

E.4. Layer-wise LR decay and Overfitting
We study the effect of our layer-wise learning-rate decay
(LLRD) schedule on overfitting. Instead of using a fixed
decay factor, we linearly increase the decay from a small
initial value to 1.0 over the course of fine-tuning, effec-
tively unfreezing deeper layers gradually. As shown in Ta-
ble 8, this schedule reduces overfitting and improves per-
formance: on the NEPA-B backbone the accuracy increases
from 83.0% to 83.8%.

Layer-wise LR decay 0.65 0.35 → 1.00

Acc (%) 83.0 83.8

Table 8. Effect of layer-wise LR decay on NEPA-B. Comparing
a fixed decay factor of 0.65 with a schedule that increases from
0.35 to 1.00 during fine-tuning.
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Figure 9. Additional attention and embedding visualizations.

E.5. Reproduced Results without SwiGLU

Finally, we evaluate NEPA without SwiGLU, replacing it
with standard feed-forward layers. For this comparison we
lightly tune the learning rate and layer-wise LR decay and
report the best setting. Table 9 shows that we can reproduce
similar results in this configuration, indicating that SwiGLU
is non-essential optimization and that the main gains come
from the overall predictive architecture.

NEPA-B w/ SwiGLU w/ GeLU

Acc (%) 83.8 83.6

Table 9. Reproduced Results of NEPA-B without SwiGLU.

E.6. Additional Quantitative Results

Figure 9 shows additional attention and embedding visual-
izations for eight ImageNet classes: white wolf (270), gi-
ant panda (388), golden retriever (207), balloon (417), vol-
cano (980), loggerhead turtle (33), sulphur-crested cockatoo
(89), and space shuttle (812). For each query patch, we dis-
play the query map, the attention map over all seen patches,
and the cosine-similarity map between the predicted and
true embeddings. Across these diverse classes, the model
consistently attends to semantically related regions and as-
signs high similarity to patches on the same object, support-
ing our claim that NEPA learns object-centric and spatially
coherent representations.
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Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François Lagunas,
Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic, 2021. Associ-
ation for Computational Linguistics. 1

[38] Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang,
Dina Katabi, and Dilip Krishnan. Mage: Masked generative
encoder to unify representation learning and image synthe-
sis. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2142–2152,
2023. 2

[39] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and
Kaiming He. Autoregressive image generation without vec-
tor quantization. Advances in Neural Information Processing
Systems, 37:56424–56445, 2024. 2

[40] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 1

[41] Yannic Neuhaus, Maximilian Augustin, Valentyn Boreiko,
and Matthias Hein. Spurious features everywhere-large-
scale detection of harmful spurious features in imagenet. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 20235–20246, 2023. 2

[42] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In
Computer Vision – ECCV 2016, pages 69–84, Cham, 2016.
Springer International Publishing. 2

[43] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2, 1

[44] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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