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ABSTRACT

Hierarchical image classification predicts labels across a semantic taxonomy, but
existing methods typically assume complete, fine-grained annotations, an assump-
tion rarely met in practice. Real-world supervision varies in granularity, influ-
enced by image quality, annotator expertise, and task demands; a distant bird may
be labeled Bird, while a close-up reveals Bald eagle. We introduce ImageNet-F,
a large-scale benchmark curated from ImageNet and structured into cognitively
inspired basic, subordinate, and fine-grained levels. Using CLIP as a proxy for
semantic ambiguity, we simulate realistic, mixed-granularity labels reflecting hu-
man annotation behavior. We propose free-grain learning, with heterogeneous su-
pervision across instances. We develop methods that enhance semantic guidance
via pseudo-attributes from vision-language models and visual guidance via semi-
supervised learning. These, along with strong baselines, substantially improve
performance under mixed supervision. Together, our benchmark and methods ad-
vance hierarchical classification under real-world constraints1

1 INTRODUCTION

Hierarchical classification (Chang et al., 2021; Chen et al., 2022; Jiang et al., 2024; Park et al., 2025)
predicts a semantic tree of labels, capturing categories from broad to specific. This richer output
supports flexible use: An expert may seek Bald Eagle, while a general user may only need Bird.
Moreover, predicting the full hierarchy improves robustness and scalability, encouraging models to
generalize across levels, and can naturally support extensions like adding new parent or child classes.

However, existing methods (Chang et al., 2021; Wang et al., 2023) assume complete supervision at
all levels for all the training examples, which rarely holds in practice. In real-world settings, annota-
tion granularity depends on image clarity, annotator expertise, or task-specific needs: A distant bird
could only be labeled as Bird, while a close-up allows Bald eagle (Fig.1).
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Figure 1: Images vary in semantic detail: Some support only coarse labels, others reveal fine-
grained categories. We propose free-grain learning: Training a hierarchical classifier with supervi-
sion free to vary in granularity across examples, reflecting semantic ambiguity in real-world images.

We propose free-grain learning, where supervision is free to vary in granularity: Training labels
may appear at any level of a fixed taxonomy, e.g., Bird, Bird of prey, or Bald eagle. The key
challenge is to predict the full taxonomy from training data with mixed (rather than uniform fine-
grained) labels. This task not only reflects real-world variability in annotation quality and specificity,
but also enables learning from partially labeled data at scale. It further requires integration across
semantic annotation granularities and across visual instances, as the model must infer a complete
taxonomy for each example based on heterogeneous supervision.

1Our code and dataset will be available at https://github.com/pseulki/FreeGrainLearning.
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Table 1: Existing Hierarchical Recognition Benchmarks Are Insufficient. CUB (Welinder et al.,
2010) and Aircraft (Maji et al., 2013) provide clean hierarchies but are small; iNat21-mini (Van Horn
et al., 2021) has a clean taxonomy but is limited to biology; ImageNet (Russakovsky et al., 2015) is
large but structurally inconsistent. We introduce ImageNet-3L, a general-purpose large-scale bench-
mark with a coherent three-level hierarchy grounded in cognitive psychology. From this, we provide
new variants of ImageNet, iNat21-mini, CUB, and Aircraft for free-grained recognition.

Dataset #levels #classes #train #test
CUB 3 13-38-200 5,994 5,794
Aircraft 3 30-70-100 6,667 3,333
iNat21-mini 8 3-11-13-51-273-1103-4884-10000 500,000 100,000
ImageNet 5-19 - 1000 1,281,167 50,000
ImageNet-3L 3 20-127-505 645,480 25,250

However, existing benchmarks are ill-suited for this task (Table 1). Small datasets such as
CUB (Welinder et al., 2010) and Aircraft (Maji et al., 2013) lack scale, while iNaturalist (Van Horn
et al., 2021) is limited to biology and unsuitable for general-purpose evaluation. Larger bench-
marks like ImageNet (Russakovsky et al., 2015) and tieredImageNet (Ren et al., 2018) inherit noisy,
inconsistent hierarchies from WordNet (Fellbaum, 1998). As shown in Fig. 2, hierarchy depths
vary widely from 5 to 19 levels, with some classes following multiple paths—for example, Mini-
van appears in four different paths (depths 12–15), while Teddy bear appears only once at depth
7. Such inconsistencies make evaluation ambiguous: one fine class can map to several hierarchies,
and predictions often traverse long chains of redundant nodes (e.g., entity, object). As a result, most
methods on ImageNet and tieredImageNet restrict evaluation to leaf-node accuracy, with auxiliary
metrics like mistake severity (Bertinetto et al., 2020; Garg et al., 2022b; Jain et al., 2023).

To address these limitations, we construct ImageNet-3L, a benchmark with a well-structured three-
level hierarchy: basic (e.g., Dog), subordinate (e.g., Shepherd), and fine-grained (e.g., German
Shepherd) (Fig. 3). Grounded in cognitive psychology (Rosch et al., 1976; Rosch, 1978) and folk
taxonomies (Berlin et al., 1966), our design reflects that the basic level is the most natural and widely
recognized category for humans, while subordinate and fine-grained levels capture increasingly spe-
cific distinctions. By focusing on this range—from the most intuitive to the most detailed—we
enable semantically meaningful hierarchical prediction, avoiding abstract or redundant levels (e.g.,
Physical Entity in the original ImageNet hierarchy) that provide little practical value.

Building on ImageNet-3L, we further construct ImageNet-F, a free-grain benchmark that simulates
mixed-granularity labeling. Using CLIP (Radford et al., 2021) as a proxy for visual–semantic am-
biguity and annotator variability, we prune labels at different levels depending on prediction confi-
dence. This yields realistic supervision patterns—for example, distant birds labeled as Bird, mid-
range as Bird of prey, and close-ups as Bald eagle (Fig. 4). The final dataset covers 645,480 images
across 20 basic, 127 subordinate, and 505 fine-grained classes (Table 1). We apply the same strategy
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Figure 2: Inconsistent and Noisy
Hierarchy of ImageNet WordNet.
(Left:) The histogram of hierarchy
depths shows that ImageNet classes
range from 5 to 19 levels, with many
exceeding 10, which hinders consis-
tent evaluation. (Right:) Sample
hierarchies illustrate that classes can
have multiple paths of different depths:
Minivan appears in four paths at depths
12–15, while Teddy bear exists only at
depth 7. This imbalance and inconsis-
tency in the hierarchy make it unclear
which path should be considered cor-
rect, underscoring the difficulty of us-
ing the original WordNet hierarchy for
training and evaluation.
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(a) Original ImageNet’s WordNet hierarchy (b) Our 3-level hierarchy

Figure 3: We curate ImageNet-3L as a benchmark for hierarchical classification. (a) The orig-
inal ImageNet taxonomy is noisy and inconsistent, with imbalances, overlaps, and multiple paths,
making it unsuitable for reliable evaluation. (b) We construct a coherent 3-level taxonomy, inspired
by cognitive psychology (Rosch et al., 1976): basic for general recognition, subordinate for contex-
tual specificity, and fine-grained for specialized distinctions.

to iNat21-mini and CUB using BioCLIP (Stevens et al., 2024), producing iNat21-mini-F and CUB-
F, and additionally create synthetic variants CUB-Rand and Aircraft-Rand for controlled evaluation
under varying label sparsity and granularity.

Dog Cooking utensil Dog Fish Electron. equip. Insect Bird

Pinscher Pot Shepherd Ganoid Audio device Beetle Bird of prey

Affenpinscher Teapot German shepherd Gar Tape player Leaf beetle Bald eagle

Figure 4: Our ImageNet-F captures real-world challenges, where fine-grained labels follow
a long-tailed distribution and granularity varies with visual clarity. Top: The graph shows the
proportion of basic, subordinate, and fine-grained labels per class (sorted by ID). Fine-grained labels
are scarce on the left but increase toward the right, forming a long tail. This imbalance often causes
models to overfit to basic-level features and miss subtle distinctions, underscoring the need for robust
multi-level learning. Bottom: Arrow-marked samples illustrate how label pruning reflects difficulty.
(Last Column): a distant bird is labeled at the basic level (Bird); one with visible wings and talons
at the subordinate level (Bird of prey); and a close-up at the fine-grained level (Bald eagle).

3



Preprint (under review)

When applied directly under free-grain setting, existing hierarchical classifiers (Chen et al., 2022;
Park et al., 2025) degrade severely—up to –40% full-path accuracy on iNat21-mini —highlighting
the difficulty of the task. To address this, we propose three additional strategies: 1) learning pseudo-
attributes (e.g., short legs, docked tail) from vision–language models to provide semantic cues when
finer labels are missing; 2) applying semi-supervised learning by treating missing-grain labels as
unlabeled; 3) combining both approaches. Across datasets, these methods outperform hierarchical
baselines by +4–25%p, establishing stronger baselines for free-grain learning.

Contributions. 1) We introduce free-grain learning for hierarchical classification, capturing real-
world variability in label granularity. 2) We present ImageNet-F, with a cognitively grounded 3-level
hierarchy, and additional free-grain benchmarks across diverse domains. 3) We establish strong
baselines that significantly improve performance by leveraging semantic and visual guidance.

2 RELATED WORK

Hierarchical classification has been studied mainly for leaf-node prediction on large but inconsis-
tent taxonomies such as ImageNet (Karthik et al., 2021; Zhang et al., 2022), or for full-taxonomy
prediction on small datasets like CUB and Aircraft (Chang et al., 2021; Park et al., 2025). These
settings lack the scale, diversity, and label sparsity needed for realistic evaluation. Our work instead
enables full taxonomy prediction under heterogeneous supervision on large-scale data.
Imbalanced and semi-/weakly-supervised classification have been widely explored (Liu et al.,
2019; Tarvainen & Valpola, 2017; Robinson et al., 2020), but mostly at a single fine-grained level
or with fully observed coarse labels. In contrast, we address both intra- and inter-level imbalance,
requiring consistent prediction across multiple granularities with partially missing supervision. See
a full task comparison in Table 2.
Foundation models such as CLIP (Radford et al., 2021) has been used for zero-shot flat classifica-
tion via text prompts (Pratt et al., 2023; Saha et al., 2024). In contrast, our approach leverages text
only during training to learn visual patterns across levels, requiring no textual input at inference.

Further discussion and additional related work are provided in Appendix B.

Table 2: Our task setting is more practical and challenging than existing ones. Ours reflects re-
alistic scenarios where annotations are free-grain and imbalanced, requiring hierarchical predictions
to balance accuracy and consistency across levels.

Input Output Training Labels Imbalance Evaluation Metrics
Tasks Fine Coarse Fine Coarse Availability Intra Inter Accuracy Consistency
Long-tailed recognition ✓ ✗ ✓ ✗ All ✓ ✗ ✓ ✗
Semi-supervised learning ✓ ✗ ✓ ✗ Partial ✗ ✗ ✓ ✗
Weakly-supervised learning ✗ ✓ ✓ ✗ All ✗ ✗ ✓ ✗
Hierarchical recognition ✓ ✓ ✓ ✓ All ✗ ✗ ✓ ✓
Free-grained recognition ✓ ✓ ✓ ✓ Partial ✓ ✓ ✓ ✓

3 HIERARCHICAL DATASET FOR FREE-GRAINED RECOGNITION

3.1 Defining Three-Level Taxonomy for ImageNet-3L. We restructure ImageNet (Russakovsky
et al., 2015)’s WordNet (Fellbaum, 1998)-based hierarchy into a consistent three-level taxonomy,
explicitly guided by Rosch’s categorization principles (Rosch et al., 1976). In Rosch’s framework,
the basic level (e.g., dog, car) is the most natural and visually distinctive, balancing generality and
specificity; it is also the level people most often use in everyday recognition and naming, unlike
abstract superordinate categories (e.g., animal) or overly narrow subordinate ones (e.g., Pembroke).

We adopt the basic level as the coarsest node in each branch, with subordinate and fine-grained levels
(e.g., Corgi → Pembroke) providing progressively finer distinctions. However, WordNet chains such
as artifact → . . .→ vehicle → . . .→ motor vehicle → car → ambulance can yield only two usable
levels if car is taken as basic. In these cases, we elevate Rosch’s superordinate category (e.g.,
vehicle) to serve as the basic level, which remains visually distinctive from other basic categories
(e.g., craft, container) and ensures a three-level hierarchy. This yields branches that support three
semantically coherent and visually meaningful levels for hierarchical prediction.
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Specifically, we adopt the following systematic principles: 1) Enforce meaningful structure: We
remove paths where each node has only one child, since coarse labels fully determine the fine la-
bels. Branches with fewer than three levels are also excluded. 2) Maximize within-group diversity:
Among subordinate candidates under each basic class, we favor those with richer fine-grained sub-
classes—e.g., parrot (4 children) over cockatoo (1 child). 3) Refine vague categories: Ambiguous
groups such as Women’s Clothing are reorganized into precise, functionally grounded categories
(e.g., Underwear) to improve clarity. 4) Validate with language models and human review: We
use language models (ChatGPT (Achiam et al., 2023)) to suggest refinements, with all decisions
manually reviewed for semantic consistency. Applying this curation process to ImageNet-1k yields
a structured benchmark of 20 basic, 127 subordinate, and 505 fine-grained classes, ensuring every
branch supports meaningful hierarchical prediction (a complete list is provided in Appendix A).

3.2 Semantic Label Pruning for ImageNet-F, iNat21-mini-F, and CUB-F

To build a realistic free-grain training dataset, we prune hierarchical labels using large vi-
sion–language models as a proxy for visual–semantic ambiguity: CLIP (Radford et al., 2021) for
ImageNet-F and BioCLIP (Stevens et al., 2024) for iNat21-mini-F and CUB-F. Although these mod-
els are not explicitly designed to measure ambiguity, their zero-shot confidence consistently corre-
lates with visual distinctiveness (Fig. 4). Moreover, since label annotation is affected by annotator
expertise or error, this proxy offers a practical approximation.

We adopt CLIP’s prompt-ensemble strategy (e.g., a photo of a [class], art of a [class]) and compute
average confidence for fine-grained and subordinate levels. Labels are retained based on prediction
correctness: (1) If both fine-grained and subordinate are correct, we keep all labels. (2) If only
subordinate is correct, we keep up to that level. (3) Otherwise, only the basic label is kept. We
further prune subordinate labels proportionally to the fine-grained removal rate per class.

(1) ImageNet-F. After pruning, 32.6% of images retain all three levels (Basic + Subordinate +
Fine-grained), 28.0% retain two (Basic + Subordinate), and 39.4% retain only the Basic. Each class
maintains the same number of images as ImageNet; imbalance arises only from label granularity.
(2) iNat21-mini-F. Although BioCLIP is trained on iNat21-mini ’s full taxonomy, it performs well
when predicting fine-grained species but struggles when restricted to coarser labels. This gap enables
substantial pruning: 22.5% of images retain all three levels (Order + Family + Species), 28.0% retain
two, and 49.5% retain only Order. (3) CUB-F. With the same procedure, 31.5% of images keep three
levels, 23.3% two (Order + Family), and 45.2% only Order.

3.3 Synthetic Label Pruning for CUB-Rand and Aircraft-Rand

To control label availability, we construct synthetic variants—CUB-Rand and Aircraft-Rand —by
randomly pruning labels from CUB (Welinder et al., 2010) and Aircraft (Maji et al., 2013). Unlike
realistic pruning, this design systematically varies supervision and simulates extreme sparsity (e.g.,
only 10% fine-grained labels), enabling stress-testing of model robustness across diverse label dis-
tributions. Although random removal is independent of image difficulty, it reflects practical factors
such as annotator expertise, cost, or task-specific constraints. We denote availability as a-b-c, where
a% of basic, b% of subordinate, and c% of fine-grained labels are retained (e.g., 100-50-10 retains
10% fine-grained labels and 40% subordinate-only labels).

4 FREE-GRAIN LEARNING METHODS FOR HIERARCHICAL CLASSIFICATION

4.1 Problem setup. We begin by describing the problem setup. In free-grain hierarchical classifica-
tion, the goal is to train a model that predicts object categories across all levels of a taxonomy, given
training data with labels of varying granularity. Formally, let X denote the input space of images,
and Y1, . . . ,YL the label spaces at L hierarchical levels, from coarsest (Y1) to finest (YL). Each
training sample consists of an image x ∈ X and a partial label set {yl}l∈Sx , where Sx ⊆ {1, . . . , L}
indicates the levels at which labels are provided.

We assume that if a label yl is available, all coarser labels yl′ for l′ < l are also available due
to the structure of the taxonomy, while finer labels yl′ for l′ > l are missing. We further assume
the coarsest label y1 is always given. The objective is to learn a classifier f : X → Y1 × · · · ×
YL, f(x) = (ŷ1, . . . , ŷL), that predicts labels at all levels of the hierarchy.

5
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(a) Text-Attr (b) Taxon-SSL

Figure 5: Overview of the proposed methods. (a) Text-Attr enriches feature representations using
semantic cues from images, compensating for missing labels and capturing shared attributes across
levels. (b) Taxon-SSL handles missing-level labels by treating them as unlabeled and learns from
visual consistency through augmented views.

4.2 Baselines. With no existing baselines for this new setting, we propose four strong baselines,
each approaching the problem from a different perspective.

(1) Semantic Guidance: Text-Guided Pseudo Attributes (Text-Attr). Our semantic guidance
approach is motivated by the observation that while class labels differ across hierarchical levels
(e.g., Dog → Corgi → Pembroke), many visual attributes—such as tail length or ear shape—remain
consistent (Fig. 5a). To capture these shared semantic cues, we use image descriptions as auxil-
iary supervision. Instead of class-name prompts for zero-shot classification, we extract free-form
descriptions directly from the image, independent of labels.

Specifically, given an input image x, we use a frozen vision-language model (VLM), Llama-3.2-
11B (Dubey et al., 2024), to generate a language description dx, using the prompt: “Describe visual
details in the image.” This produces descriptions containing phrases such as “short legs” or “pointed
ears,” which we encode into a text embedding ztx using CLIP’s text encoder (Radford et al., 2021).
We cap generation at 100 tokens, while CLIP accepts 77 tokens; longer descriptions are truncated
during encoding. Although truncation discards some details, our method focuses on shared semantic
cues (e.g., “short legs,” “brown markings”) rather than exhaustive captions, making it robust to this
limitation. In parallel, we obtain the image embedding zvx from the image encoder, and align the two
embeddings with a contrastive loss:

Ltext = − 1

N

N∑
i=1

log

(
exp(sim(zvi , z

t
i)/τ)∑N

j=1 exp(sim(zvi , z
t
j)/τ)

)
, (1)

where sim(·, ·) is cosine similarity and τ is a temperature parameter. This loss guides the encoder
to capture salient, label-independent traits shared across levels. Although not explicitly predicting
attributes, aligning image features with text induces intermediate representations, which we call
pseudo-attributes. This model-agnostic method can be applied to any architecture.

Finally, for hierarchical supervision, we apply the loss only at levels with available labels. Given
hierarchical labels y1, . . . , yL across L levels, the model computes a loss at each level:

Lhier =

L∑
l=1

⊮{yl exists} · L(fl(x), yl), (2)

where fl(x) is the prediction at level l, and L denotes any classification loss (e.g., cross-entropy).

(2) Visual Guidance: Taxonomy-Guided Semi-Supervised Learning (Taxon-SSL).

To enforce semantic consistency, we extend CHMatch’s contrastive objective to the full taxonomy.
For each mini-batch, we build level-wise affinity graphs W l based on pseudo-label agreement:
W l

ij = 1 if images i and j share the same pseudo-label at level l, and 0 otherwise. Then the
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taxonomy-aligned affinity graph W is defined as:

Wij =

{
1 if W 1

ij = ... = WL
ij = 1,

0 otherwise.
(3)

Then, taxonomy-aligned contrastive loss Ltacl is defined by:

Ltacl = − 1∑
j Wij

·
L∑

l=1

log

∑
j Wij exp((g(f(xi)) · g(f(xj))

′)/t)∑
j(1−Wij) exp((g(f(xi)) · g(f(xj))′)/t)

, (4)

where gi = g(f(xi)) is the projected feature of image i with the classifier f , and t is a temperature
hyperparameter.

(3) Combining Semantic and Visual Guidance: Taxon-SSL + Text-Attr. A natural next step is
to combine Text-Attr and Taxon-SSL by incorporating text-derived embeddings into the feature ex-
tractor of Taxon-SSL, allowing semantic and visual guidance to be jointly leveraged during training.

(4) State-of-the-art Hierarchical Classification Methods: H-CAST, HRN. We adopt two rep-
resentative models. (4-1) Hierarchical Residual Network (HRN) (Chen et al., 2022): the first to
handle supervision at both subordinate and fine-grained levels by maximizing marginal probabilities
within the tree-constrained space. (4-2) H-CAST (Park et al., 2025): the current state-of-the-art,
encouraging consistent visual grouding across taxonomy levels. Originally trained with full super-
vision, we adapt it to this setting via the level-wise loss in Eq. 2, using only available labels.

5 EXPERIMENTS

Dataset: We conduct experiments using our proposed ImageNet-F, iNat21-mini-F, and CUB-F
datasets, along with the synthetic CUB-Rand and Aircraft-Rand datasets. CUB includes bird
images across 13 orders (e.g., Anseriformes), 38 families (e.g., Anatidae), and 200 species (e.g.,
Mallard), while Aircraft (Maji et al., 2013) contains aircraft images across 30 makers (e.g., Boeing),
70 families (e.g., Boeing 707), and 100 models (e.g., 707-320).

Evaluation metrics: Following (Park et al., 2025), we evaluate accuracy and consistency: 1) Level-
accuracy: Top 1 accuracy for each level. 2) Tree-based InConsistency Error rate (TICE): Propor-
tion of test samples with inconsistent prediction paths in the hierarchy. Lower is better. TICE = nic

N
3) Full-Path Accuracy (FPA): Proportion of test samples with correct predictions at all hierarchy
levels. Higher is better, and we use FPA as one of our primary metrics: FPA = nac

N .

Implementation: We use H-ViT, a ViT-Small-based hierarchical classifier, as the backbone for
evaluating both Text-Attr and Taxon-SSL. To evaluate its compatibility across architectures, we also
apply Text-Attr to H-CAST (Park et al., 2025), a state-of-the-art hierarchical model with comparable
capacity. HRN (Chen et al., 2022) is evaluated with its original ResNet-50 backbone, which has over
twice the parameters. All models are trained for 100 epochs, except for ImageNet-F, which is trained
for 200 due to its larger scale. Full architectural and training details are in the appendix F.

Result 1: Performance Drop under Free-Grain Learning. The prior hierarchical SOTA, H-
CAST, degrades sharply under mixed-granularity labels on both CUB and iNat21-mini. As shown
in Fig. 6, full-path accuracy drops from 84.9% to 45.1% on CUB-F and from 64.9% to 25.6% on
iNat21-mini-F. This demonstrates the difficulty of handling mixed-granularity labels and imbal-
anced supervision across the hierarchy and need for methods handling them.

Result 2: Performance on ImageNet-F. As shown in Table 3, existing hierarchical methods de-
grade sharply under free-grain learning: HRN reaches only 37.8% FPA, while H-CAST performs
better at 57.6% but still struggles with missing labels. Text-Attr (H-ViT) achieves 55.5% without re-
lying on H-CAST’s visual grouping, and integrating it into H-CAST further improves performance
to 63.2%, demonstrating the effectiveness of semantic-guided pseudo-attribute learning at scale.
Taxon-SSL improves over HRN by leveraging visual guidance but remains less effective than Text-
Attr methods, whose strong performance benefits from the abundance and diversity of ImageNet-F
for reliable visual–semantic alignment.

Result 3: Performance on iNat21-mini-F. In Table 3, on the large-scale iNat21-mini-F dataset,
which contains many classes (10,000), conventional hierarchical methods perform poorly (17.0%
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Figure 6: Transitioning from
fully labeled data to our mixed-
granularity setting results in a
substantial drop in Full-Path
Accuracy, highlighting the dif-
ficulty of the task. SOTA H-
CAST suffers nearly a 40pp loss
on both CUB and iNat21-mini.

Figure 7: Text-Attr benefits under extreme label sparsity, as
seen on the left (low-index classes with few fine-grained la-
bels) by providing extra guidance from textual descriptions,
while Taxon-SSL performs better on the right (high-index
classes with more fine-grained labels). Both are based on ViT-
small model and evaluated on the ImageNet-F. Classes are sorted
by the number of fine-grained training samples, from lowest to
highest.

Table 3: No single recipe solves free-grain learning—methods behave differently depending on
data characteristics. 1) Conventional hierarchical classification methods like HRN (Chen et al.,
2022) and H-CAST (Park et al., 2025) show significant performance drops under incomplete su-
pervision, underscoring the challenge of free-grain settings. 2) Text-Attr methods works well on
ImageNet-F, where each class is supported by abundant visual evidence. In contrast, iNat21-mini-F
has fine-grained biology labels, where appearance are similar, making LLM-based text descriptions
less effective. Here, Taxon-SSL proves more beneficial by leveraging structured label propagation in
this semi-supervised style setting. 3) Combining the two (Taxon-SSL + Text-Attr) yields consistent
but modest gains across both datasets.

Dataset ImageNet-F (20-127-505) iNat21-mini-F (273 - 1,103 - 10,000)
FPA(↑) fine.(↑) sub.(↑) basic(↑) TICE(↓) FPA(↑) spec.(↑) fam.(↑) order(↑) TICE(↓)

HRN (Chen et al., 2022) 37.79 38.73 55.73 78.65 46.69 17.03 25.43 46.51 70.20 53.81
H-CAST (Park et al., 2025) 57.59 59.02 82.69 93.53 21.81 25.63 28.61 67.20 83.62 47.17
Taxon-SSL 48.40 52.34 65.74 82.96 19.87 31.74 37.11 69.53 82.02 37.31
Taxon-SSL + Text-Attr 49.65 53.43 66.43 83.56 18.81 31.93 37.08 69.76 82.20 37.04
Text-Attr (H-ViT) 55.48 59.05 77.95 89.45 24.02 27.88 32.07 68.27 80.49 46.35
Text-Attr (H-CAST) 63.20 64.91 84.47 93.56 18.58 29.74 32.37 71.79 85.99 44.63

for HRN, 25.63% for H-CAST). Taxon-SSL achieves the best performance (31.9% FPA), high-
lighting the benefits of structural label propagation under limited per-class supervision. Text-Attr
methods perform slightly lower (27.9–30.0% FPA), likely due to restricted textual diversity in this
fine-grained biological domain, yet still outperform conventional baselines.

In Appendix, we report additional results on CUB-F (Sec. C.1), highly-missing synthetic datasets
(Sec. C.2), and ablations on Text-Attr features, training strategies, and architecture design (Sec. E).

Analysis 1: Text-Attr Excels with Sparse Labels, Taxon-SSL with Moderate Label Availability.
We analyze class-wise performance under imbalanced fine-grained label availability on ImageNet-
F. To isolate effects, we compare Text-Attr (H-ViT) and Taxon-SSL with identical ViT-small back-
bones, excluding H-CAST modules. Fig. 7 shows per-class accuracy, sorted by the number of fine-
grained training labels. Text-Attr (H-ViT) outperforms in label-scarce classes by leveraging textual
descriptions as extra supervision, while Taxon-SSL performs better with moderate label availability
by propagating consistency across missing levels. We provide additional t-SNE (Maaten & Hinton,
2008) visualization analysis in Appendix D.

Analysis 2: What Advantage Does External Semantic Guidance Provide? To assess the effect
of text-derived guidance, we compare saliency maps (Chefer et al., 2021) from Taxon-SSL and Text-
Attr (H-ViT) (Fig. 8). In Row 1, with multiple objects, Taxon-SSL focuses on a human shoulder
and misclassifies the image, violating the semantic hierarchy, while Text-Attr consistently attends to
the instrument and predicts correctly. In Row 2, when both fail at the fine-grained level, Taxon-SSL

8
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Taxon-SSL Text-Attr

Image Basic Subordinate Fine-grained Basic Subordinate Fine-grained

clothing ✗ headwear ✗ saxophone ✓ music instru. ✓ wind instru. ✓ saxophone ✓

dog ✓ hound dog ✓ megalith ✗ dog ✓ hound dog ✓ standard poodle ✗

Figure 8: Text-Attr improves semantic focus under diverse large-scale data. (1st row) In a multi-
object image, Taxon-SSL assigns inconsistent labels (“clothing” at the basic level, “saxophone” at
the fine-grained level), while Text-Attr (H-ViT) correctly predicts “musical instrument” by focusing
on the relevant object. (2nd row) When both fail at the fine-grained level, Taxon-SSL outputs an un-
related class (“megalith”), whereas Text-Attr (H-ViT) chooses a semantically closer one (“poodle”).
This shows that text-derived attributes help the model attend to meaningful regions and maintain
semantic plausibility, on large-scale ImageNet-F dataset with diverse categories and sparse labels.
Green/Red denote correct/incorrect predictions.

Figure 9: Free-grain inference results with consistency-based stopping on ImageNet-F. Left:
Examples of consistency-based stopping in Text-Attr (H-CAST). The model stops at the correct
subordinate level (Hound, left) or at the basic level (Bird, right) when deeper predictions become
inconsistent and incorrect, leading to more reliable results. Right: Consistency-based stopping
for free-grain inference. Predictions are halted when finer-level outputs conflict with preceding
coarser-level predictions. On ImageNet-F, Text-Attr (H-CAST) explores deeper levels of the hierar-
chy with higher correctness, whereas HRN stops earlier and produces fewer fine-level predictions.

outputs an unrelated class, whereas Text-Attr chooses a visually similar dog by focusing on curly
fur and body shape. These results show that external semantic cues guide attention to meaningful
features across label granularities, improving hierarchical consistency, while Taxon-SSL may drift
to visually salient but semantically irrelevant regions under sparse or ambiguous supervision.

Analysis 3: Free-grain Inference. While our main goal is full-hierarchy prediction under mixed-
granularity supervision, free-grain inference is also crucial in practice: a correct coarse label is
often preferable to an incorrect fine-grained one (e.g., predicting “dog” instead of a wrong breed).
We adopt a simple consistency-based stopping rule: predictions halt whenever the next-level label
would violate the taxonomy, ensuring the deepest valid output. As shown in Fig. 9(Right), Text-
Attr (H-CAST) reaches deeper levels more often and with higher accuracy. Fig. 9(Left) shows
examples: stopping at the basic level when “bird” is correct but the subordinate mispredicts, or at
the subordinate level when “dog → hound” is correct but the fine-grained label is inconsistent. These
results highlight the practical value of free-grain inference and motivate benchmarks that explicitly
evaluate this setting.
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6 Summary
We introduce new hierarchical classification under free-grain supervision, where models learn from
labels of varying granularity while maintaining taxonomy consistency. To advance this setting,
we present a large-scale benchmark and two simple yet effective baselines. Our Text-Attr method
mitigates label imbalance by sharing features across levels, though it does not explicitly model it;
future work could explore imbalance-aware strategies for further improvement.
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A COMPLETE HIERARCHY OF IMAGENET-F

Basic Subordinate Fine-Grained

bird passerine bird brambling, indigo bunting, robin, jay, bul-
bul, water ouzel, house finch, chickadee,
junco, magpie, goldfinch

parrot macaw, sulphur-crested cockatoo, African
grey, lorikeet

piciform bird toucan, jacamar

seabird king penguin, pelican, albatross

anseriform bird drake, red-breasted merganser, black
swan, goose

coraciiform bird bee eater, hornbill

bird of prey kite, great grey owl, vulture, bald eagle

gallinaceous bird partridge, prairie chicken, ruffed grouse,
peacock, quail, black grouse, ptarmigan

wading bird flamingo, American coot, redshank,
American egret, little blue heron, white
stork, limpkin, spoonbill, red-backed
sandpiper, dowitcher, crane, ruddy turn-
stone, bittern, oystercatcher, black stork,
bustard

dog spitz dog malamute, Pomeranian, keeshond,
Siberian husky, chow, Samoyed

pointer dog vizsla, German short-haired pointer

spaniel dog Brittany spaniel, clumber, English
springer, Sussex spaniel, Irish water
spaniel, Welsh springer spaniel, cocker
spaniel

hound dog basset, bloodhound, Irish wolfhound,
Walker hound, redbone, English fox-
hound, Italian greyhound, Ibizan hound,
bluetick, Scottish deerhound, borzoi, Nor-
wegian elkhound, whippet, Weimaraner,
Saluki, beagle, Afghan hound, black-and-
tan coonhound, otterhound

terrier dog Boston bull, silky terrier, Lakeland ter-
rier, Yorkshire terrier, Tibetan terrier,
American Staffordshire terrier, Irish ter-
rier, Airedale, Norwich terrier, soft-coated
wheaten terrier, wire-haired fox terrier,
Staffordshire bullterrier, West Highland
white terrier, Australian terrier, Dandie
Dinmont, Kerry blue terrier, Lhasa,
cairn, Sealyham terrier, Bedlington terrier,
Scotch terrier, Border terrier, Norfolk ter-
rier

corgi dog Pembroke, Cardigan

poodle dog miniature poodle, toy poodle, standard
poodle

setter dog Irish setter, Gordon setter, English setter

pinscher dog Doberman, affenpinscher, miniature pin-
scher
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shepherd dog kelpie, briard, German shepherd, Old En-
glish sheepdog, Border collie, Bouvier des
Flandres, collie, Rottweiler, komondor,
malinois, groenendael, Shetland sheepdog

retriever dog curly-coated retriever, Labrador retriever,
Chesapeake Bay retriever, flat-coated re-
triever, golden retriever

schnauzer dog standard schnauzer, miniature schnauzer,
giant schnauzer

Sennenhunde dog Bernese mountain dog, Greater Swiss
Mountain dog, Appenzeller, EntleBucher

toy dog toy terrier, Blenheim spaniel, Maltese dog,
Shih-Tzu, papillon, Pekinese, Chihuahua,
Japanese spaniel

fish soft-finned fish coho, tench, eel, goldfish

shark tiger shark, great white shark, hammer-
head

spiny-finned fish anemone fish, puffer, lionfish, rock beauty

ray stingray, electric ray

ganoid fish sturgeon, gar

primate ape gibbon, siamang, orangutan, chimpanzee,
gorilla

monkey titi, langur, colobus, squirrel monkey, ba-
boon, guenon, marmoset, macaque, spider
monkey, patas, howler monkey, proboscis
monkey, capuchin

lemur Madagascar cat, indri

snake colubrid snake water snake, garter snake, green snake,
night snake, hognose snake, ringneck
snake, king snake, thunder snake, vine
snake

elapid snake sea snake, Indian cobra, green mamba

viper diamondback, horned viper, sidewinder

boa snake boa constrictor, rock python

salamander newt eft, common newt

ambystomid salamander spotted salamander, axolotl

insect beetle dung beetle, weevil, leaf beetle, tiger
beetle, ladybug, rhinoceros beetle, long-
horned beetle, ground beetle

orthopterous insect cricket, grasshopper

dictyopterous insect cockroach, mantis

hymenopterous insect bee, ant

butterflyinsect cabbage butterfly, lycaenid, monarch, ad-
miral, sulphur butterfly, ringlet

odonate insect dragonfly, damselfly

homopterous insect cicada, leafhopper

furniture table desk, dining table

baby bed cradle, crib, bassinet

seat rocking chair, barber chair, park bench,
throne, folding chair, toilet seat, studio
couch
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lamp table lamp

cabinet china cabinet, medicine chest

musical instrument wind instrument ocarina, flute, panpipe, oboe, cornet, sax,
harmonica, bassoon, French horn, trom-
bone

stringed instrument banjo, harp, violin, cello, acoustic guitar,
electric guitar

percussion instrument steel drum, gong, marimba, drum, chime,
maraca

keyboard instrument upright, grand piano, accordion, organ

scientific instrument laboratory glassware Petri dish

magnifier loupe, radio telescope

sports equipment ball golf ball, baseball, basketball, croquet ball

gymnastic apparatus parallel bars, balance beam, horizontal bar

weight barbell, dumbbell

electronic equipment telephone dial telephone, pay-phone, cellular tele-
phone

computer peripheral printer, joystick, computer keyboard,
mouse

audio device tape player, cassette player, CD player,
iPod

network device modem

display device monitor, screen

clothing bottoms (skirts) hoopskirt, sarong, miniskirt, overskirt

tops (sweaters) sweatshirt, cardigan

outwear trench coat, poncho, fur coat

swimwear maillot, bikini, swimming trunks

face & headwear wig, sombrero, mortarboard, bonnet,
mask, cowboy hat, bearskin

nightwear pajama

protective wear apron, knee pad, lab coat

dresses & Gowns gown

underwear brassiere

footwear sock, Christmas stocking

neckwear bow tie, bolo tie, Windsor tie

traditional & formal Wear abaya, kimono, vestment, academic gown

wraps & shawls stole, feather boa

container reservoir water tower, rain barrel

bag mailbag, plastic bag, backpack, purse

jug water jug, whiskey jug

vessel mortar, pitcher, tub, ladle, bucket, coffee
mug

bottle wine bottle, beer bottle, pop bottle, water
bottle, pill bottle

basket hamper, shopping basket

box mailbox, carton, pencil box, chest, crate
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glass goblet, beer glass

shaker saltshaker, cocktail shaker

cooking utensil pan frying pan, wok

cooker Crock Pot

pot teapot, caldron, coffeepot

structure monument brass, megalith, triumphal arch, obelisk,
totem pole

religious building church, mosque, boathouse, monastery,
stupa

housing yurt, cliff dwelling, mobile home

public building planetarium, library

movable structure sliding door, turnstile

supporting structure plate rack, honeycomb, pedestal

fence stone wall, picket fence, chainlink fence,
worm fence

bridge steel arch bridge, viaduct, suspension
bridge

residential structure palace

agricultural structure greenhouse, barn, apiary

commercial stucture toyshop, restaurant, cinema, confec-
tionery, bookshop, grocery store, tobacco
shop, bakery, butcher shop, barbershop,
shoe shop

barrier grille, bannister, breakwater, dam

institutional structure prison

tool hand tool hammer, plunger, screwdriver

garden tool lawn mower, shovel

cutter cleaver, plane, letter opener, hatchet

power tool chain saw

opener corkscrew, can opener

craft sailing vessel trimaran, schooner, catamaran

boat fireboat, canoe, yawl, gondola, speedboat,
lifeboat

ship wreck, pirate, container ship, liner

warship aircraft carrier, submarine

aircraft airliner, warplane, airship, balloon

vehicle bicycle bicycle-built-for-two, mountain bike

bus minibus, school bus, trolleybus

car ambulance, beach wagon, cab, convert-
ible, jeep, limousine, Model T, racer,
sports car

truck fire engine, garbage truck, pickup, tow
truck, trailer truck

van minivan, moving van, police van

locomotive electric locomotive, steam locomotive

military vehicle half track
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self-propelled vehicle forklift, recreational vehicle, snowmobile,
tank, tractor, golfcart, snowplow, go-kart,
moped, streetcar, amphibious vehicle

handcart barrow, shopping cart

sled bobsled, dogsled

train bullet train

wagon horse cart, jinrikisha, oxcart

wheeled vehicle freight car, motor scooter, tricycle, unicy-
cle

weapon gun rifle, assault rifle, revolver, cannon

ranged weapon missile, projectile

Table 4: Complete hierarchy tree for our proposed ImageNet-F dataset.
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B RELATED WORK

Hierarchical classification has been studied with varying objectives. Most focus on leaf-node pre-
diction, using the full taxonomy during training but predicting only fine-grained labels (Karthik
et al., 2021; Zhang et al., 2022; Zeng et al., 2022; Garg et al., 2022b). Evaluation in these works
typically relies on top-1 accuracy or mistake severity at the leaf level, making them compatible
with large-scale datasets like ImageNet (Russakovsky et al., 2015) and tieredImageNet (Ren et al.,
2018)—even with inconsistent or deep hierarchies. However, models restricted to fine-grained out-
puts often fail in real-world scenarios where visual details are missing, as they cannot fall back to
coarser labels and thus provide no meaningful information.

To address this, full taxonomy prediction has been explored, aiming to produce labels across all
levels while maintaining hierarchical consistency (Chang et al., 2021; Wang et al., 2023; Jiang et al.,
2024; Park et al., 2025). However, these methods are typically developed and evaluated on small,
fully labeled datasets like CUB (Welinder et al., 2010) and Aircraft (Maji et al., 2013), which lack
the scale, diversity, and label sparsity of real-world settings. The iNaturalist dataset (Van Horn et al.,
2021) offers a deeper taxonomy, but also remains restricted to the biology, limiting its suitability
for general-purpose evaluation. HRN (Chen et al., 2022) partially handles incomplete labels by
randomly converting fine-grained labels to parent categories, overlooking the structured ambiguity
in real data. Similarly, (Kim et al., 2023) supports mixed labels but treats them flatly, ignoring
hierarchical relationships. Both also rely on small datasets such as CUB and Aircraft. Our work fills
this gap by enabling full taxonomy prediction under realistic supervision on large-scale data.

Imbalanced classification has been extensively studied (Liu et al., 2019; Ren et al., 2020; Wang
et al., 2021; Park et al., 2021; Tian et al., 2022; Park et al., 2022; Ha et al., 2023; Zhao et al., 2024),
mostly focusing on intra-level imbalance at a single fine-grained level. In contrast, we address intra-
and inter-level imbalance in a hierarchical setting, where classes are balanced but label granularity
varies across them. DeepRTC (Wu et al., 2020) considers taxonomy, but aims to improve inference
reliability via early stopping, rather than predicting the full taxonomy.

Semi-supervised learning typically combines labeled and unlabeled data at a single fine-grained
level (Tarvainen & Valpola, 2017; Berthelot et al., 2019; Sohn et al., 2020). Recent work incor-
porates coarse labels (Garg et al., 2022a; Wu et al., 2023), but still targets fine-grained accuracy.
In contrast, our setting demands consistent prediction across the full taxonomy with heterogeneous
supervision, making existing methods not directly applicable.

Weakly-supervised classification typically aims to predict fine-grained labels when only coarse
labels are available during training (Robinson et al., 2020; Grcic et al., 2024). These methods assume
fully observed labels at a coarse level and focus on improving predictions at a fine-grained level. In
contrast, our setting requires handling multi-granularity labels and inferring the full taxonomy.

Foundation models for zero-shot classification, such as vision-language models (e.g., CLIP (Rad-
ford et al., 2021)) and large language models (e.g., GPT-4 (Achiam et al., 2023)), have gained
popularity for leveraging label-driven prompts at inference—without training (Pratt et al., 2023; Liu
et al., 2024; Zheng et al., 2024; Saha et al., 2024). These methods aim to improve flat-level classi-
fication by matching images to text. In contrast, we train a hierarchical classifier that learns shared
visual patterns across levels from images, when labels are partially missing. Our model requires no
textual input at inference, making it efficient. See a full task comparison in Table 2.

19



Preprint (under review)

C MORE EXPERIMANTAL RESULTS

C.1 EVALUAION ON CUB-F

On the small-scale, single-domain dataset CUB-F (Table 5), Taxon-SSL achieves the best perfor-
mance (63.96% FPA), showing the advantage of structured label propagation when per-class sam-
ples are scarce. Text-Attr methods perform moderately well (53.99–57.59% FPA) but are less effec-
tive here, as the bird-only domain limits textual diversity and reduces the benefit of language-based
supervision. Still, they clearly outperform conventional hierarchical baselines (44.30% for HRN,
45.10% for H-CAST), underscoring the overall effectiveness of our approach. Unlike the trend on
large-scale, diverse datasets such as ImageNet-F, where Text-Attr provides richer cues and stronger
gains, these results confirm that there is no single recipe for free-grain learning: performance is
tightly coupled with dataset characteristics, making the problem inherently challenging.

Table 5: Taxon-SSL shows strong effectiveness on the small-scale dataset CUB-F, where label
propagation provides reliable supervision despite limited data. Text-Attr methods are assumed
to offer limited benefit due to the restricted textual diversity of this bird-only dataset.

CUB-F (13-38-200) FPA (↑) Species (↑) family (↑) Order (↑) TICE (↓)

HRN (Chen et al., 2022) 44.30 46.72 81.20 96.36 27.15
H-CAST (Park et al., 2025) 45.10 47.52 87.78 97.50 25.89
Taxon-SSL 63.96 65.50 92.84 98.40 7.39
Taxon-SSL + Text-Attr 63.05 64.86 92.54 98.38 7.61
Text-Attr (H-ViT) 57.59 59.10 91.60 98.05 10.72
Text-Attr (H-CAST) 53.99 55.58 91.72 98.41 18.95

C.2 EVALUATION UNDER VARYING AND SEVERE LABEL SPARSITY CONDITIONS

To evaluate model performance under diverse and more challenging free-grain conditions, we exper-
iment with various label availability ratios by randomly removing fine-grained labels—e.g., (100%-
60%-30%), (100%-50%-10%), and (100%-20%-10%)—which represent the available proportions
of basic, subordinate, and fine-grained labels, respectively. Each experiment is repeated with three
different random seeds, and we report the average performance. The variance across runs was minor
(0.1–1.8).

Consistent with our main results, these experiments (Table 6 & 7 & 8) also show that there is no
single method that performs best across all settings. Instead, the most effective method varies
depending on the dataset and the specific ratio of available labels, highlighting the importance of
adaptable free-grain learning strategies.

For consistency, we refer to the three levels in CUB-Rand (order-family-species) and Aircraft-Rand
(maker-family-model) as basic, subordinate, and fine-grained levels. We summarize the key findings
below:

(1) Conventional hierarchical classification methods struggle under the free-grain setting,
where label supervision is sparse and uneven across levels. For example, when labels are
highly missing (e.g., only 10% available at the fine-grained level), HRN (Chen et al., 2022) and
H-CAST (Park et al., 2025) suffer more than a 50% drop in accuracy across all levels compared
to the fully labeled (100%-100%-100%) setting on CUB-Rand (Fig. 6 & Table 8). This highlights
the difficulty of the free-grain setting and the need for methods that can robustly handle incomplete
supervision at multiple semantic levels.

(2) The performance of different methods varies with the amount of available supervision per
class: Text-Attr methods perform better when more labeled samples are available, while Taxon-
SSL is more effective under extreme label sparsity. For example, in Table 6, the average num-
ber of available fine-grained labels per class is approximately 9 for CUB-Rand and about 20 for
Aircraft-Rand. Consistent with this difference, Taxon-SSL outperforms other methods on CUB-
Rand, whereas Text-Attr (H-CAST) performs best on Aircraft-Rand. This trend persists across set-
tings. In the most sparse setting, CUB-Rand (100-20-10, Table 8), where only about 3 fine-grained
labels are available per class, Taxon-SSL shows a clear advantage. We attribute this to how supervi-
sion is utilized. Text-Attr relies on available labels and indirect semantic guidance via text features.
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In contrast, Taxon-SSL actively leverages unlabeled data through pseudo-labeling and strong aug-
mentations, making it more effective when labeled examples are extremely limited.

(3) Sometimes, Taxon-SSL’s high fine-grained accuracy comes at the cost of lower accuracy
at higher levels in the taxonomy. For example, in Table 7, Taxon-SSL achieves the highest fine-
grained accuracy (65.01%), but its subordinate and basic-level accuracies (85.53% and 92.81%) are
lower than those of Text-Attr (H-CAST), which achieves 86.30% and 94.17%, respectively. This
highlights a key challenge in free-grain learning: improving accuracy across all levels simultane-
ously is non-trivial, and optimizing for fine-grained performance alone may degrade consistency at
coarser levels.

Table 6: No single method performs best across all conditions—performance depends strongly
on the amount of available supervision per class. Text-Attr methods tend to perform better when
more labeled samples are available, while Taxon-SSL is more effective under extreme label sparsity.
For example, Taxon-SSL performs best on CUB-Rand with around 9 fine-grained labels per class,
while Text-Attr (H-CAST) performs best on Aircraft-Rand with around 20, reflecting the impact of
supervision density. These results highlight that method effectiveness is highly sensitive to label
sparsity, emphasizing the need for adaptable approaches in free-grain learning.

Label Ratio CUB-Rand (100%-60%-30%) Aircraft-Rand (100%-60%-30%)
FPA(↑) spec.(↑) fam.(↑) order(↑) TICE(↓) FPA(↑) maker(↑) fam.(↑) model(↑) TICE(↓)

HRN (Chen et al., 2022) 57.87 62.73 85.53 96.45 13.77 57.33 64.42 76.95 86.38 23.30
H-CAST (Park et al., 2025) 61.88 67.36 90.05 94.32 13.04 64.67 68.88 85.58 91.43 13.76
Taxon-SSL 74.82 76.92 93.38 98.33 5.06 70.33 72.22 87.06 93.50 7.18
Taxon-SSL + Text-Attr 74.90 76.95 93.41 98.38 4.91 69.89 72.24 86.92 93.29 7.77
Text-Attr (H-ViT) 67.89 72.48 90.63 95.37 10.39 64.15 68.92 85.88 89.87 15.80
Text-Attr (H-CAST) 69.65 71.31 92.88 98.48 8.35 71.43 73.56 89.66 95.31 9.71

Table 7: Maintaining accuracy across all hierarchy levels remains more challenging under
sparse supervision. For example, in 100%-50%-10% case, Taxon-SSL achieves the highest fine-
grained accuracy (65.01%), but its subordinate and basic-level accuracies (85.53%, 92.81%) are
lower than those of Text-Attr (H-CAST) (86.30%, 94.17%), which better preserves consistency
across levels. This result illustrates the inherent difficulty of improving accuracy across all levels
simultaneously, as objectives at different levels can be conflicting.

Label Ratio Aircraft-Rand (100%-50%-10%) Aircraft-Rand (100%-20%-10%)
FPA(↑) maker(↑) fam.(↑) model(↑) TICE(↓) FPA(↑) maker(↑) fam.(↑) model(↑) TICE(↓)

HRN (Chen et al., 2022) 40.35 47.85 70.76 85.68 37.56 32.06 46.73 55.43 85.58 48.43
H-CAST (Park et al., 2025) 47.57 51.93 78.31 87.11 28.42 40.33 45.44 67.28 84.12 35.61
Taxon-SSL 62.61 65.01 85.53 92.81 10.22 58.73 61.10 80.90 92.24 11.77
Taxon-SSL + Text-Attr 62.95 65.49 86.01 92.64 10.25 58.55 60.88 80.97 92.04 11.89
Text-Attr (H-ViT) 47.83 52.25 81.13 87.82 30.57 38.73 43.89 66.13 84.81 38.69
Text-Attr (H-CAST) 53.31 55.32 86.30 94.17 24.43 48.85 51.37 77.11 93.01 27.25
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Table 8: Taxon-SSL is more robust under extreme label sparsity, while other methods degrade
significantly. In CUB-Rand (100%-20%-10%), where each class has only 3 fine-grained and 3 sub-
ordinate labels, Taxon-SSL achieves the best performance, while other methods struggle. HRN and
H-CAST suffer over 50% drop in fine-grained accuracy compared to the fully-supervised (100%-
100%-100%) setting. Text-Attr methods perform more robustly (10%+ higher than HRN/H-CAST),
but still fall short under such sparse supervision. We attribute this to how each method leverages
supervision: Text-Attr relies on available labels and semantic guidance from text features, while
Taxon-SSL benefits more from unlabeled data via pseudo-labeling and augmentations, making it
more effective under severe label sparsity.

Label Ratio CUB-Rand (100%-50%-10%) CUB-Rand (100%-20%-10%)
FPA(↑) spec.(↑) fam.(↑) order(↑) TICE(↓) FPA(↑) spec.(↑) fam.(↑) order(↑) TICE(↓)

HRN (Chen et al., 2022) 40.23 43.70 82.75 95.94 22.34 33.53 41.18 72.56 95.79 30.50
H-CAST (Park et al., 2025) 39.03 43.41 85.74 93.23 24.60 32.97 38.66 76.89 92.50 29.43
Taxon-SSL 62.40 64.14 92.33 98.26 6.01 59.18 61.44 89.79 98.20 7.65
Taxon-SSL + Text-Attr 62.52 64.87 87.94 94.45 8.98 57.98 60.59 89.42 98.12 8.39
Text-Attr (H-ViT) 47.42 50.74 88.22 94.67 18.09 42.46 46.99 80.92 94.43 20.27
Text-Attr (H-CAST) 44.63 45.89 91.06 98.19 22.72 40.41 42.76 84.24 97.97 24.05
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D T-SNE VISUALIZATION

We visualize ImageNet-F embeddings of Text-Attr (H-CAST) and Taxon-SSL using t-SNE (Maaten
& Hinton, 2008) to assess whether the learned representations capture semantic and hierarchical
structure. Each point denotes an image embedding, colored by its basic-level class (20 categories),
with brightness variations indicating fine-grained subclasses (505 total).

Both Text-Attr (H-CAST) and Taxon-SSL produce well-separated clusters consistent with the basic-
level taxonomy, showing that coarse groupings are reliably captured. The key difference lies within
coarse categories: Text-Attr (H-CAST) reveals more distinct fine-grained subclusters (e.g.,
breeds within dog, species within bird), whereas Taxon-SSL yields tighter coarse clusters with
less apparent fine-level separation.

This contrast reflects their supervision signals. Text-Attr leverages diverse textual cues (attributes,
parts, appearance terms), which promote discriminative, attribute-aligned features and sharpen
within-class distinctions. Taxon-SSL, by propagating labels along the taxonomy and enforcing con-
sistency under mixed-granularity supervision, regularizes embeddings within each coarse class and
reduces intra-class variance—emphasizing coarse alignment over fine-level separability.

(a) Text-Attr (H-CAST) (b) Taxon-SSL

Figure 10: t-sne Visualization on ImageNet-F. Both methods separate coarse-level taxonomy well,
but Text-Attr (H-CAST) yields clearer fine-grained subclusters (e.g., distinct groups within dog and
bird) with more compact grouping, whereas Taxon-SSL shows some overlap of embeddings near
cluster boundaries. This is likely due to ImageNet-F ’s diverse large-scale categories, where text
supervision provides rich attribute cues that sharpen fine-level distinctions.
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E ABLATION STUDY

E.1 IMPORTANCE OF TEXT-GUIDED PSEUDO ATTRIBUTES

Text-guided Pseudo Attributes jointly optimizes hierarchical label supervision (Lhier) and text-
guided pseudo attributes (Ltext) to learn semantically rich features: L = Lhier + αLtext Fig. 11
quantifies Ltext’s impact by varying its weight α on CUB-Rand. Ablating Ltext (α = 0) causes a
5% absolute decline in both fine-grained accuracy and FPA compared to the optimal configuration
(α = 0). This gap underscores two key roles of text guidance: (1) it injects complementary visual
semantics absent in class labels alone, and (2) it enforces attribute consistency across hierarchy lev-
els. The performance recovery at (α = 1) confirms that textual pseudo-attributes mitigate annotation
sparsity while preserving taxonomic coherence.

Figure 11: Tuning α balances accuracy and taxonomic consistency. At α = 1 (optimal), Text-Attr
(H-ViT) achieves peak fine-grained accuracy (blue) while maintaining hierarchical consistency (or-
ange). Ablating Ltext (α = 0) causes a 5% accuracy drop and increased inconsistency, as class em-
beddings lose text-guided attribute alignment. Higher α > 1.0 over-regularizes features, marginally
degrading both metrics. This trade-off underscores the need to weight text supervision to resolve
sparse annotations without distorting the hierarchy.

E.2 COMBINING TEXT-ATTR AND TAXON-SSL

We compare different training schedules for combining Text-Attr and Taxon-SSL on CUB-F. In the
joint setting, both objectives are optimized simultaneously for 100 epochs. In the two-stage setting,
we first train with one objective for 50 epochs and then add the other for the remaining 50 epochs,
considering both orders: (1) Taxon-SSL → Text-Attr, and (2) Text-Attr → Taxon-SSL.

Table 9 show that starting with Text-Attr and then adding Taxon-SSL yields slightly higher full-path
accuracy, likely because textual supervision promotes diverse feature learning before label propa-
gation. In contrast, beginning with Taxon-SSL provides no advantage, and both two-stage variants
perform similarly to joint training overall. Interestingly, joint training achieves higher consistency
as measured by TICE. Given its simplicity and competitive performance, we adopt the joint strategy
as our default.

Table 9: Comparison of joint vs. two-stage training schedules for Text-Attr and Taxon-SSL on
CUB-F. While two-stage training (Text-Attr → Taxon-SSL) yields slightly higher accuracy, joint
learning is simpler and provides better consistency (TICE).

CUB-F (13-38-200) FPA (↑) Species (↑) family (↑) Order (↑) TICE (↓)

Taxon-SSL + Text-Attr (100 epochs) 63.04 64.86 92.54 98.37 7.61
Taxon-SSL (50 epochs) → +Text-Attr (50 epochs) 62.84 64.42 92.47 98.20 8.19
Text-Attr (50 epochs) → +Taxon-SSL (50 epochs) 63.63 65.34 92.56 98.27 8.06

E.3 ABLATION ON HIERARCHICAL SUPERVISION IN VIT

We further examine the architectural design choice of where to inject hierarchical supervision in
the Vision Transformer (ViT) in Table 10. On CUB-F, we map the three taxonomy levels (Or-
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der–Family–Species) to different layers and compare multiple configurations: (6th, 9th, 12th), (8th,
10th, 12th), and (10th, 11th, 12th).

Among these, supervision at the 8th, 10th, and 12th layers yields the best performance. We interpret
this as a balance between early and late representation learning: assigning hierarchy too early (e.g.,
6–9–12) forces the model to align coarse categories before sufficient visual features are developed,
while placing all supervision too late (e.g., 10–11–12) limits the model’s capacity to gradually refine
class granularity. The 8–10–12 configuration provides an appropriate middle ground, where lower-
level categories benefit from moderately abstract features, and finer distinctions are introduced after
the backbone has matured.

Table 10: Performance comparison of different layer assignments for hierarchical supervision
in ViT on CUB-F. The 8th–10th–12th configuration achieves the best results, balancing early and
late feature abstraction.

CUB-F (13-38-200) FPA (↑) Species (↑) family (↑) Order (↑) TICE (↓)

6-9-12th layer 54.80 58.16 88.97 95.01 16.79
8-10-12th layer 57.59 59.10 91.60 98.05 10.72
10-11-12th layer 56.40 58.56 90.80 97.08 13.48
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F IMPLEMENTATION DETAILS

For ViT (Dosovitskiy et al., 2020) models, we use ViT-Small for Text-Attr (H-ViT) and Taxon-SSL
and H-CAST-Small (Park et al., 2025) for Text-Attr (H-CAST) to match parameter sizes.

For Text-Attr (H-ViT), we insert fully-connected layers to the class token at the 8th, 10th, and 12th
layers for basic, subordinate, and fine-grained supervision. The 12th-layer patch features are pro-
jected to match the text embedding dimension via an FC layer. For Text-Attr (H-CAST), hierarchical
supervision is applied to the last three blocks, following (Park et al., 2025). Due to low dimension-
ality in the final block, we align text features with the features of the second block. For Text-Attr
methods, CLIP-ViT-B/32 is used to extract text embeddings, which remain frozen during training.

In Taxon-SSL, we apply a shared MLP to the class token from the final (12th) layer, followed by
three separate linear classifiers for basic, subordinate, and fine-grained supervision. When combined
with Text-Attr, we additionally project the class token through a linear layer and align it with the
corresponding text feature.

For hierarchical classification baselines, HRN (Chen et al., 2022) and H-CAST (Park et al., 2025),
we follow their original training protocols and retrain them under our free-grain setting. We extend
HRN to handle missing labels at two levels instead of one. For H-CAST, we provide supervision us-
ing the available labels at each corresponding level. Full hyperparameter configurations are provided
in Table 11.

We train all models for 100 epochs, except for ImageNet-F, which are trained for 200 epochs due to
the larger scale. All experiments were conducted on an NVIDIA A40 GPU with 48GB memory. We
used a single GPU for all experiments, except for ImageNet-F, which was trained using 4 GPUs.

Table 11: Hyperparameters for training Text-Attr (H-ViT), Text-Attr (H-CAST), and Taxon-
SSL. We follow the training setup of H-CAST (Park et al., 2025) for Text-Attr methods (Text-Attr
(H-ViT) and Text-Attr (H-CAST)), and adopt the settings of CHMatch (Wu et al., 2023) for Taxon-
SSL.

Parameter Text-Attr (H-ViT) Text-Attr (H-CAST) Taxon-SSL

batch size 256 256 128
crop size 224 224 224
learning rate 5e− 4 5e− 4 1e− 3
weight decay 0.05 0.05 0.05
momentum 0.9 0.9 0.9
warmup epochs 5 5 0
warmup learning rate 1e−6 1e−6 N/A
optimizer Adam Adam SGD
learning rate policy Cosine decay Cosine decay Cosine decay
α (weight for Ltext) 1 1 1 (for +Text-Attr)

G USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in a limited manner, primarily to review the constructed
hierarchy and to assist with minor tasks such as translation and typo correction.
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