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Dynamic Fall Recovery

Fig. 1.

Our method enables humanoids to fall safely and rise promptly. Snapshots show real-world deployment on the Unitree G1: When suddenly

destabilized, the robot redirects into a side fall with arm buffering, then reorients and rises, demonstrating adaptive and resilient recovery.

Abstract—Falling is an inherent risk of humanoid mobility.
Maintaining stability is thus a primary safety focus in robot
control and learning, yet no existing approach fully averts loss
of balance. When instability does occur, prior work addresses
only isolated aspects of falling: avoiding falls, choreographing
a controlled descent, or standing up afterward. Consequently,
humanoid robots lack integrated strategies for impact mitiga-
tion and prompt recovery when real falls defy these scripts.
We aim to go beyond keeping balance to make the entire fall-
and-recovery process safe and autonomous: prevent falls when
possible, reduce impact when unavoidable, and stand up when
fallen. By fusing sparse human demonstrations with reinforce-
ment learning and an adaptive diffusion-based memory of safe
reactions, we learn adaptive whole-body behaviors that unify
fall prevention, impact mitigation, and rapid recovery in one
policy. Experiments in simulation and on a Unitree G1 demon-
strate robust sim-to-real transfer, lower impact forces, and
consistently fast recovery across diverse disturbances, pointing
toward safer, more resilient humanoids in real environments.
Videos are available at https://firm2025.github.io/.

I. INTRODUCTION

Where there are legs, there will be stumbles. Even the most
carefully trained humanoids - built for agile locomotion and
intelligent navigation planning - are bound to be jolted off
balance by a stray push, a loose stone, or an unexpected gust.

When a 1.3m, 35kg Unitree G1 robot with delicate vision
and force sensors topples, the damage can be costly: bent
joints, cracked housings, and extended downtime.

Such incidents are not rare anomalies but fundamental
risks of legged mobility. Balance controllers can reduce but
never eliminate unexpected falls [1], [2]. Unlike wheeled
or quadruped robots, which enjoy wider and more stable
support base [3], [4], humanoids combine tall, narrow frames
with dozens of degrees of freedom, producing diverse and
hard-to-predict fall dynamics [5], [6].

We aim to give humanoids a single instinct for self-
preservation: a unified policy that keeps them upright
whenever possible and, when a fall is unavoidable,
ensures they fall safely and rise on their own (Fig. 1).

Prior work tackles only isolated pieces of this chain.
Classical balance controllers focus on avoiding falls al-
together [1], [2], motion-planning methods choreograph a
controlled descent [6], [7], and recovery studies begin only
after the damage is done, teaching robots to stand up from
static supine postures [8], [9].

Yet falling and rising are inseparable phases of a single
physical process: How a robot falls directly shapes how it
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can get back up. By unifying mitigation and recovery, our

approach explicitly addresses this coupled dynamic.

The challenge is daunting. Once balance is lost, a fall
becomes a complex, high-dimensional physical process with
rapidly changing contacts and forces, exposing weaknesses
in both major camps of humanoid control:

1) Model-based control. Carefully planned motions can be
computed for particular impacts [6], [7], but such methods
depend on simplified dynamics and become intractable as
the range of disturbances grows.

2) Learning-based control. Imitation learning typically re-
quires dense, full-motion demonstrations, which are dif-
ficult to collect at scale and often lead to policies that
collapse to fixed reference trajectories with poor adapt-
ability [10]. Reinforcement learning (RL) must juggle a
set of carefully crafted reward terms whose interactions
are hard to anticipate, making reward engineering difficult
and often producing brittle or unnatural behaviors [11],
[12]. Without an effective way to represent multi-modal
policies (e.g., through skill embeddings or generative
models), RL struggles to encode the diverse actions
needed for safe falling and rising [13], [14].

Due to these limitations, no prior method reliably spans the

full spectrum from balance maintenance, through damage-

mitigating fall, to autonomous recovery.

We tackle this challenge with learning a single, unified
humanoid fall-safety policy from just a few demonstrations.
By fusing sparse human demonstrations with reinforcement
learning and an adaptive diffusion-based memory of safe
reactions, we learn adaptive whole-body behaviors that cover
fall prevention, impact mitigation, and rapid recovery within
a single policy (Fig. 2). The policy learning proceeds in two
stages: learning safe skill priors and learning adaptiveness,
achieved through the following four steps:

1) Seed safe skill acquisition. The robot begins with a few
temporally sparse human key poses, internalizing them
through RL to fit its own morphology and dynamics. This
creates dense reaction trajectories that seed safe falling
and rising in its action space.

2) Safe skill enrichment. Targeted stitching of compatible
falling and rising motions, combined with policy roll-
outs, generates additional safe trajectories. This expansion
yields strategies for pre-emptive fall prevention, diverse
fall variations, fall mitigation, and reliable recovery.

3) Safe reactive memory. All safe reactions are distilled
into a diffusion policy that captures a rich, multi-modal
distribution of fall-and-rise behaviors. A learned feature
predicts the next safe target pose from past trajectory data.

4) Adaptive safe control. At run time, the feature is ex-
tracted online to retrieve the nearest neighbour from a
memory bank of safe poses. Refreshing predictions at
every step, the system assembles safe trajectories on the
fly from overlapping segments, expanding each target
into a neighborhood of possibilities and enabling rapid
adaptation to unforeseen terrain or disturbances.

The result is a humanoid that does more than stay on its feet.

It anticipates trouble, redirects unavoidable falls to minimize

harm, and rebounds swiftly to a stable stance, turning an
inevitable weakness into evidence of genuine resilience.

Experiments in simulation and on the Unitree G1 confirm
robust sim-to-real transfer, with lower impact forces and
prompt, reliable recovery across diverse disturbances [8],
[9], [11]. By unifying pre-emptive fall prevention, impact
mitigation, and rapid recovery within a single memory-driven
policy, our approach advances safe humanoid control and
lays a strong foundation for resilient service and assistive
robots in unstructured environments.

II. RELATED WORK
A. Humanoid Control

Model-based methods laid the foundations of humanoid
control [3], [15]. Learning-based methods have since ad-
vanced the field, from IL [16] to RL [11], [12]. Human
demonstrations further enrich motion style and diversity [13],
[17]-[19]. Recent studies extend locomotion to challenging
motions and diverse terrains [20]-[25]. Our work comple-
ments these advances with a unified learning framework that
goes beyond locomotion to prevent falls, mitigate impact,
and recover robustly without heavy reward engineering.

B. Humanoid Fall Mitigation

Early methods imitate human break-falls to limit dam-
age [5], [26]-[28], but rely on heuristics and offline tuning.
Model-based methods cast safe falling as momentum redirec-
tion, trajectory optimization, or multi-contact planning [7],
[29]-[31], and energy-based controllers provide online shap-
ing [32], [33]. Mechanical or control compliance length-
ens impact and regulates post-impact behavior [34], [35],
while direction-control strategies steer the body toward safer
contact regions [36], [37]. These methods work in targeted
scenarios but typically depend on hand-crafted strategies,
simplified dynamics, or pre-specified contact sequences; in
contrast, our work learns a unified policy that generalizes
across disturbances, enabling pre-emptive fall prevention, im-
pact mitigation, and prompt recovery within one framework.

C. Humanoid Fall Recovery

Classical model-based approaches plan stand-up motions
after a fall [5], [27], [38], [39], but they generalize poorly and
are sensitive to disturbances. Learning-based methods im-
prove robustness: Some imitate predefined trajectories [13],
[17], [40], while others train policies from scratch [8], [9],
[41]. Although these works broaden the range of recover-
able postures, resulting motions often remain unnatural and
fragile. A recent quadruped study jointly addressed falling
and recovery [4], but no prior humanoid work unifies fall
mitigation and prompt recovery. Our work closes this gap
by integrating all into a single policy.

D. Diffusion Models in Robotics

Diffusion models have recently been adopted for control
and planning by casting policy learning as conditional gen-
erative modeling [14], [42], [43]. Building on these foun-
dations, legged-robot studies learn multi-skill policies from



offline data and deploy them online. For example, Diffuse-
Loco achieves robust zero-shot transfer for quadruped loco-
motion [44], while preference alignment and test-time guid-
ance improve robustness in out-of-distribution states [45].
Hybrid approaches embed MPC for constraint satisfaction
and safety [46], [47]. Our work leverages diffusion to encode
a multi-modal memory of safe fall-and-rise behaviors.

III. PROBLEM FORMULATION

We study the problem of fall damage mitigation and
recovery for humanoid robots in unstructured environments,
formulated as a dynamic process that begins with a destabi-
lizing disturbance to fall and ends once the robot regains a
stable upright pose above a target height. This process inher-
ently involves two levels: 1) damage mitigation (minimizing
impact during the fall), and 2) recovery (standing back up)—
but unlike prior works, we do not separate them; instead, we
learn the coupled process directly. At each timestep f, we
perceive the robot proprioception information to feed into
the policy to output action @, € R?*, which are offset applied
to the robot’s nominal joint configuration g%, By learning
this unified dynamic process, a single policy can be directly
applied to three tasks: fall mitigation only, recovery only, and
the full coupled problem, without task-specific retraining.

IV. METHOD

We present FIRM, (short for fall mitigation and recovery
from a few human demonstrations), a control policy for the
diverse, complex dynamics of humanoid falling and recovery
(Fig. 2). FIRM unifies fall mitigation and recovery in a single
framework that balances safety and behavioral adaptiveness.
It operates in two stages. 1) Skill priors (Sec. IV-A): a few
human demonstrations are fitted and retargeted to the Gl
humanoid, then sparsified into key frames (Fig. 2a). These
seed skills are expanded with RL-based augmentation and
post-stitching (Fig. 2b) to produce diverse, damage-reducing
trajectories. 2) Adaptive memory (Sec. [V-B): the enriched
trajectories are distilled into a diffusion model and paired
with a lightweight adapter (Fig. 2c) that enables real-time
fall mitigation and recovery across varied conditions.

A. Learning Fall-and-Recover Skill Priors

1) Collecting Seed safe skill via Retargeting Human
Videos: We expect the task controller to prioritize safety
during falling and recovery, which requires safe motion
patterns. Since such patterns are difficult to engineer man-
ually, we utilize human demonstrations, which naturally
encode safety-critical behaviors. However, current large-scale
MoCap datasets like AMASS [48] lack realistic fall-recovery
motions. To address this gap, we collect a small number
of monocular human video demonstrations, and process
them through fitting to SMPL [49] and retargeting to the
G1 humanoid. In total, we use 5(2 :2: 1) high-quality
trajectories covering forward, sideways, and backward fall-
recover processes on flat ground, collected from subjects of
different genders and heights to provide variety in motion
styles.

While the data volume of demonstrations is small in scale,
its quality and targeted varieties are crucial, as they provide
sufficient prototypes for our later designs to compose and
expand upon. Each trajectory includes the information of all
joint positions g;, rigid body poses relative to root 7j, and
root poses Tioo retargetted to G1 robot. To obtain velocities,
we further calculate joint velocities ¢;, rigid body twists
relative to root Vj,,, and root twist Voo using finite difference.

2) Expanding Priors via Sparse-key-frame Augmentation
Policy Learning: Unlike conventional motion-tracking tasks,
directly fitting recorded trajectories is insufficient for motions
involving rich contacts and lacks adaptability to different en-
vironments. Furthermore, strategies for fall damage reduction
and recovery may differ between humans and robots due to
differences in morphology and actuation. To address these
issues, we formulate the prior learning problem as a sparse
key-frame tracking task in a goal-conditioned RL learning
form, which can provide safety-critical posture anchors while
leaving flexibility for the RL policy to explore and optimize
its behaviors according to the robot’s own dynamics.

The goal of this stage is thus to track a sequence of

sparse key-frames, reach a final standing configuration, and
minimize fall damage throughout the process. We formulate
it as a finite-horizon control problem with horizon H = 10s,
deliberately chosen to exceed the length of any collected
demonstration, so that the robot must not only follow the
motion but also maintain a stable standing posture after-
wards. Formally, we define a sparse trajectory as & =
{P1,Ps,...,Py,Psand}, Where each frame P, is represented by
P, = {Qi,m Gins Thins Trootns Viins ‘/I‘OO'[Jl}y with joint states
(9in»qin), root and link poses (Tioot,n; T,.n), and correspond-
ing twists (Vroot,n; Vi, n), sampled at a fixed frequency f. The
control objective requires the robot to reach each successive
key-frame P, within the interval [t,,f,+1], and finally
hold the standing frame Py,nq until the episode terminates.
For each trajectory, we train a corresponding augmentation
policy. The training details are outlined as follows.
State Initialization and Rollout. At the beginning of each
episode, we randomly pick a frame Py from the dense trajec-
tory, and copy all the joint and root information to initialize
the robot’s state, while using only sparse key-frames for
motion tracking. To simulate diverse fall conditions, we then
randomize the base and joint states slightly and disable the
actuators for a random duration t ~ % (0.04,1.0) s, allowing
the robot to enter free fall before regaining control.

As the control and video frequency are not the same, we
linearly interpolate all the information for the time between
two frames. The final standing pose is set to be G1 robot’s
default pose with root height at 0.8m. The height is slightly
higher than the robot’s actual standing height of ~ 0.728 m.
This margin encourages the policy to stand more upright
and avoid slouched postures during recovery. We keep the
root yaw of the last frame the same as the trajectory’s end,
avoiding unnecessary rotation to a world-neutral orientation.
Since retargeted trajectories may drift in root position, oc-
casionally placing the robot above or below the ground, we
preprocess each frame using forward kinematics and shift
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stitching, distills enriched behaviors into a diffusion-based action memory, and composes online adapter to execute actions with context-awareness.

the root height by the lowest Z-coordinate among all rigid
bodies, followed by a 0.05m offset to ensure clearance. This
adjustment does not introduce harmful discontinuities, as
the policy only follows sparse key-frames rather than dense
trajectories, and in fact improves exploration between frames.
Policy Optimization. We optimize our policy using an
asymmetric actor-critic framework with PPO [13], [17]. In
this design, the critic has access to privileged information
from the simulator that is unavailable to the actor and real-
world setting. The actor’s observation space consists of: 1)
root angular velocity ., 2) joint position and velocities
q,4, 3) last actions a,_1, 4) joint position difference with
respect to next key frame g — g, and 5) phase ¢. The
critic network additionally observes root linear velocity v,e-
The phase ¢ is calculated by dividing the current runtime ¢
by the total length of the trajectory in time 7 and clipped
to 1 for any time steps exceeding the trajectory length:
¢ =min(z/T,1).

Domain Randomization. To further enhance the robustness
of our policy and for later sim-to-real deployment, we
followed previous works [8] to adopt domain randomiza-
tion during our policy training. We randomize the friction
(% (0.25,1.75)), payload (% (—1,1)), and gains for each
joint (p-gain:% (0.9,1.1), D-gain: %(0.9,1.1)), and ran-
domly push the robots. We trained our robots on rough
terrains to make our policy more robust in various environ-
ments. Observation noise is also added in simulation.
Episode Termination. As this task is contact-rich, we do
not terminate episodes upon collisions, except when joint or
root velocity limits are exceeded. In many locomotion tasks,
episodes are typically terminated when the base height drops
below a threshold or when collisions occur, to ensure the
robot remains in valid poses. These criteria are unsuitable

here, since our setting explicitly requires the robot to fall to
the ground and recover. Likewise, motion-tracking tasks [22]
often use termination based on deviations from reference
trajectories; however, because we only track very sparse key-
frames and aim to encourage exploration between them, this
signal is also inappropriate. Therefore, our episode termina-
tion is kept minimal, while safety and stability are instead
encouraged through the reward design described below.
Rewards. We formulate our rewards design mainly in 3 cate-
gories: 1) Tracking rewards: These are main task rewards that
track the difference between the current robot states and key-
frame robot states, including joint positions and velocities,
and rigid body poses and twists. Different from the trajectory
information, where rigid body poses and twists are in local
frame with respect to the robot root, here we calculate these
quantities in world frame, which seamlessly integrates the
tracking of root poses and twists as well. We calculate the
reward using the function h(d;c) = exp(—d?/o). 2) Style
rewards: To penalize harmful and un-natural behaviors, we
add this set of rewards to constrain on action rate, joint
acceleration, torque values and out-of-limit joint behaviors.
3) Fall damage reduction rewards: In order to mitigate the
damage when falling on the ground, we add penalizing
rewards on body collision, momentum change, and body
yank as described in [4]. The scale and exact definition of the
rewards can be found in Table I. In contrast to conventional
fall recovery methods, our policy can utilize the safe motion
pattern priors from human demonstrations to constrain fall
recovery learning without complicated reward designs.

3) Post trajectory stitching scheme: In real-world scenar-
ios, losing balance does not always lead to a complete fall, as
humans often adjust themselves and quickly regain stability.
However, our human demonstrations only cover trajectories



TABLE I
REWARD TERMS SUMMARY FOR PRIOR LEARNING. TRACKING / STYLE
/ FALL-DAMAGE REDUCTION REWARDS.

Reward Term ‘ Definition ‘ Scale
Rigid body position tracking ():B wa (T — T3 w) ;G) 1.25
Rigid body rotation tracking h(Lp(Rpw—Rpw)?:0) 0.5
Rigid body linear velocity tracking h(Xs(vByw — PBw)% 0) 0.125
Rigid body angular velocity tracking | h(Yp(wpw a)g )P @) 0.125
Joint position tracking h(X;(q;— q] ;0) 0.5
Joint velocity tracking ():j qj— q] H ) 0.125
Joint position limit Y,;max(0,|q; — l,“““\) —10
Joint velocity limit Y max(0,|g; 7411-1"‘“\) -5
Action rate Y.(alf] —aft —1])? —le™3
Torques X, 17]2 —1e°
Acceleration rj q% —2.5¢77
Body collision Yl Asl? —le’
Momentum change Y zllmpag|| —5¢73
Body yank Yl F3l% —2¢76

where a fall actually occurs. Training and expanding solely
on such data would cause the robot to treat any minor imbal-
ance as a full fall, leading to overly conservative while risky
behavior. To address this, we propose to reuses demonstration
trajectories with shortcuts, to generate alternative balance-
preserving rollouts. The assumption behind this is that the
robots can regain balance under a range of perturbations as
long as a suitable reference key-frame can be found and
to be used as the anchor, i.e., it corresponds to a feasible
intermediate state observed in recovery phases. Therefore,
instead of explicitly training the policy on every such near-
balance trajectory, we construct them via stitching and allow
the robot to follow these recomposed trajectories at test
time. Concretely, for a randomly selected ¢ < 7y (with fy set
to around one third of the trajectory length), we create a
shortcut to a later key-frame ¢/, selected from the second
half of the trajectory, whose root height A, is closest to
the root height 5, and satisfies a clearance threshold of
0.05m. The policy is then re-executed from s; toward this
new goal at ¢/, producing a stitched, new trajectory: G"" =
{(50,a0); -, (st,a¢), (S a4), ..., }. This procedure allows tra-
jectories to be recomposed beyond their original temporal
order, encouraging the policy to connect more arbitrary
trajectory states with later recovery strategies.

B. Adaptive Memory Learning

1) Distilling Priors via Diffusion Model: We use the
expert policies and the post trajectory stitching scheme to
collect 4.5 million trajectory data pairs in the form of
(0,g,a), where o denotes observations, g represents reference
sparse key-frames as goals, and a are the corresponding
actions. We expect to distill these diverse trajectories into
a single policy. Since the distribution of these pairs is
inherently multi-modal, directly fitting a unimodal policy
would collapse diverse strategies into averaged behaviors,
leading to unnatural motions and degraded safety. To pre-
serve this multi-modality and further encourage variation,
we adopt a diffusion policy [44] as a generative prior over
trajectories. We keep a history of observations and goals
to predict the next H = 12 horizon of the actions, while

only take the first action during inference time. By learning
future steps of actions, the model can learn better transitions
and relationship within histories of observations, and help
predict the next-step action. Each observation and goals are
embedded, with positional embedding and diffusion timestep
embedding as well. A causal mask is used for attention
computation, which means that action a, in the horizon can
only have access to the information up to time at # — 1.

2) Adaptive Goal Mapping: During training, key-frame
goals are given and fixed according to the trajectories.
However, in test time, the model cannot have access to
which trajectory it needs to follow. Also, fixing goal se-
quences according to existing trajectories is not optimal
especially in an environment that is different from training.
To overcome this limitation, we introduce an online adapter
as an MLP that dynamically adjusts key-frame conditions
according to the current and past observations. This adapter
will use a fixed-length history of observations to predict
a feature vector which lies in the embedded space of the
goal condition in diffusion models, as illustrated in Fig. 3.
We performed normalization on this embedded space to
make it a unit sphere. A key-frame feature codebook .7 =
{fer: fers- s feu b with || fg;ll2 =1, is pre-constructed from
the augmented key-frames by passing into the fixed goal
condition encoder in the diffusion model, where each entry
stores the encoded feature fej-

During inference, for every 5 steps of action, the adapter
will predict a feature given the observations, and retrieve the
most relevant feature f, in the key-frame feature codebook

T

by cosine similarity: j* = argmax; %,with fe=
fgj*. By combining feature similarity with a normalized
codebook on unit sphere, we ensure scale-invariant matching,
preventing large feature norms from dominating and biasing
reference selection. The selected feature f, is then provided
to the diffusion policy, replacing the static trajectory input
with a context-aware reference. This retrieval process ensures
that policy conditions adapt in real time to robot’s state, while
preserving safety through grounding in human priors.

V. EXPERIMENTS
A. Experimental Settings

Implementations. We trained our first-phase sparse-
keyframe policy in IsaacGym [50]. The actor and critic
network is a 2-layer MLP with hidden layer dimension
[512, 256]. We trained in parallel with 4096 environments
on Nvidia 4090 GPU for 5000 iterations per policy, which
takes around 5 hours. We train our diffusion model for 1000
epochs, which takes around 40 hours on a single GPU of
Nvidia A40. The robot we deploy on is 23-dof Unitree GI.
Metrics. We evaluate models based on three core criteria
with levels of granularity: goal completeness, safeness, and
efficiency. 1) For fall damage mitigation, we follow the
evaluation criteria in [4], focusing on safeness with the
use of peak instantaneous impulse on the base (PII), mean
base acceleration (BA), and peak joint internal forces across
all joints (PIF). Since damage in heavy robots most often
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Fig. 3. Overview of online adapter. During inference, the adapter uses

the history of observations to dynamically predict a feature and match with
a key-frame goal feature in the code-book, and then pass the matched goal
feature into the diffusion model to guide the process with context-awareness.

arises from high-impact stresses resulting from impulsive
load transfer to the drives, higher values of these metrics
indicate greater risk of damage and lower safety. 2) For
fall recovery, we consider all three dimensions - a) Goal
Completeness: measured by the success rate (SR, %), i.e.,
the percentage of episodes where the robot’s base height
exceeds target height 0.7m and the robot remains upright
for a sustained duration; b) Safeness: measured by time-to-
fall (TTF, seconds), which evaluates stability based on how
long the robot can remain standing before another fall occurs.
¢) Efficiency: measured by the time-to-stand (TTS, seconds),
evaluating the duration required for the robot to return to
a stable height. Unless specified, simulated experiments are
conducted with 512 randomly spawned robots over 7.5s on
uneven terrains, with randomized initial fall configuration,
base mass, and noisy observations. Results are averaged over
5 runs to minimize random biases and verify robustness.

B. Fall Damage Mitigation

Settings. As current research does not directly support fall
damage mitigation on humanoid robot G1, we implement
three baselines to compare with FIRM: 1) freezing model,
where the robot output zero torque during falling, resulting
in a passive collapse; 2) dense keyframe tracking model,
where the robot follows dense keyframe references extracted
from demonstrations; and 3) sparse keyframe tracking policy,
where the robot follows sparse keyframe references extracted
from demonstrations with only tracking rewards. This com-
parison setup allows us to investigate several key factors
essential for fall damage mitigation: the passive vs active
control strategies, the function of human demonstration, and
the effect of adaptive memory for robust behaviors across
diverse falling conditions.

Results. We observed several key observations from Fig 4(a)
and Fig 4(b): 1) the freezing model yields the highest accel-
erations and joint forces, and its impulses are also the largest
with multiple peaks (exceeding 400N), indicating that purely
passive collapse exposes the robot to severe impact stresses;

Contact Force

Base Acceleration

Fig. 4. (a) Distribution of contact force on the base over all time steps.
Time steps with base contact impulse below 0.05Ns are not included. (b)
Base acceleration (BA) during the fall.
TABLE II

HUMANOID G1 ROBOT FALL RECOVERY RESULTS IN SIMULATED
ENVIRONMENTS. COMPARISON BETWEEN HoST [8] AND OURS ACROSS

THREE SCENES. N/A REFERS TO NO FAILURE CASES AS STANDING

FIRST AND FALLING LATER.

Terrain Method SRt TTFt TTS|
Flat HoST [8] 99.40 (059 0.06 (+0.12) 1.75 003
FIRM (Ours)  96.29 (+527) N/A 2.47 (+0.90)
HoST [8] 23.20 (+3.93) 1.87 (+128) 3.10 (1022
Uneven
FIRM (Ours)  93.20 (:2.59) 1.94 095 2.86 (-1.09)
HoST [8] 10.20 (1268 1.62 (+1.04 2.08 (-0.08)
Wave
FIRM (Ours) 55.86 (1249 1.89 (11.06) 2.37 (+1.12)

2) Sparse and dense keyframe tracking reduce impact forces
compared to freezing model, with ours full FIRM model
performing best in both base impulse and base acceleration.
The underlying cause is that guiding the robot to follow
human keyframes alone is brittle when the fall deviates
from demonstrated trajectories. In contrast, the augmentation
benefits from damage-reduction rewards, learning to emerge
energy-dissipating poses, refine contact timing and force
distribution beyond human priors, while online adaptation
adaptively provides a safe, target goal that suits for current
state to reference. Together, FIRM achieves smoother impact
absorption and reduced joint stress.

C. Fall Recovery

Settings. FIRM is our final policy (i.e., diffusion policy with
keyframe codebook aware adapter). We compare FIRM with
HoST [8], a recent SOTA method for humanoid standing-
up control. HoST learns standing-up motions from scratch
using RL with a multi-critic architecture and curriculum-
based training, where a separate policy is trained for each
terrain. We assess both methods from two perspectives: a)
robustness to external disturbances introduced by additional
payloads, and b) robustness to varying terrains. For fairness,
we re-implement HoST [8] using its official codebase and
evaluate it under same simulation setup as FIRM.

Results. Tab. II and Tab. III indicate several insights. For
flat terrain, our results are comparable to HoST across all
three metrics, and we observed in experiments that once
FIRM stands up on flat terrain, it does not fall again; there-
fore, the TTF is reported as N/A. For challenging terrains,
our performance substantially surpasses HoST. Specifically,



TABLE III
SUCCESS RATE UNDER DIFFERENT PAYLOAD MASSES.

Method 10kg 12kg 15kg 20kg

HoST [8] 78.40 (355 61.00 (-6.04) 35.60 (+4.67) 5.00 c+15%)

FIRM(Ours) 75.60 (+4.61) 72.61 (133 60.20 (-531) 21.20 +7.19
TABLE IV

ABLATION STUDY OF FALL DAMAGE REDUCTION & RECOVERY IN
SIMULATION. PEAK INTERNAL FORCE (PIF, N).

Damage Reduction Recovery (Overall)

Method

PIF| SRt TTFt TTS|
Dense Keyframe 42.38 (~18.85) 84.19 3960 1.51 0700 3.09 (+0.12)
Sparse Keyframe 41.87 (2100 89.20 192y 2.49 (117 2.98 (r0.08)
+ Augmentation Policy 41.01 1750 93.20 1259y 1.94 (1095) 2.86 (+1.09)
Diffusion w/o Adaptor 43.07 (-18.24) 92.32 z233 321 =102 2.99 =067
FIRM(Ours) 41.23 (=17.47) 94.10 =217 2.73 2142y 2.41 (=103)

]

Fig. 5. Motion behaviors under different payloads. As the white boxes
show, For 2 kg payload, the arms perform a “support—push” motion. For 12
kg, the robot’s arms make full contact with the ground, exhibiting a forceful
pushing action to lift the body. The orange arrow indicates torso orientation.

FIRM achieves significantly higher success rates (70% im-
provement on uneven terrain and 45% on wave terrain),
while also maintaining comparable TTS by one second
on average. Moreover, HoST often fails completely when
additional payloads are introduced, whereas FIRM maintains
stable recoveries with only minor degradation. These results
highlight that the adaptive keyframe memory and online
goal remapping in FIRM are critical for scaling recovery
behaviors beyond nominal training conditions.

D. Ablation Study

Settings. To analyze the contribution of each component in
FIRM, we conduct ablation studies on three simplified vari-
ants: 1) Sparse Keyframe, which directly tracks sparsely sam-
pled human keyframes with only tracking rewards; 2) Sparse
Keyframe + Augmentation Policy, which augments demon-
strations with RL and applies damage-reduction rewards; and
3) Diffusion w/o Adaptor, which distills multimodal fall-
recovery strategies into a diffusion model but lacks the adap-
tive observation-to-goal adaptor at inference. We compare
these variants against our full method (FIRM(Qurs)) under
identical simulation settings, evaluating both fall damage
reduction (PIF) and recovery performance (SR, TTE, TTS).
Test terrains include flat, uneven, wave, and rough; among
these, uneven terrain is included during training, while the
others are unseen test conditions.

Results. The ablation results are shown in Tab IV. It high-
lights the importance of each design choice in FIRM. Using
only human demonstrations provides a better baseline: the
robot learns safer fall behaviors compared with freezing, but
recovery success remains limited and brittle under out-of-

SAxmmwny )

‘Sudden Fall Fall Damage Mitigation with Dynamic Posture Adjusting Recovery from the Fall

Fig. 6. Reaction to sudden fall. After a sudden extra force, the robot try
to spread arms to avoid base collision and push arms and knees to recover.

distribution states. Incorporating reinforcement-based aug-
mentation rewards significantly reduces peak impact forces
and base accelerations, showing that contact timing and
redistribution can be optimized beyond human priors. How-
ever, without adaptive conditioning, recovery trajectories are
still restricted by the original demonstration modes. Finally,
equipping the policy with the adaptive keyframe memory
and online adapter yields the most substantial gains. By
dynamically remapping goals according to current states,
the adapter enables the diffusion policy to generalize across
terrains and payloads, achieving highest success rates with
smoother recoveries.

FIRM demonstrates superior ability to minimize impact
forces through context-aware adaptation and to generalize
robustly across diverse fall directions.

TABLE V
SUCCESS RATE (%) FOR REAL-WORLD FALL RECOVERY ON THE
UNITREE G1 ACROSS INDOOR TERRAINS (10 TRIALS EACH).

Terrain G1 Controller HoST [8] FIRM (Ours)
Flat Mat 10/10 1/10 10/10
Slippery Surface 7/10 0/10 8/10

E. More Robustness Analysis

We test FIRM under various settings to show its robust-
ness. Fig. 5 shows that under different payloads, FIRM
adjusts its motion behaviors accordingly. Additional real
world example can be seen at Fig. 8. With a sudden external
force making the robot fall inevitably, the robot can mitigate
falling and recover as seen in Fig. 6. Lastly, robot can regain
balance successfully if a fall can be avoided (Fig. 7).

F. Real-world Comparison

Settings. We compare our FIRM against following baselines
for fall recovery: 1) GI Controller, the default manufacturer-
provided recovery controller on the Unitree G1, which ex-
ecutes a hard-coded joint trajectory with PD stabilization;
and 2) HoST [8], the recent state-of-the-art learning-based
approach that trains standing-up policies from scratch using
RL. We evaluate all methods on two in-door test terrains:
a flat mat matrix and a slippery surface created by placing
plastic sheets over the mat, as we observe that even these
relatively simple conditions pose significant challenges to the
baselines. The evaluation metric is the success rate measured
over 10 trials for each method and terrain.

Results. From Fig. 9 and Tab. V, we observe that: 1) HoST
fails to consistently stand up across all terrains. From the
qualitative snapshots, we observe that the robot’s legs often
cross during the recovery motion under HoST policy, leading
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Fig. 7. Fall prevention. Under 0.5s of zero torque output (mimics a sudden power outage in real world), the robot rapidly initiates rebalancing response,

allowing the robot to maintain stability, thereby preventing a fall.

Add Starp-on Weights

Fig. 8.

Fall recovery with deformable payload on FIRM. The robot achieves robust fall recovery while carrying a 2.7 kg payload on both flat and

slippery terrains.As highlighted in the yellow boxes, the payload visibly swings and deforms, introducing additional disturbances and further demonstrating

the stability of our approach.

Fig. 9.

Comparison of fall recovery in real-world deployment. While
HoST [8] can barely stand, its leg movements are uncoordinated and the
motion pattern departs from human-like behavior; Once upright, it fails to
keep balance and quickly collapses. In comparison, our FIRM generates
smoother and more natural motions, the robot uses arms to assist in a
seamless fall-to-stand transition and sustain a stable posture after upright.

to instability and preventing the robot from achieving a stable
standing posture. 2) The G1 controller can stand up on both
terrains, but since it is equipped with only a single predefined
posture, it cannot generalize to diverse falling configurations.

G. More Real-World Results

We provide additional real-world experiments in the sup-
plementary video further to demonstrate the robustness of
FIRM across diverse conditions, and investigate its limits.
These include both indoor and outdoor terrains, variations in

payload, and scenarios requiring active balance maintenance.

VI. CONCLUSIONS

We present FIRM, the first learning framework that unifies
fall mitigation and recovery within a single humanoid con-
trol policy. FIRM explicitly balances safety and behavioral
diversity, embedding both throughout the learning process.
We highlight two key findings. 1) Safety can be grounded
in human priors - a few key human poses provide seeds for
safe falling and rising; 2) Generalization and adaptiveness
emerge from reinforcement-augmented priors, post-stitching
of trajectories, and an adaptive key-frame codebook memory,
enabling responsive recovery across diverse disturbances.
There remain two limitations. 1) FIRM depends on nearest-
neighbour matching in its key-frame codebook, which may
limit performance in highly out-of-distribution scenarios. 2)
It also relies solely on proprioceptive data and therefore
cannot yet exploit external cues from vision or tactile sensing
to enhance environmental awareness and contact safety.
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APPENDIX

In this appendix, we provide: 1) additional implementation
details (Sec. A); 2) benchmark details (Sec. B); 3) further ex-
perimental results and analysis (Sec. C); and 4) a discussion
on the broader impact/limitations/future work of our method
(Sec. D).

A. Implementation Details

Retargeting Human Videos. For each recorded human
motion video, we follow the pipeline of VideoMimic [51]
to retarget human motions onto the G1 humanoid. The
videos are captured in 4K at 60 fps and downsampled to
30 fps for processing. We found that the default config-
uration of VideoMimic often fails to preserve the spatial
relationships between body parts, leading to inconsistent
limb coordination and distorted postures. In particular, the
hip pitch and yaw joints frequently exhibit excessive rota-
tions exceeding 180°-360° relative to their neutral poses in
our scenarios. This limitation arises because VideoMimic is
primarily designed for low-contact motions (e.g., walking,
stepping, or sitting), whereas our sequences involve high-
contact dynamics with frequent impacts during falls and
recoveries. To mitigate this issue, we constrain the hip joint
angle limits within physically plausible ranges that improve
alignment between human and robot kinematics, resulting in
more natural and structurally consistent retargeted motions.

There are also alternative frameworks to choose from, such

as PHC [52], and OmniRetarget [53] efc., imposing different
physical constraints from different perspectives. However,
our goal is not to achieve perfect physical fidelity, but to
preserve the key motion intent in a physically reasonable
manner, as we go beyond pure imitation that lacks contextual
awareness, and instead use part of the retargeted motion
sequence as a sparse prior. Residual inaccuracies and adapta-
tion are then compensated through learning within the FIRM
framework.
Training Details. All human demonstration videos are
recorded on flat floors, while policy training for both stages
(i.e., skill priors, and adaptive memory learning) is trained
on uneven terrains with domain randomization.

For trajectory collection used in distilling priors via the
diffusion model, we record the following quantities: 1)
root angular velocity ., 2) joint position and velocities
q,q, 3) last actions a,_;. These quantities serve as the
observation states for the diffusion policy, while the goal is
represented by the joint positions of the corresponding target
keyframe. For diffusion policy, we followed the transformer-
based diffusion model as introduced in DiffuseLoco [44]
with several architectural modifications: we employ a two-
layer MLP to process the goal for enhancing its latent’s
representational capacity. The goal-state MLP consists of two
layers of 128 neurons each and outputs a 64-dimensional
latent embedding. To maintain representational consistency,
we use the same MLP in a Siamese manner to encode the
current joint positions, and compute the difference between
the goal-encoded and current-encoded latents. This Siamese
design mimics the joint-position-difference formulation used
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in our first-phase policy, allowing the diffusion model to
reason about relative motion progress in latent space rather
than relying solely on absolute joint configurations.

The online adapter is implemented as a three-layer 1D
convolutional network that processes the past 50 timesteps
along the temporal dimension. It predicts a latent represen-
tation mapped to the same feature space as the goal’s latent.
The kernel sizes and strides for the three convolutional layers
are [8, 4], [5, 1], and [5, 1], respectively. The output is
normalized to lie on the unit sphere to ensure consistent
feature magnitudes. The network is trained on the entire
dataset for 20 epochs using a cosine similarity loss to
optimize alignment between the predicted and target latents.

B. Benchmark Details

Test Environments. While all human demonstrations are
collected on flat floors, simulation training is performed on
uneven terrains generated using Perlin noise. We test our
approach in both simulation and real-world environments
to evaluate robustness and generalization. 1) In simulation,
we construct diverse terrains, including flat, uneven, wave
fields, and slopes. We also design a special scenario with
flat terrain and vertical walls to explicitly test fall-prevention
behaviors when the robot falls toward obstacles. 2) In real-
world experiments, we primarily test indoors with two levels
of variation: friction and unevenness. For friction variation,
we use different ground materials such as gym mats, plastic
films, and protective wraps to create surfaces ranging from
rough to slippery. For unevenness, we randomly scatter
obstacles such as plastic foams and wooden planks to form
irregular terrain patterns. Additionally, we evaluate outdoor
performance on soft grass, earthen slopes, and sandy grounds
resembling terrain on Mars, with varying inclines to assess
stability and adaptability under natural conditions.
Baselines. Since no existing methods directly address the
same task as ours, most of our comparisons are conducted
against ablated variants of our own model. For the fall-
recovery task specifically, we additionally compare against
the default G1 controller, and HoST [8] that trains its
policy purely through RL from scratch. We re-trained HoST
following the official open-source implementation across
multiple trials and observed notable discrepancies between
our reproduced results and those reported in their paper. This
issue was also discussed by other users as shown here. As
no further updates to the official code were available at the
time we did the project, we used this retrained model for
comparison. This outcome further highlights that learning
fall recovery purely from scratch via reinforcement learning
remains unstable and highly sensitive to reward design and
environmental variations.

C. More Results

Why Human Prior Need to Be Sparse? To analyze the
effect of keyframe density during Stage-1 skill prior learning,
we conduct an ablation study using different numbers of
keyframes per video. We also include a comparison with the
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First Attempt to Stand Up, Fail

Second Attempt to Stand Up, Success

Fig. 10. Re-stand after a failed trial. Instead of terminating upon a failed attempt, the online adapter dynamically re-evaluates the situation and identifies

a new intermediate goal to initiate a subsequent re-stand trial.

TABLE VI
ABLATION ON THE NUMBER OF KEYFRAMES. SR: SUCCESS RATE
(%), TTF: TIME-TO-FALL (S), TTS: TIME-TO-STEADY (S), PIF: PEAK
INTERNAL FORCE (N).

# Keyframes SRt TTF TTS| PIF|

Dense 84.19 (:396 1.51 070y 3.09 (r0.12) 42.38 (+18.35)
75 87.19 =257y 0.62 (+026) 3.02 =0.14) 41.98 (+18.34)
50 88.60 (+329) 2.92 w082y 2.95 (r0.13) 42.25 (+20.92)
25 89.20 192 2.49 r1.17) 2.98 w008y 41.87 +21.04)
10 86.40 =336y 2.16 +092) 3.33 (+0.18) 41.39 (2102

Dense keyframe setting, in which the policy follows inter-
polated motions between every frame, corresponding to an
infinite number of keyframes in our human demonstrations.
The test environments are kept identical to those described
in Sec. V-D. Each human demonstration lasts approximately
five seconds, and we evaluate keyframe frequencies of 15
Hz, 10 Hz, 5 Hz, and 2 Hz, respectively.

The results are shown in Tab VI. We observe that both
the success rate (SR) and time to stand (TTS) improve as
the number of keyframes decreases, but drop sharply when
the count falls below 25. This trend can be attributed to two
main factors: 1) the retargeted human demonstrations and
preprocessing are not perfectly accurate, making precise mo-
tion tracking across dense keyframes infeasible; and 2) dense
keyframe tracking lacks adaptability to terrain variations
that differ from the original capture conditions. Using fewer
keyframes allows the policy greater freedom to adapt its
motions to new terrains while maintaining overall trajectory
consistency. However, when the keyframe count becomes too
sparse, the robot struggles to infer appropriate intermediate
motions, leading to degraded performance. Thus, the human
prior should be sparse yet structured, providing sufficient
temporal relationship guidance while allowing flexibility for
environmental adaptation. Based on this trade-off, we adopt
25 keyframes as the default setting for our algorithm.

Supervised Finetuning, Naive Distillation (MLP), or Dif-
fusion? There are multiple ways to integrate different skills
or motion patterns into a unified policy. In this experiment,
we evaluate two other major approaches. The first is Super-
vised Finetuning, where we train a policy on one motion (mo-
tion 1), then sequentially fine-tune it on subsequent motions
(motion 2, motion 3, etc.). The second is Distilling, in which
several expert policies are trained independently on different

11

motions and subsequently distilled into a single policy using
DAgger [54]. To ensure a fair comparison, the distilled
policy network in Naive Distillation (MLP) shares the same
MLP architecture as all expert and fine-tuned policies. For
Supervised Finetuning, we train the initial motion for 5000
iterations and fine-tune on each subsequent motion for 3000
iterations. For Naive Distillation (MLP), we use DAgger to
train the unified policy for 3000 iterations. Additionally, we
include an Expert Policy baseline that employs the Sparse
Keyframe with Augmentation setup described in Sec. V-D.
TABLE VII
ABLATION ON THE APPROACH OF INTEGRATING MULTIPLE
MOTIONS. SR: SUCCESS RATE (%), TTF: TIME-TO-FALL (S), TTS:
TIME-TO-STEADY (S), PIF: PEAK INTERNAL FORCE (N).

# Keyframes SRT TTFt TTS| PIF|

Expert POliCy 93-20\ 2.59) 194 0.95) 2.86< 1.09) 41.01 (+17.80)
Supervised Finetuning 30.50 15200 0.93 x020) 3.90 (=1.12) 43.28 (+17.32)
Distilling MLP 76.18 (1523 1.45 rosn 3.41 09y 43.36 (11521
Diffusion w/o Adaptor 92.32 (:233 3.21 1.0 2.99 w067y 43.87 (+18.24)

The results can be seen from Tab VII. We observe that the
performance of Supervised Finetuning degrades significantly
compared to Policy Distillation (MLP). Sequential finetuning
leads to catastrophic forgetting, causing the policy to retain
only the most recently trained motion while losing earlier
ones. While for Distilling with MLP, the performance also
drops. We see that the model works well on relatively similar
motions, while performing worse on others, causing the over-
all results to decrease. As the lengths for different motions
are different, it is challenging for the phase term to capture
the correct next-step dynamics for each, and the simple
MLP architecture cannot effectively model the multimodal
nature of these motions. These observations highlight the
necessity of a diffusion-based approach, which can distill
motion priors across heterogeneous demonstrations while
preserving multimodality.

The Importance of Online Adapter. Online adaptation is
crucial for a diffusion model to adapt in a dynamic envi-
ronment where predefined motion sequences are infeasible.
Rather than relying on a fixed trajectory, the online adapter
serves as a motion planner that allows the robot to adjust
its behavior according to the current state and surroundings.
One significant outcome of our online adapter is the ability to
re-stand from a previously “failed" sequence, demonstrating
improved contextual awareness and adaptability. An example
of such re-standing behavior is illustrated in Fig 10.



Fig. 11.
and avoid falling.

—

Balance

Fall prevention against wall. Upon a sudden push toward the wall, the robot adapts to the contact, using it as support to stabilize its posture

Balance

Fig. 12. Fall prevention against slope. Similar to the wall scenario, the robot adapts to the slope contact to prevent a full fall, and leverages the inclined
surface as external support to recover and subsequently stand upright with regained balance.

Additional Fall Prevention Results. Additionally, we test
the fall prevention performance against walls and slopes. Our
robot demonstrates the ability to adapt to previously unseen
environmental contacts, effectively leveraging surrounding
structures to support itself and regain balance. Results in
the simulation environment can be seen in Fig 11 and 12.

D. Discussion

FIRM goes beyond imitation learning or reinforcement
learning alone, providing a viable pipeline for leveraging
a small number of human demonstrations to solve com-
plex, contact-rich tasks that are otherwise difficult to model
through imitation or reward design to adapt in the dynamic
environments. By learning from sparse human demonstra-
tions, our framework can generate context-aware responses
in time through the online adapter, adjusting its next goal
to achieve stable task execution. Still, several limitations
and open challenges remain: 1) As the number of our
demonstrations is small and they are very iconic and dif-
ferent from each other, we rarely observe cases where the
robot combines the falling phase of one motion with the
early stage of recovery strategy of another sequence, more
near the end when adjusting its final standing pose. This
suggests that while our model achieves effective interpolation
within each sparse motion segment in the learned goal
feature space, the latent representations of different motion
sequences remain relatively disjoint, limiting cross-motion
composition. A promising direction for future work is to
dig into more primitive and compositional motion structures,
so that complex behaviors can emerge from more flexible
recombination of simpler motor elements. Such a representa-
tion would enable smoother transitions and motion blending
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between goal features, allowing the robot to dynamically
compose strategies across diverse situations under just a
few demonstrations. 2) Human priors should extend beyond
motion trajectories to include decision-making processes,
i.e., understanding why humans choose specific recovery
strategies under certain environmental conditions. Since our
current demonstrations are recorded only on flat terrains,
they involve limited decision complexity. Capturing first-
person visual perspectives from humans performing falls
across varied terrains could provide richer contextual cues,
allowing robots to learn both perceptual grounding and
adaptive decision-making in more dynamic environments.
Integrating such perceptual and cognitive priors represents
an exciting direction for future research.
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