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Unsupervised Whole Object Segmentation Remains Challenging Our Method: Co-segmentation on Image pairs + Distillation

Homogenous parts cluster naturally.
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The enemy of my enemy is my friend.

Graph Cut with Attraction and Repulsion
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Wholly Unsupervised! Segmenting Objects by Contrast and Context 52T EURAL INFORMATION
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1. CCG Outperforms SAM2 on Saliency Detect1on
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/3. Distilling to a single image model
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Co-segmentation Provides Richer Figure-ground Relationship

image pair patches

Joint A and R (two images)

co-segmentation
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2. CCG Surpasses Basellnes by 3-5% on Saliency Detection
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