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Our Method: Co-segmentation on Image pairs + Distillation 1. CCG Outperforms SAM2 on Saliency DetectionUnsupervised Whole Object Segmentation Remains Challenging
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Objects Emerge via Self-similarity and Contextual Contrast

Homogenous parts cluster naturally. The enemy of my enemy is my friend.

3. CCG Achieves a 4% Performance Gain on Object Discovery

4. CCG Generalizes well to Out-of-distribution Cell Images
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Single Image Segmentation with Attraction and Repulsion

CCG Outperforms Unsupervised Methods across Four Benchmarks 
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2. CCG Surpasses Baselines by 3-5% on Saliency Detection

SAM2 CCG-1 SAM2 CCG-1 CCG-1SAM2
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Table 1: CCG outperforms existing methods for unsupervised saliency detection task. In
the w/o. training setting, CCG outperforms the SoTA method TokenCut across all three datasets
(performance gap in blue). In the w/. training setting, with initial object masks by attraction and
repulsion, CCG surpasses the SoTA method HEAP (performance gap in green).

Saliency train? ViT ECSSD DUTS DUT-OMRON
maxFω IoU Acc. maxFω IoU Acc. maxFω IoU Acc.

FUIS → – 71.3 91.5 – 52.8 89.3 – 50.9 88.3
LOST → S/16 75.8 65.4 89.5 61.1 51.8 87.1 47.3 41.0 79.7
DSS → – – 73.3 – – 51.4 – – 56.7 –
TokenCut → S/16 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
CCG-1 → S/16 82.7 72.8 93.1 69.5 60.2 92.8 62.6 55.3 90.7

+2.4 +0.6 +1.3 +2.3 +2.6 +2.5 +2.6 +2.0 +2.7
CCG-2 → S/16 83.1 73.2 94.7 69.3 60.5 93.2 63.3 56.4 90.6

+2.8 +2.0 +2.9 +2.1 +2.9 +2.9 +3.3 +3.1 +2.6

SelfMask ↭ S/8 – 78.1 94.4 – 62.6 92.3 – 58.2 90.1
FOUND ↭ S/8 95.5 80.7 94.9 71.5 64.5 93.8 66.3 57.8 91.2
PEEKABOO ↭ S/8 95.3 79.8 94.6 86.0 64.3 93.9 80.4 57.5 91.5
HEAP ↭ S/8 93.0 81.1 94.5 75.7 64.4 94.0 69.0 59.6 92.0
CCG-1 ↭ S/8 94.1 83.6 95.2 78.0 65.9 94.6 70.7 60.8 93.5

+1.1 +2.5 +0.7 +2.3 +1.5 +0.6 +1.7 +1.2 +1.5
CCG-2 ↭ S/8 94.5 83.9 95.8 78.2 66.5 94.4 71.2 61.3 93.8

+1.5 +2.8 +1.3 +2.5 +2.1 +0.4 +2.2 +1.7 +1.8

with 1580 images (train/val/test split: 7373 / 1580 / 1580). We adopt three standard metrics: mean
intersection-over-union (mIoU) with a threshold set at 0.5, pixel accuracy (Acc), and the maximal Fω

score (maxFω), where ω2 is set to 0.3, in accordance with [55], [44], and [66].
Baselines. We consider without and with feature training settings. Without training, we compare CCG-
1 and CCG-2 directly against baselines such as FUIS [27], LOST [43], DSS [28], and TokenCut [55].
We also compare CCG-1 with SAM2 [35] on DUTS given bounding boxes as the prompts. With
training, we apply distillation from both CCG-1 and CCG-2, and benchmark against methods that
require network training: SelfMask [42], FOUND [44], PEEKABOO [67], and HEAP [66].
No-feature-training Results. Table 1 shows that both CCG-1 and CCG-2 outperform TokenCut
with ViT-S/16. TokenCut uses graph cut with attraction and thus discovers only discriminative
object parts, whereas CCG leverages both attraction and repulsion to discover whole objects. This
contrast demonstrates the utility of repulsion in popping out whole objects from unlabeled images.
Feature-training Results. CCG with distillation into single image features surpasses HEAP, current
state-of-the-art (SoTA), with ViT-S/8, confirming that distillation with initial object masks by
attraction and repulsion greatly refines whole object segmentation, reaching new SoTA (Fig. A6).
In both settings, CCG-2 outperforms CCG-1 overall, highlighting the benefits of co-segmentation:
Similar image pairs bring stronger contextual information for unsupervised whole object discovery.
Zero-Shot CCG-1 and SAM2 Results on DUTS. Since SAM2 [35] requires prompts for segmentation,
we provide ground-truth bounding boxes as prompts. However, since using ground-truth boxes
undermines the purpose of saliency detection, we gradually enlarge the box size until they cover
the entire image. To eliminate the object size e!ect, we only evaluate images with medium-sized
ground-truth boxes, where the length of the box diagonal is between 50-60% of the image diagonal.
For each box prompt, we feed the corresponding region to CCG-1 for fair comparison.
Fig. 6 shows that, even with ground-truth boxes, SAM2 often fails to segment whole objects. As
the box expands from tightly enclosing the object to covering the full image, SAM2 struggles to
consistently identify the salient object. We attribute this to increasing heterogeneity within the
prompted region. We measure heterogeneity as the standard deviation of the normalized L2 distance
between each patch feature and the mean feature within the box. The feature heterogeneity of the
boxed region grows with the box size, indicating that more complex regions hinder SAM2’s ability to
segment whole objects. In contrast, our method remains robust by leveraging both patch similarity
and contextual dissimilarity to discover complete objects even in heterogeneous regions.
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Figure 7: CCG-2 achieves stable and complete object segmentation across large scale and
viewpoint changes. For video frames of a moving car from the Davis dataset, TokenCut and
FOUND often drift toward background regions or capture only parts of the car, whereas CCG-2
consistently segments the entire car across frames, demonstrating the e!ectiveness of repulsion and
co-segmentation in robustly separating objects from similar backgrounds across object sizes.

Table 3: CCG is a strong unsupervised video object segmenter. In w/o. training setting, CCG
outperforms TokenCut (performance gap in blue). In w/. training setting, CCG-1 and CCG-2 surpass
VideoCutLER which relies solely on attraction for object discovery (performance gap in green). They
also achieve competitive results compared with models leveraging optical flows.

VOS train? use flow? DAVIS FBMS SegTV2
TokenCut → → 64.3 60.2 59.6
CCG-1 → → 66.4 62.5 61.2

+2.1 +2.3 +1.6
CCG-2 → → 67.9 64.1 62.1

+3.6 +3.9 +2.5
CIS ↭ ↭ 71.5 63.6 62.0
CMC ↭ ↭ 75.4 66.8 62.6
AMD ↭ → 45.7 28.7 42.9
VideoCutLER ↭ → 68.4 64.6 62.5
CCG-1 ↭ → 71.8 66.4 64.5

+3.4 +1.8 +2.0
CCG-2 ↭ → 72.4 67.9 66.1

+4.0 +3.3 +3.6
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Table 2: CCG-1 and CCG-2 outperform existing methods on unsupervised object discovery in
both w/o. training (performance gap in blue) and w/. training settings (performance gap in green).

Object
Discovery train? ViT VOC07 VOC12 COCO20K

DINO-seg → S/16 45.8 46.2 42.0
LOST → S/16 61.9 64.0 50.7
DSS → S/16 62.7 66.4 52.2
TokenCut → S/16 68.8 72.1 58.8
CCG-1 → S/16 71.4 73.8 60.3

+2.6 +1.7 +1.5
CCG-2 → S/16 72.3 73.7 61.7

+3.5 +1.6 +2.9

SelfMask ↭ S/8 72.3 75.3 62.7
FOUND ↭ S/8 72.5 76.1 62.9
PEEKABOO ↭ S/8 72.7 75.9 64.0
HEAP ↭ S/8 73.2 77.1 63.4
CCG-1 ↭ S/8 76.4 79.8 65.6

+3.2 +2.7 +2.2
CCG-2 ↭ S/8 77.7 80.8 66.2

+4.5 +3.7 +2.8

4.2 Unsupervised Object Discovery

Benchmarks. We use VOC07 [9] with 5011 images (train/val/test split: 3507 / 752 / 752), VOC12 [10]
with 11,540 images (train/val/test split: 8078 / 1731 / 1731), and COCO20K [50] with 19817 images
(train/val/test split: 13873 / 2972 / 2972). We follow [56, 7] and report the correct localization
(CorLoc) metric, which measures the percentage of images where objects are correctly localized.
Baselines. In w/o. learning, both CCG-1 and CCG-2 are tested without distillation and compared
against non-training approaches such as DINO-seg [5], DSS [28], LOST [43], and TokenCut [55]. In w/.
learning, we access the results of distillation from CCG-1 and CCG-2 against the training-dependent
methods SelfMask [42], FOUND [44], PEEKABOO [67], and HEAP [66].
Results. Table 2 shows that, in w/o. training, CCG-1 outperforms TokenCut by using repulsion.
CCG-2 further gains over CCG-1 with co-segmentation. In w/. training, both CCG-1 and CCG-2
outperform SoTA HEAP. Fig. 7 shows that CCG-2 produces stable and complete object masks across
scales, while TokenCut and FOUND yield partial or incorrect results that vary with object size.

4.3 Unsupervised Video Object Segmentation

Benchmarks. We use DAVIS [32] with 50 videos (train/val/test split: 30 / 10 / 10), FBMS [30] with
59 videos (train/val/test split: 25 / 9 / 30), and SegTV2 [19] with 14 videos (train/val/test split: 6 / 1 /
7). We follow [55, 60] and merge all moving objects into a single foreground mask for FBMS and
SegTV2. Performance is measured by Jaccard index, the IoU between prediction and ground truth.
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Baselines. Unsupervised video object segmentation methods include AMD [21], CIS [62], CMC [57],
and VideoCutLER [54]. Notably, VideoCutLER predicts object masks using only feature similarity
(attraction). TokenCut, though training-free, still requires optical flow as inputs.
Results. Table 3 shows that, in w/o learning, CCG-1 with attraction and repulsion outperforms
TokenCut. CCG-2 further boosts performance by cosegmenting adjacent frames, demonstrating CCG
as an e!ective zero-shot segmenter from unlabeled video without relying on optical flow.

4.4 Unsupervised Nuclei Segmentation

We apply CCG to unsupervised nuclei segmentation on PanNuke [11] with 7,904 H&E-stained
images (train/val/test split: 2,657 / 2,524 / 2,732). We compare against the SoTA UNSEG [18], which
uses Bayesian inference to model nuclei priors for segmentation. Performance is evaluated using
pixel accuracy, mIoU, and F1 score. Even without distillation, both CCG-1 and CCG-2 outperform
UNSEG by over 10%, demonstrating strong generalization from natural to medical images (Fig. 8).

image UNSEG CCG-2 GT

Unsupervised Nuclei Segmentation accuracy mIoU F1 score
UNSEG 43.6 41.4 48.2
CCG-1 58.3 (+14.7) 54.5 (+13.1) 57.9 (+9.7)
CCG-2 61.1 (+17.5) 56.9 (+15.5) 58.6 (+10.4)

Cell accuracy mIoU F1 score
UNSEG 43.6 41.4 48.2
CCG-1 58.3 (+14.7) 54.5 (+13.1) 57.9 (+9.7)
CCG-2 61.1 (+17.5) 56.9 (+15.5) 58.6 (+10.4)

Figure 8: Our CCG surpasses UNSEG by a large margin on unsupervised nuclei segmentation.
Top: Sample results. Bottom: Benchmark metrics. UNSEG [18] utilizes the prior distribution of
nuclei, whereas ours has no training. With repulsion, it pops out nuclei cells all at once.
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