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Abstract

We study unsupervised whole object segmentation - identifying complete objects,
including both distinctive and less salient parts, rather than only visually prominent
fragments. Existing unsupervised methods often focus on salient regions (e.g.,
head but not torso), leading to incomplete object masks. Our insight is that whole
objects emerge from the interplay of part-level similarity and contrastive context,
both within and across images. This enables the grouping of heterogeneous regions
into coherent object segments without any supervision or predefined templates.
We propose Contrastive Contextual Grouping (CCG) in a three-step algorithm:
1) identify semantically similar yet visually diverse image pairs; 2) perform co-
segmentation via joint graph cuts with contrastive part-context affinity; and 3) distill
the results into a single-image segmentation model. CCG achieves state-of-the-
art results across unsupervised saliency detection, object discovery, video object
segmentation, and nuclei segmentation. Remarkably, it could even surpass SAM2,
a supervised foundation model, at segmenting whole objects from box prompts.

1 Introduction

We consider segmenting whole objects from a collection of unlabeled images, without external
supervision. Unlike prior approaches that often highlight visually distinctive parts, our goal is to
recover whole objects, including less salient regions that are equally essential for coherent perception.
Despite progress, whole object segmentation is still challenging, even for supervised foundation
models [17, 35, 36]. For example, SAM2 [35] is trained on massive collections of annotated,
high-resolution images. Yet, even with perfect, tight object bounding box prompts, SAM2 often
delineates only visually salient parts (e.g., a dog’s brown fur, a peacock’s green train) rather than the
entire object (e.g., the whole dog, the whole peacock).
Unsupervised object segmentation in general has been widely explored, ranging from low-level
salient cues to high-level statistical clustering. Key developments include objectness [2], category-
independent object proposals [8], exemplar-based recognition through associations [26], multiscale
combinatorial grouping [3, 33], object discovery via matching [37, 49], unsupervised feature learning
[14, 16], slot attention [22, 38]. Some approaches leverage motion cues in unlabeled videos [63, 59, 21],
assuming pre-trained optical flow detectors or piece-wise constant object motion models.
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Figure 1: Unsupervised whole object segmentation is extremely challenging and our CCG
method excels. Col.1) Can we discover and segment whole objects in object-centric images? Col.2)
Even the latest, largest, extensively supervised model, SAM2 [35], with the right bounding box
prompt can only delineate visually salient parts (dog’s brown fur, peacock’s green train). Col.3)
Unsupervised methods such as TokenCut [55] rely on features unsupervisedly learned to optimize
certain image-level criteria, discovering only statistically distinctive parts (face/head). Col.4) Our
insight: Objects emerge as wholes through not only intrinsic part similarity, but also extrinsic context
contrast; our CCG discovers distinctive and unremarkable parts in a whole without supervision.

Unsupervised whole object segmentation has been explored earlier using matting or boundary cues
[45, 25] and, more recently, through feature similarity or attention maps [55, 28, 67, 44, 66] from
self-supervised models like DINO [5]. However, because these features are optimized for image-level
objectives, existing methods, e.g., TokenCut [55], tend to highlight only statistically distinctive parts,
rather than capturing the object as a whole.
A largely underexplored challenge in object segmentation is discovering whole objects that include both
distinctive and unremarkable parts. Existing methods primarily extract parts, whether visually salient,
as in supervised SAM models [17, 35, 36], or statistically distinctive, as in unsupervised TokenCut
[55]. While these approaches have advanced the field, they emphasize salient fragments over capturing
the object in its entirety. This gap is critical, as real-world applications and cognitive processes require
understanding objects as cohesive wholes, not merely collections of parts. Integrating both salient
and unremarkable regions into unified segmentations is the central goal of our work.
Our novel approach to whole object discovery shifts the focus from what the object is to how
it contrasts with its context. The key insight is that an object, even when composed of distinctive
parts, can emerge as a cohesive whole through both intrinsic similarity among its parts and extrinsic
contrast with its surroundings. This contextual relationship is crucial for binding diverse object parts
into a unified entity in a bottom-up, data-driven manner [1]. In Fig. 1, while the green peacock train
and blue peacock head have different textures, their colors starkly contrast with the gray background.
Echoing the adage “The enemy of my enemy is my friend”, the two distinctive parts become allies
through their shared contrast with the background, allowing the peacock to emerge as a unified whole.
For richer grouping relationships, we introduce a co-segmentation setting using semantically similar
yet visually different image pairs (Fig.2). These pairs can be derived from unlabeled data, such as
images or videos of the same scene, or by clustering self-supervised ViT features [5, 31, 6] that capture
semantic similarities. By leveraging co-segmentation, we gain additional contrastive and contextual
grouping cues across image pairs, enabling more robust and accurate whole object segmentation.
We present an unsupervised whole object segmentation algorithm based on Contrastive Contextual
Grouping. Our CCG operates in three steps: 1) Identify semantically similar yet visually distinctive
image pairs for co-segmentation. Identical images reduce the task to single-image segmentation, while
unrelated pairs hinder co-segmentation. 2) Perform co-segmentation via joint graph partitioning,
where patches are nodes and edges encode two types of pairwise relationships: feature similarity and
dissimilarity. The objective is not only to discover friends through similarity, but also to discover
allies through shared dissimilarity, enabling robust whole object discovery. 3) Distill co-segmentation
results into a single-image segmentation model, with a ViT backbone and lightweight segmentation
head, enabling efficient inference on individual images without requiring paired inputs. CCG achieves
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Figure 2: Our CCG benefits from co-segmenting semantically similar yet visually distinct image
pairs, identified without supervision. CCG-1 (2) denotes single(two)-image (co-)segmentation
results. Contexts and contrasts from paired images significantly enhance whole object discovery.

state-of-the-art performance on unsupervised saliency detection, object discovery, video object
segmentation, and nuclei segmentation.
Our work makes three major contributions. 1) We tackle the problem of unsupervised whole
object segmentation, addressing the underexplored challenge of discovering both salient/characteristic
and unremarkable parts in cohesive wholes. 2) We propose a novel, fully unsupervised framework
for bottom-up whole-object discovery, driven by data rather than labels. It operates via dual forces:
grouping by similarity and segregation by dissimilarity, enhanced by co-segmentation, feature
learning, and model distillation. 3) We achieve consistent, significant gains over prior unsupervised
methods across four benchmarks. CCG could even surpass the supervised foundation model SAM2
in segmenting whole objects given box prompts.

2 Related Work

Unsupervised Object Discovery. Most works leverage self-supervised features from visual trans-
formers [5, 6, 4]. TokenCut [55] constructs a weighted graph using feature similarities (attraction)
and performs graph cuts to separate objects from backgrounds. Unlike TokenCut, we introduce
pairwise attraction and repulsion in a joint weighted graph for co-segmentation, enabling whole
object localization and segmentation. SelfMask [42] clusters multiple self-supervised features to
extract object masks, while LOST [43] localizes object seeds and expands them to similar patches.
FreeSOLO [53] generates FreeMask predictions from feature similarities, and FOUND [44] uses
heuristics to search for background seeds. HEAP [66] employs contrastive learning for clustered
feature embeddings. PEEKABOO [67] localizes objects by hiding parts of images. However, these
methods are limited to discovering descriptive parts of objects. In contrast, our CCG uses pairwise
attraction and repulsion in co-segmentation to segment whole objects.
Unsupervised Video Object Segmentation. [62] proposes an adversarial-based method to predict
object masks from images and optical flow maps. [23] adopts co-attention layers based on siamese
networks for segmentation, requiring expensive training resources. [57] uses optical flow and
contrastive motion clustering to segment moving objects in videos. However, these methods rely
on externally supervised motion estimation networks [48, 46]. VideoCutLER [54] segments video
objects via graph cuts on attractions and refines masks through training. While AMD [21] jointly
learns segmentation and motion estimation end-to-end, its segment-wise constant motion assumption
is too simplistic to yield fine segmentations with both details and complete parts. In contrast, our
CCG , when trained on unlabeled videos, delivers more accurate whole-object segmentation.
Segmentation by Graph Cuts. Normalized cuts [40] frames segmentation as a graph partitioning
problem, optimizing similarity within partitions. [29] derives partitions using stacked eigenvectors
of the graph Laplacian matrix. [65] applies graph cuts to affinities of key, query, and value features
of ViTs, revealing visual semantics and spatial locations of segments. Earlier work [64] introduces
the role of repulsion for single-image segmentation based on fixed low-level features. [24] conduct
segmentation using graph neural networks. In contrast, CCG is the first to address unsupervised whole
object segmentation using data-driven learned features with co-segmentation and model distillation.
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Co-Segmentation. [13] leverages color histogram similarities to segment common objects from
similar image pairs. [20] employs a Siamese network to segment shared objects across image pairs.
[15] introduces a unified ViT framework for joint co-segmentation and co-detection. However, these
methods lack contextual relationship analysis and do not address whole object segmentation. In
contrast, our approach incorporates attraction and repulsion across a related image pair, enabling
whole object segmentation through contrastive contextual grouping.

3 Contrastive Contextual Grouping

We aim to discover and segment whole objects without supervision, based on intrinsic similarity
between parts and extrinsic contrast with their surroundings.

ViT 
encoder

2. Co-segmentation via pairwise attraction & repulsion

unlabeled images
videos

KNN
DINO 

or
CLIP

1. Identify 
image pairs

Taken 
from 
same 
scene

3. Distilling to a single image model

ViT 
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head
CE 
Loss

CR

Figure 3: Overview of our three-step CCG algorithm for unsupervised whole object discovery.
Step 1) Identify semantically similar yet visually different image pairs. For unlabeled videos, they
are simply consecutive video frames, whereas for unlabeled images, they are k-nearest neighbors in
some unsupervisedly learned feature space. Step 2) Co-segmentation based on pairwise similarity
(attraction) and dissimilarity (repulsion) of image patch features extracted from a self-supervised ViT
encoder. Step 3) Distill co-segmentation results to a single-image model with a ViT encoder and a
segmentation head, trained with cross-entropy (CE) and contrastive (CR) losses.

Our CCG has three steps (Fig 3): 1) identifying semantically similar yet visually different image pairs,
2) performing co-segmentation through joint graph cuts with pairwise attraction and repulsion, and 3)
distilling the results into a single-image segmentation model.
Primer: Graph Cuts with Attraction and Repulsion. We apply prior work [64] to a ViT patch
graph, where each node represents a square image patch used in ViT, and the edge between nodes i, j
is attached with an attraction weight Aij and a repulsion weight Rij , both derived from the cosine
similarity Sij between their ViT patch features Fi, Fj :

Sij =
< Fi,Fj >

∥Fi∥∥Fj∥
. (1)

The larger Sij , the larger the attraction Aij and the smaller the repulsion Rij . A and R are defined
as Gaussian functions of S (Fig.A1). Object segmentation is then formulated as a two-way node
partitioning problem. Let V denote the set of all patch nodes, and V1,V2 two disjoint subsets:
V1 ∪ V2 = V,V1 ∩ V2 = ∅. We seek an optimal partitioning with dual forces: Group by similarity
and segregate by dissimilarity. Given attraction A and repulsion R, we maximize the following:

ξAR=
within-group A

total degrees of A,R
+ω

between-group R

total degree of A,R
. (2)

ω is a hyperparameter weighing the relative importance between attraction and repulsion. Let pt be a
binary partition indicator for Vt. Let DA (DR) be a diagonal degree matrix with each diagonal entry

4



indicating total A (R) weights a patch node has. The objective becomes [64]:

maxξAR(p) =

2∑
t=1

pT
t Wpt

pT
t Dpt

, (3)

where W = A−R+DR, D = DA +DR. (4)

The optimum in the relaxed continuous domain is the largest eigenvector ẑ:

D−1Wz = λz. (5)

Please note that our CCG uses both A and R, whereas TokenCut [55] uses only A, a special case of
ours when ω=0. See more details in the Appendix A.1.
Bipartitioning imposes an important bottleneck: Each region must commit to one of two camps,
limiting grouping variability. 1) Strict attraction-based bipartitioning precludes indirect grouping,
which is essential for assembling whole objects composed of diverse parts. 2) Repulsion enables such
indirect grouping by aligning parts not because they are similar to each other, but because they are
dissimilar to the same background, reflecting "The enemy of my enemy is my friend”. Fig. 4 shows
that attraction alone may isolate a single homogeneous region, but it is repulsion that allows visually
distinct parts to emerge together as a coherent whole, without any preconception of object structure.

single image patches A TokenCut A &R CCG-1

Figure 4: Pop out whole objects by contrastive contextual grouping of patches within a single
image. Left: For visualization, we color code the patches of the image. Center: By attraction A
alone (values shaded in red, outlined in white boxes), object parts are too weakly similar to be grouped
as one; TokenCut [55] can thus only segment out the most distinctive part: lamp shade. Right: By
repulsion R (values shaded in blue, outlined in magenta boxes) in addition to attraction A, lamp
shade, lamp base are both dissimilar to the background and need to be separated from it; our CCG
can thus segment out the whole lamp and a similar item.

Now we detail the three steps of our algorithm.
Step 1. Identify Related Image Pairs. We adopt an image co-segmentation setting to facilitate
whole object discovery. Ideally, image pairs should be semantically similar yet visually distinct to
enhance within-group similarity and between-group dissimilarity, facilitating clearer figure-ground
segregation (Fig.2). Such pairs can be found in unlabeled data, e.g., from videos of the same scene or
by clustering self-supervised ViT features[5, 31, 6] that capture semantic similarity. Examples of
k-nearest neighbors from DINO as well as pre-trained CLIP features are shown in Fig. A5.
Step 2. Co-Segmentation by Attraction and Repulsion. We construct a joint graph with patches
from both images as nodes, compute attraction and repulsion as edge weights, and perform graph
cuts accordingly. The joint partitioning finds not only two regions within each image, but also region
correspondence across images. We follow TokenCut and select the foreground as the region with the
maximum absolute value of the eigenvector components. Note that if the two images are identical,
then the two-image co-segmentation based on attraction and repulsion within and across images is
reduced to the single-image segmentation based on within-image attraction and repulsion only. For
clarity, we denote the two-image and one-image cases as CCG-2 and CCG-1 respectively.
Fig. 5 shows that co-segmentation not only brings out two related whole objects, but also enhances
the whole object segmentation within individual images. Compared to the partial lamp set discovered
by CCG-1 in Fig. 4, the entire lamp set is now segmented out by CCG-2 .
Step 3. Distill to A Single-Image Segmentation Model. We distill co-segmentation results into a
single-image segmentation model with a ViT encoder (shared with DINO) and a lightweight head
composed of a 1×1 convolution followed by softmax. The model is trained using a combination of
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Figure 5: Pop out whole objects more accurately with co-segmentation. Image pairs are obtained
by unsupervised clustering, or simply videos of the same scene. A joint graph is constructed using
patches from both images. Patches are color-coded. To visualize the effects of attraction and repulsion,
we sort patches by foreground then background. Strong foreground-background repulsion (values
shaded in blue, outlined in magenta boxes) across these two images, strong attraction within foreground
and background respectively, help our CCG discover the whole lamp set and the whole vase together.

cross-entropy (CE) loss and contrastive (CR) loss [58, 47, 39, 52]:

LCE = −
∑

pixel i

yi log ŷi + (1− yi) log(1− ŷi) (6)

LCR = − 1

|P |
∑

(i,j)∈P

log
exp(

fi·fj
τ )∑

q∈Q(i) exp(
fi·fq
τ )

. (7)

The CE loss refines ViT features using the whole object masks. It collects the total pixel-wise CE
loss between the predicted probability map ŷ and its binary mask y from co-segmentation. Given
feature f extracted from the distillation ViT encoder, the CR loss aims to sharpen the mask by
reducing the feature distance between pixels within the same region and increasing the feature distance
between different regions. P is the set of positive (foreground-forground) pixel pairs, whereas Q(i) is
the set of negative (foreground-background) pixel pairs. τ is a temperature hyperparameter.
The three-step workflow (Fig. 3) can be made closed-loop by reusing the distilled ViT encoder as the
initial encoder. Empirically, the model converges quickly, with minimal gain from further iterations.

4 Experiments

Our CCG aims to discover and segment whole objects without any supervision. In our framework,
CCG-1 denotes the segmentation results from a single image, whereas CCG-2 represents the
segmentation results from an image pair (the co-segmentation setting). We evaluate CCG performance
and benefits in four tasks: 1) unsupervised saliency detection, 2) unsupervised object discovery, 3)
unsupervised video object segmentation, and 4) unsupervised nuclei segmentation.
Implementation Details. Our ViT encoder follows the same architecture as DINO ViT-S/8 during
the distillation stage. The segmentation head consists of a single conv 1× 1 layer. We train the ViT
encoder using the AdamW optimizer with a learning rate of 0.001, while the segmentation head is
optimized with AdamW at a learning rate of 0.05. Training is conducted over 300 epochs with a batch
size of 16, on 4 A40 NVIDIA GPUs. ω is set to 0.2. For video frame pair selection, we use a frame
interval of 10 to generate image pairs for co-segmentation See details in the Appendix A.2.

4.1 Unsupervised Saliency Detection

Benchmarks. We use three datasets: ECSSD [41] with 1000 images (train/val/test split: 700 / 150 /
150), DUT-OMRON [61] with 5186 images (train/val/test split: 3630 / 778 / 778), and DUTS [51]
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Table 1: CCG outperforms existing methods for unsupervised saliency detection task. In
the w/o. training setting, CCG outperforms the SoTA method TokenCut across all three datasets
(performance gap in blue). In the w/. training setting, with initial object masks by attraction and
repulsion, CCG surpasses the SoTA method HEAP (performance gap in green).

saliency train? ViT
ECSSD DUTS DUT-OMRON

maxFβ IoU Acc. maxFβ IoU Acc. maxFβ IoU Acc.

FUIS [27] × – 71.3 91.5 – 52.8 89.3 – 50.9 88.3
LOST [43] × S/16 75.8 65.4 89.5 61.1 51.8 87.1 47.3 41.0 79.7
DSS [28] × – – 73.3 – – 51.4 – – 56.7 –
TokenCut [55] × S/16 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
CCG-1 × S/16 82.7 72.8 93.1 69.5 60.2 92.8 62.6 55.3 90.7

+2.4 +0.6 +1.3 +2.3 +2.6 +2.5 +2.6 +2.0 +2.7
CCG-2 × S/16 83.1 73.2 94.7 69.3 60.5 93.2 63.3 56.4 90.6

+2.8 +2.0 +2.9 +2.1 +2.9 +2.9 +3.3 +3.1 +2.6

SelfMask [42] ✓ S/8 – 78.1 94.4 – 62.6 92.3 – 58.2 90.1
FOUND [44] ✓ S/8 95.5 80.7 94.9 71.5 64.5 93.8 66.3 57.8 91.2
PEEKABOO [67] ✓ S/8 95.3 79.8 94.6 86.0 64.3 93.9 80.4 57.5 91.5
HEAP [66] ✓ S/8 93.0 81.1 94.5 75.7 64.4 94.0 69.0 59.6 92.0
CCG-1 ✓ S/8 94.1 83.6 95.2 78.0 65.9 94.6 70.7 60.8 93.5

+1.1 +2.5 +0.7 +2.3 +1.5 +0.6 +1.7 +1.2 +1.5
CCG-2 ✓ S/8 94.5 83.9 95.8 78.2 66.5 94.4 71.2 61.3 93.8

+1.5 +2.8 +1.3 +2.5 +2.1 +0.4 +2.2 +1.7 +1.8

with 1580 images (train/val/test split: 7373 / 1580 / 1580). We adopt three standard metrics: mean
intersection-over-union (mIoU) with a threshold set at 0.5, pixel accuracy (Acc), and the maximal Fβ

score (maxFβ), where β2 is set to 0.3, in accordance with [55], [44], and [66].
Baselines. We consider without and with feature training settings. Without training, we compare CCG-
1 and CCG-2 directly against baselines such as FUIS [27], LOST [43], DSS [28], and TokenCut [55].
We also compare CCG-1 with SAM2 [35] on DUTS given bounding boxes as the prompts. With
training, we apply distillation from both CCG-1 and CCG-2, and benchmark against methods that
require network training: SelfMask [42], FOUND [44], PEEKABOO [67], and HEAP [66].
No-feature-training Results. Table 1 shows that both CCG-1 and CCG-2 outperform TokenCut
with ViT-S/16. TokenCut uses graph cut with attraction and thus discovers only discriminative
object parts, whereas CCG leverages both attraction and repulsion to discover whole objects. This
contrast demonstrates the utility of repulsion in popping out whole objects from unlabeled images.
Feature-training Results. CCG with distillation into single image features surpasses HEAP, current
state-of-the-art (SoTA), with ViT-S/8, confirming that distillation with initial object masks by
attraction and repulsion greatly refines whole object segmentation, reaching new SoTA (Fig. A6).
In both settings, CCG-2 outperforms CCG-1 overall, highlighting the benefits of co-segmentation:
Similar image pairs bring stronger contextual information for unsupervised whole object discovery.
Zero-Shot CCG-1 and SAM2 Results on DUTS. Since SAM2 [35] requires prompts for segmentation,
we provide ground-truth bounding boxes as prompts. However, since using ground-truth boxes
undermines the purpose of saliency detection, we gradually enlarge the box size until they cover
the entire image. To eliminate the object size effect, we only evaluate images with medium-sized
ground-truth boxes, where the length of the box diagonal is between 50-60% of the image diagonal.
For each box prompt, we feed the corresponding region to CCG-1 for fair comparison.
Fig. 6 shows that, even with ground-truth boxes, SAM2 often fails to segment whole objects. As
the box expands from tightly enclosing the object to covering the full image, SAM2 struggles to
consistently identify the salient object. We attribute this to increasing heterogeneity within the
prompted region. We measure heterogeneity as the standard deviation of the normalized L2 distance
between each patch feature and the mean feature within the box. The feature heterogeneity of the
boxed region grows with the box size, indicating that more complex regions hinder SAM2’s ability to
segment whole objects. In contrast, our method remains robust by leveraging both patch similarity
and contextual dissimilarity to discover complete objects even in heterogeneous regions.
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Truth

bounding box ratio (%) 50-60 60-70 70-80 80-90 90-100
SAM2 (mIoU) 84.0 76.0 46.3 15.3 1.7
CCG-1 (mIoU) 59.3 64.3 67.0 67.8 67.2
feature heterogeneity 0.151 0.172 0.192 0.205 0.212

Figure 6: CCG-1 outperforms SAM2 on DUTS segmentation on mid-size objects, especially
when the bounding box prompt becomes larger. Top: Sample results for three images (columns)
comparing SAM2 and CCG-1 across different sizes of the bounding box (rows). Our results are stable
and consistently closer to the ground-truth even when the box prompt covers the entire image, whereas
SAM2 falters. Bottom: Segmentation accuracies and feature heterogeneity within the bounding box
on DUTS images with mid-sized objects. When the box is tight, SAM2 is more accurate than CCG-1
(84% vs. 59.3%), but when it is loose, the performance drops quickly to the point of utter failure
(1.7%), whereas our CCG-1 maintains stable at (67%). The larger the bounding box, the greater the
feature variation, making repulsion essential for binding heterogeneous parts into a cohesive whole.

4.2 Unsupervised Object Discovery

Benchmarks. We use VOC07 [9] with 5011 images (train/val/test split: 3507 / 752 / 752), VOC12 [10]
with 11,540 images (train/val/test split: 8078 / 1731 / 1731), and COCO20K [50] with 19817 images
(train/val/test split: 13873 / 2972 / 2972). We follow [56, 7] and report the correct localization
(CorLoc) metric, which measures the percentage of images where objects are correctly localized.
Baselines. In w/o. learning, both CCG-1 and CCG-2 are tested without distillation and compared
against non-training approaches such as DINO-seg [5], DSS [28], LOST [43], and TokenCut [55]. In w/.
learning, we access the results of distillation from CCG-1 and CCG-2 against the training-dependent
methods SelfMask [42], FOUND [44], PEEKABOO [67], and HEAP [66].
Results. Table 2 shows that, in w/o. training, CCG-1 outperforms TokenCut by using repulsion.
CCG-2 further gains over CCG-1 with co-segmentation. In w/. training, both CCG-1 and CCG-2
outperform SoTA HEAP. Fig. 7 shows that CCG-2 produces stable and complete object masks across
scales, while TokenCut and FOUND yield partial or incorrect results that vary with object size.

4.3 Unsupervised Video Object Segmentation

Benchmarks. We use DAVIS [32] with 50 videos (train/val/test split: 30 / 10 / 10), FBMS [30] with
59 videos (train/val/test split: 25 / 9 / 30), and SegTV2 [19] with 14 videos (train/val/test split: 6 / 1 /
7). We follow [55, 60] and merge all moving objects into a single foreground mask for FBMS and
SegTV2. Performance is measured by Jaccard index, the IoU between prediction and ground truth.
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Table 2: CCG-1 and CCG-2 outperform existing methods on unsupervised object discovery in
both w/o. training (performance gap in blue) and w/. training settings (performance gap in green).

unsupervised object discovery train? ViT VOC07 VOC12 COCO20K
DINO-seg [5] × S/16 45.8 46.2 42.0
LOST [43] × S/16 61.9 64.0 50.7
DSS [28] × S/16 62.7 66.4 52.2
TokenCut [55] × S/16 68.8 72.1 58.8
CCG-1 × S/16 71.4 (+2.6) 73.8 (+1.7) 60.3 (+1.5)
CCG-2 × S/16 72.3 (+3.5) 73.7 (+1.6) 61.7 (+2.9)

SelfMask [42] ✓ S/8 72.3 75.3 62.7
FOUND [44] ✓ S/8 72.5 76.1 62.9
PEEKABOO [67] ✓ S/8 72.7 75.9 64.0
HEAP [66] ✓ S/8 73.2 77.1 63.4
CCG-1 ✓ S/8 76.4 (+3.2) 79.8 (+2.7) 65.6 (+2.2)
CCG-2 ✓ S/8 77.7 (+4.5) 80.8 (+3.7) 66.2 (+2.8)

input TokenCut FOUND CCG-2

Figure 7: CCG-2 achieves stable and complete object segmentation across large scale and
viewpoint changes. For video frames of a moving car from the Davis dataset, TokenCut and
FOUND often drift toward background regions or capture only parts of the car, whereas CCG-2
consistently segments the entire car across frames, demonstrating the effectiveness of repulsion and
co-segmentation in robustly separating objects from similar backgrounds across object sizes.

Table 3: CCG is a strong unsupervised video object segmenter. In w/o. training setting, CCG
outperforms TokenCut (performance gap in blue). In w/. training setting, CCG-1 and CCG-2 surpass
VideoCutLER which relies solely on attraction for object discovery (performance gap in green). They
also achieve competitive results compared with models leveraging optical flows.

unsupervised video object segmenter train? use flow? DAVIS FBMS SegTV2
TokenCut [55] × × 64.3 60.2 59.6
CCG-1 × × 66.4 (+2.1) 62.5 (+2.3) 61.2 (+1.6)
CCG-2 × × 67.9 (+3.6) 64.1 (+3.9) 62.1 (+2.5)

CIS [62] ✓ ✓ 71.5 63.6 62.0
CMC [57] ✓ ✓ 75.4 66.8 62.6
AMD [21] ✓ × 45.7 28.7 42.9
VideoCutLER [54] ✓ × 68.4 64.6 62.5
CCG-1 ✓ × 71.8 (+3.4) 66.4 (+1.8) 64.5 (+2.0)
CCG-2 ✓ × 72.4 (+4.0) 67.9 (+3.3) 66.1 (+3.6)
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Baselines. Unsupervised video object segmentation methods include AMD [21], CIS [62], CMC [57],
and VideoCutLER [54]. Notably, VideoCutLER predicts object masks using only feature similarity
(attraction). TokenCut, though training-free, still requires optical flow as inputs.
Results. Table 3 shows that, in w/o learning, CCG-1 with attraction and repulsion outperforms
TokenCut. CCG-2 further boosts performance by cosegmenting adjacent frames, demonstrating CCG
as an effective zero-shot segmenter from unlabeled video without relying on optical flow.

4.4 Unsupervised Nuclei Segmentation

We apply CCG to unsupervised nuclei segmentation on PanNuke [11] with 7,904 H&E-stained
images (train/val/test split: 2,657 / 2,524 / 2,732). We compare against the SoTA UNSEG [18], which
uses Bayesian inference to model nuclei priors for segmentation. Performance is evaluated using
pixel accuracy, mIoU, and F1 score. Even without distillation, both CCG-1 and CCG-2 outperform
UNSEG by over 10%, demonstrating strong generalization from natural to medical images (Fig. 8).

image UNSEG CCG-2 GT

unsupervised nuclei segmentation accuracy mIoU F1 score
UNSEG [18] 43.6 41.4 48.2
CCG-1 58.3 (+14.7) 54.5 (+13.1) 57.9 (+9.7)
CCG-2 61.1 (+17.5) 56.9 (+15.5) 58.6 (+10.4)

Figure 8: Our CCG surpasses UNSEG by a large margin on unsupervised nuclei segmentation.
Top: Sample results. Bottom: Benchmark metrics. UNSEG [18] utilizes the prior distribution of
nuclei, whereas ours has no training. With repulsion, it pops out nuclei cells all at once.

Summary. We formulate unsupervised whole-object segmentation as graph bi-partitioning driven by
both attraction and repulsion. By maximizing within-group coherence and between-group contrast,
co-segmenting related images to exploit richer contextual cues, and distilling co-segmentation into
single-image segmentation via self-training, our method discovers entire objects (both distinctive
and unremarkable parts) and outperforms prior approaches on object discovery, saliency detection,
and video segmentation. It offers insights into how complex visual scenes can be parsed without any
external supervision.
Limitation. Currently, our CCG performs binary co-segmentation on image pairs. It can be extended
to multi-way segmentation across a large image collection.

10



Acknowledgements
This project was supported, in part, by NSF 2215542, NSF 2313151, and Bosch gift funds to S. Yu at
UC Berkeley and the University of Michigan.

References
[1] Ralph Adolphs, Lauri Nummenmaa, Alexander Todorov, and James V Haxby. Data-driven approaches

in the investigation of social perception. Philosophical Transactions of the Royal Society B: Biological
Sciences, 371(1693):20150367, 2016.

[2] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the objectness of image windows.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2928–2935, 2010.

[3] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In
Computer Vision and Pattern Recognition, 2014.

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsu-
pervised learning of visual features by contrasting cluster assignments. Advances in neural information
processing systems, 33:9912–9924, 2020.

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9650–9660, 2021.

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

[7] Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce. Unsupervised object discovery and localization
in the wild: Part-based matching with bottom-up region proposals. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1201–1210, 2015.

[8] Ian Endres and Derek Hoiem. Category independent object proposals. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 575–588, 2010.

[9] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88:303–338, 2010.

[10] Mark Everingham and John Winn. The pascal visual object classes challenge 2012 (voc2012) development
kit. Pattern Anal. Stat. Model. Comput. Learn., Tech. Rep, 2007(1-45):5, 2012.

[11] Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benes, Simon Graham, Mostafa Jahanifar, Syed Ali
Khurram, Ayesha Azam, Katherine Hewitt, and Nasir Rajpoot. Pannuke dataset extension, insights and
baselines. arXiv preprint arXiv:2003.10778, 2020.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for image co-segmentation. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1943–1950.
IEEE, 2010.

[14] Tsung-Wei Ke, Jyh-Jing Hwang, Yunhui Guo, Xudong Wang, and Stella X. Yu. Unsupervised hierarchical
semantic segmentation with multiview cosegmentation and clustering transformers. In CVPR, New Orleans,
Louisiana, 19-24 June 2022.

[15] Tsung-Wei Ke, Jyh-Jing Hwang, Yunhui Guo, Xudong Wang, and Stella X Yu. Unsupervised hierarchical
semantic segmentation with multiview cosegmentation and clustering transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2571–2581, 2022.

[16] Tsung-Wei Ke, Sangwoo Mo, and Stella X. Yu. Learning hierarchical image segmentation for recognition
and by recognition. In ICLR, 2024.

[17] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4015–4026, 2023.

11



[18] Bogdan Kochetov, Phoenix D Bell, Paulo S Garcia, Akram S Shalaby, Rebecca Raphael, Benjamin Raymond,
Brian J Leibowitz, Karen Schoedel, Rhonda M Brand, Randall E Brand, et al. Unseg: unsupervised
segmentation of cells and their nuclei in complex tissue samples. Communications Biology, 7(1):1062,
2024.

[19] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M Rehg. Video segmentation by
tracking many figure-ground segments. In Proceedings of the IEEE international conference on computer
vision, pages 2192–2199, 2013.

[20] Weihao Li, Omid Hosseini Jafari, and Carsten Rother. Deep object co-segmentation. In Computer
Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018,
Revised Selected Papers, Part III 14, pages 638–653. Springer, 2019.

[21] Runtao Liu, Zhirong Wu, Stella Yu, and Stephen Lin. The emergence of objectness: Learning zero-shot
segmentation from videos. Advances in neural information processing systems, 34:13137–13152, 2021.

[22] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 11525–11538. Curran Associates, Inc., 2020.

[23] Xiankai Lu, Wenguan Wang, Jianbing Shen, David Crandall, and Jiebo Luo. Zero-shot video object
segmentation with co-attention siamese networks. IEEE transactions on pattern analysis and machine
intelligence, 44(4):2228–2242, 2020.

[24] Xiankai Lu, Wenguan Wang, Jianbing Shen, David J Crandall, and Luc Van Gool. Segmenting objects from
relational visual data. IEEE transactions on pattern analysis and machine intelligence, 44(11):7885–7897,
2021.

[25] Aiyesha Ma, Nilesh Patel, Mingkun Li, and Ishwar K Sethi. Confidence based active learning for
whole object image segmentation. In Multimedia Content Representation, Classification and Security:
International Workshop, MRCS 2006, Istanbul, Turkey, September 11-13, 2006. Proceedings, pages
753–760. Springer, 2006.

[26] Tomasz Malisiewicz and Alexei A Efros. Recognition by association via learning per-exemplar distances.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8,
2008.

[27] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Finding an unsupervised image
segmenter in each of your deep generative models. arXiv preprint arXiv:2105.08127, 2021.

[28] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Deep spectral methods: A
surprisingly strong baseline for unsupervised semantic segmentation and localization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8364–8375, 2022.

[29] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. Advances
in neural information processing systems, 14, 2001.

[30] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of moving objects by long term video analysis.
IEEE transactions on pattern analysis and machine intelligence, 36(6):1187–1200, 2013.

[31] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[32] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 724–732, 2016.

[33] J. Pont-Tuset, P. Arbeláez, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping for
image segmentation and object proposal generation. In arXiv:1503.00848, March 2015.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[35] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr,
Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images and videos.
arXiv preprint arXiv:2408.00714, 2024.

12



[36] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang
Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual tasks. arXiv
preprint arXiv:2401.14159, 2024.

[37] Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce Liu. Unsupervised joint object discovery and
segmentation in internet images. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June
2013.

[38] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann Simon-
Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco Locatello. Bridging
the gap to real-world object-centric learning. In The Eleventh International Conference on Learning
Representations, 2023.

[39] Jinhwan Seo, Wonho Bae, Danica J Sutherland, Junhyug Noh, and Daijin Kim. Object discovery via
contrastive learning for weakly supervised object detection. In European conference on computer vision,
pages 312–329. Springer, 2022.

[40] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence, 22(8):888–905, 2000.

[41] Jianping Shi, Qiong Yan, Li Xu, and Jiaya Jia. Hierarchical image saliency detection on extended cssd.
IEEE transactions on pattern analysis and machine intelligence, 38(4):717–729, 2015.

[42] Gyungin Shin, Samuel Albanie, and Weidi Xie. Unsupervised salient object detection with spectral cluster
voting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3971–3980, 2022.

[43] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez,
Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and no labels. arXiv
preprint arXiv:2109.14279, 2021.

[44] Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonín Vobeckỳ, Éloi Zablocki, and Patrick Pérez. Unsupervised
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: It accurately reflects our contribution to unsupervised whole object segmenta-
tion, using attraction and repulsion as binding power.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitation that our framework requires paired images. Never-
theless, this limitation can be properly handled in real-applications.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have introduced clear and substantial assumptions and proofs in our
methodology part.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed contents for reproducibility at the supplementary part.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: The datasets used in this paper are all publicly available. We plan to release
the code after the paper being reviewed.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details about settings are included in the experiment section in our
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The reported error bars are also included in the supplementary part (Fig. A4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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A Technical Appendices

A.1 Unsupervised Whole Objectness by Contrastive Contextual Grouping

Attraction and Repulsion. Given the similarity matrix S, attraction and repulsion matrices A and
R are defined as Gaussian functions of S (Fig.A1). Here we heuristically take σa=0.4. σr=0.3.
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Figure A1: We define attraction A and repulsion R as the Gaussian functions of pairwise feature
similarity S. The larger (smaller) the similarity, the larger the attraction (repulsion).

Segmentation by Only Attraction. Previous methods [55, 28] formulate unsupervised object
discovery as a graph partitioning problem and use normalized cut [40] to divide the graph into two
parts. Let CA(V1,V2) as total connections of attraction from V1 to V2:

∑
i∈V1,j∈V2

A(i, j). The
normalized cut is equivalent to maximizing the attraction within partitioned groups by

max ξA =

2∑
u=1

CA(Vu,Vu)

CA(Vu,V)
(8)

The features from self-supervised Visual Transformers present strong feature attraction in discrimina-
tive parts of objects. TokenCut [55] utilizes attraction for graph cut which can only segments out
characteristic local regions, not whole objects. An example of illustrating how TokenCut segment
object parts is in Fig. 4.
Segmentation by Attraction and Repulsion. Instead of using normalized cut by using only attraction,
we investigate whether attraction and repulsion can jointly contribute to pop out whole objects. Given
attraction A and repulsion R, we follow [64] and conduct a binary segmentation by using a unified
grouping criterion

max ξAR =
within-group A

total degree of A&R
+ ω

between-group R

total degree of A&R

=

2∑
u=1

CA(Vu,Vu)

CA(Vu,V) + CR(Vu,V)
+

CR(Vu,V\Vu)

CA(Vu,V) + CR(Vu,V)
,

(9)

where CR(V1,V2) represents total connections of repulsion from V1 to V2. It’s easy to discover that
ξAR is equivalent to ξA when the strength of repulsion R is not considered for grouping (we set up
ω = 0). Let DA,DR represent the diagonal degree matrix of A,R:

DA = diag(sum(A, dim = 1)),

DR = diag(sum(R, dim = 1)).
(10)

According to [64], the joint attraction and repulsion criterion is equivalent to

max ξAR(p) =

2∑
u=1

pT
uWpu

pT
uDpu

,

W = A−R+DR, D = DA +DR,

(11)
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where pu is a binary membership vector for Vu. The real valued solution to this partition problem is
finding the second largest eigenvector z∗ of the eigensystem

D−1Wz = λz. (12)

A comparison between the solution eigenvectors of our method and TokenCut (which uses only
attraction) is shown in Fig. A2.

Input EigVec (Ours) EigVec (TokenCut) Input EigVec (Ours) EigVec (TokenCut)

Figure A2: Comparison of eigenvectors from CCG-2 and TokenCut. We show a pair of input
images (left) and eigenvectors from our CCG-2 (middle) and TokenCut (right). Eigenvector
components are color coded where yellow represents larger values. We find the eigenvectors produced
by CCG-2 leveraging both attraction and repulsion across reference images highlight the entire body
of the dogs, whereas TokenCut using attraction isolates only the head regions.

Attraction and Repulsion within a Single Image. Given an unlabeled image x, we assume it
contains at least one object, and segment the whole objects by attraction and repulsion from x.
Attraction and Repulsion across an Image Pair. So far we consider attraction and repulsion within
a single image. It is straightforward to extend it to a co-segmentation setting, where two (or more)
related images need to be jointly segmented.

A.2 Implementation Details

We choose ViT-S/16 as the architecture for evaluation with the baselines in w/o. training setting
and ViT-S/8 to compare with the baselines in w/. training setting. To find semantically similar
but visually distinct images as image pairs, we extract the features from DINO (ViT-S/8) and run
k-nearest neighbors. It takes less than 1 hour to run k-nearest neighbors on 100,000 images as a
preprocessing step. To find video frame pairs, we use a frame interval of 10 to create reference
image pairs for co-segmentation: [(00.jpg, 10.jpg), (01.jpg, 11.jpg), (02.jpg, 12.jpg), · · · ]. Our ViT
encoder at the distillation stage takes the same architecture as DINO ViT-S/8. The segmentation
head contains a single conv 1 × 1 layer. During the distillation, our ViT encoder is trained using
AdamW optimizer with a learning rate of 0.001, and our segmentation head trained using AdamW
optimizer with a learning rate of 0.05. We set the batch size to 16 and have 300 training epochs. The
repulsion weight ω is set to 0.2. The segmentation head contains a single conv 1× 1 layer. During
the distillation process, we set the batch size to 16 and have 300 training epochs. The training is run
on 4 A40 NVIDIA GPUs. The repulsion weight ω is set to 0.2.

A.3 Ablation Study

Repulsion Weight. We analyze the effect of ω. Fig.A3 shows an ablation on unsupervised saliency
detection (ECSSD). When ω=0 (red line), CCG reduces to TokenCut[55]. Optimal performance–
measured by pixel accuracy, mean IoU, and maximal Fβ–occurs near ω=0.2. We adopt this setting
for all subsequent experiments, removing the need for per-task tuning.
Image Pair Discovery. We explore discovering similar image pairs from unlabeled data using
k-nearest neighbors on DINO, CLIP and ResNet-50 (ImageNet pre-trained) features. The results
evaluated on ECSSD, shown in Table A1, indicate that all three perform comparably. To minimize
dependence on additional models, we use DINO features for all main experiments. CLIP achieves
the best performance likely due to its supervised training on large-scale labeled data. Examples of
retrieved image pairs can be found in Fig. A5.
Video Frame Pair Discovery. CCG employs a pair of frames taken from the same video clip, which
may be captured at different timestamps. We examine how varying frame intervals affect unsupervised
video object segmentation, as illustrated in Fig. A4. When the frame interval is set to 0, CCG-2
becomes equivalent to CCG-1 , as the two reference images are identical. The best results are obtained
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Figure A3: The performance of CCG on unsupervised saliency detection on ECSSD dataset
with different values of repulsion weight ω. Overall, ω = 0.2 yields the best performance.

Table A1: Performance of CCG-2 using different features for pair discovery on ECSSD. Overall,
the results are comparable across feature types.

feature maxFβ IoU Acc.

DINO [5] 83.1 73.2 94.7
ResNet-50 [12] 83.4 74.2 95.6
CLIP [34] 83.8 73.8 95.8

with video frame intervals ranging from 8 to 18. Therefore, we set the frame interval to 10 for all
unsupervised video object segmentation experiments.

Table A2: Ablation of the number of Conv layers in the segmentation head used for distillation.
Our implementation uses a single Conv layer in all tasks.

seg. head maxFβ IoU Acc.

1 × Conv(1,1) 94.5 83.9 95.8
2 × Conv(1,1) 95.2 84.4 96.3
3 × Conv(1,1) 92.3 81.5 92.7
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Figure A4: Performance of CCG-2 on unsupervised video object segmentation with varying
frame intervals. Overall, the model performs best when the interval is between 8 and 18 frames.

Segmentation Head. We investigate the impact of distillation with different # of conv layers in the
segmentation head. Table A2 presents the results of various head designs. Performance improves
when using a 2×conv(1,1) configuration but degrades with a 3×conv(1,1) setup, suggesting a
trade-off between model complexity and effectiveness.
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CLIP DINO
image 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Figure A5: Examples of nearest-neighbor images retrieved using CLIP and DINO feature
distances. The leftmost column shows the query images, and the top-4 nearest neighbors retrieved by
each model are displayed to the right.

4



img pair TokenCut FOUND CCG-2 img pair TokenCut FOUND CCG-2

Figure A6: CCG-2 outperforms both TokenCut and FOUND on unsupervised saliency detection.
Here we show four pairs of input images and their corresponding segmentation results. With the
aid of repulsion, CCG-2 successfully segments whole foreground objects, whereas TokenCut and
FOUND capture only statistically distinctive parts.
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