
Compact and Optimal Deep Learning with Recurrent Parameter Generators

Jiayun Wang* 1 Yubei Chen∗ 2 Stella X. Yu1 Brian Cheung4 Yann LeCun2,3

1UC Berkeley / ICSI 2Facebook AI Research 3New York University 4MIT CSAIL & BCS
{peterwg,stellayu}@berkeley.edu {yubeic,yann}@fb.com cheungb@mit.edu

Abstract

Deep learning has achieved tremendous success by train-
ing increasingly large models, which are then compressed
for practical deployment. We propose a drastically different
approach to compact and optimal deep learning: We decou-
ple the Degrees of freedom (DoF) and the actual number of
parameters of a model, optimize a small DoF with predefined
random linear constraints for a large model of an arbitrary
architecture, in one-stage end-to-end learning.

Specifically, we create a recurrent parameter generator
(RPG), which repeatedly fetches parameters from a ring and
unpacks them onto a large model with random permutation
and sign flipping to promote parameter decorrelation. We
show that gradient descent can automatically find the best
model under constraints with in fact faster convergence.

Our extensive experimentation reveals a log-linear re-
lationship between model DoF and accuracy. Our RPG
demonstrates remarkable DoF reduction, and can be further
pruned and quantized for additional run-time performance
gain. For example, in terms of top-1 accuracy on ImageNet,
RPG achieves 96% of ResNet18’s performance with only
18% DoF (the equivalent of one convolutional layer) and
52% of ResNet34’s performance with only 0.25% DoF! Our
work shows significant potential of constrained neural opti-
mization in compact and optimal deep learning.

1. Introduction
Deep neural networks as general optimization tools have

achieved great success with increasingly more training data,
deeper and larger neural networks: A recently developed
NLP model, GPT-3 [8], has astonishing 175 billion parame-
ters! While the model performance generally scales with the
number of parameters [29], with parameters outnumbering
training data, the model is significantly over-parameterized.

Many approaches have been proposed to remove redun-
dancy in trained large models: neural network pruning

*indicates equal contribution.

c) Linearly constrained neural optimization

d) Log-linear DoF-accuracy relationship e) RPG outperforms other methods

large model

small
model

compress

a) Existing method

small
model

large model

unpack

b) Our method (RPG)
↑

Res34-vanilla

←Res18-vanilla

2x smaller

Knapsack
TAS

PruneNet

FPGM

SFP
LCCL

RPG

Figure 1: We propose a novel approach to compact and optimal
deep learning by decoupling model DoF and model parameters.
a) Existing methods first finds the optimal in a large model space
and then compress it for practical deployment. b) We propose to
start with a small (DoF) model of free parameters, use recurrent
parameter generator (RPG) to unpack them onto a large model with
predefined random linear projections. c) Gradient descent finds
the optimal model of a small DoF under these linear constraints
with faster converge than training the large unpacked model itself
(Fig.5b). If the DoF is too small, the optimal large model may fall
out of the constrained subpsace. However, at a sufficiently large
DoF, RPG gets rid of redundancy and often finds a model with
little loss in accuracy. d) RPG reveals a log-linear relationship
between model DoF and accuracy. e) RPG achieves the same
ImageNet accuracy with half of the ResNet-vanilla DoF. RPG also
outperforms other state-of-the-art compression approaches.

[39, 23, 42], efficient network design spaces [30, 33, 51], pa-
rameter regularization [59, 60, 52, 47], model quantization
[31, 50, 43], neural architecture search [70, 10, 58], recur-
rent models [4, 5, 62], multi-task feature encoding [49, 24],
etc. Pruning-based model compression dates back to the late
80s [45, 39] and has enjoyed recent resurgence [23, 7]. They
remove unimportant parameters from a pre-trained model
and can achieve significant model compression.

Our work is a departure from mainstream approaches
towards model optimization and parameter reduction: rather
than compressing a large model, we directly optimize a lean
model with a small set of free parameters (number of free

Model	Ring	𝐖

Model	Para
meters

"𝐖

Generator	𝐺
!

Generator𝐺
"

Generator	𝐺
#

!" = $"

1

2

3

4

5

6

2 -5 3

6 -1 4

5 -1 3

layer 1

effective weight !generation matrix "practical weight #!
1

-1

1

1

-1

1

1

-1

1

-1

-1

1

-1

-1

2

-5

3

6

-1

4

5

-1

3

-5

-4

6

-2

-6

reshape-5 -4

6 -2

-6

layer 2
layer 3

Figure 2: Upper: Networks are optimized with a linear constraint
Ŵ = GW, where the constrained parameter Ŵ of each network
layer was generated by the generating matrix G from the free pa-
rameter W, which is directly optimized. Ŵ is unpacked large
model parameter while the size of W is the model DoF. Lower:
This paper discusses a specific format of parameter generation,
recurrent parameter generator (RPG). RPG shares a fixed set of pa-
rameters in a ring and uses them to generate parameters of different
parts of a neural network, whereas in the standard neural network,
all the parameters are independent of each other, so the model gets
bigger as it gets deeper. The third section of the model starts to
overlap with the first section in the model ring, and all later layers
share generating parameters for possibly multiple times.

parameters equal to degree of freedom of the model, or DoF),
which can be linearly unpacked to a large model. Training
the large model can be viewed as solving a neural optimiza-
tion with a set of predefined linear constraints. One benefit
of constrained neural optimization we observe is that it leads
to a faster convergence rate (Section 5.6). Specifically, we
define different layers in a neural network based on a fixed
amount of DoF, which we call recurrent parameter generator
(RPG). That is, we differentiate the number of model param-
eters and DoF. Traditionally, model parameters are treated
independently of each other; the total number of parameters
equals DoF. However, by tapping into how a core set of free
parameters can be assigned to the neural network model, we
can develop a large model of many parameters, which are
linearly constrained by the small set of free parameters.

There is excess capacity in neural networks independent

of how and where the parameters are used in the network,
even at the level of individual scalar values. Surprisingly,
backpropagation training of a deep network is able to cope
with that the same parameter can be assigned to multiple
random locations in the network without significantly im-
pacting model performance. Our extensive experiments
show that a large neural network does not need to be over-
parameterized to achieve competitive performance. Particu-
larly, a ResNet18 can be implemented with DoF equivalent
to one convolution layer in a ResNet18-vanilla (4.72× DoF
reduction) and still achieves 67.2% ImageNet top-1 accuracy.
The proposed method is also extremely flexible in reducing
model DoF. In some sense, the proposed RPG method can
be viewed as an automatic model DoF reduction technique,
which explores the optimal accuracy-parameter trade-off.
When we reduce the model DoF, RPG demonstrates graceful
performance degradation, and its compression results are
frequently on par with the SOTA pruning methods besides
the flexibility. Even if we reduce the Res18 backbone DoF
to 36K, which is about 300× reduction, ResNet18 can still
achieve 40% ImageNet top-1 accuracy. Further, we show
RPG can be quantized and pruned to improve FLOPs and
runtime with relatively mild accuracy drops.

To summarize, we make three contributions: 1. We pro-
vide a new perspective towards automatic model size re-
duction: we define a neural network with certain DoF with
random linear constraints. We discover that gradient descent
can automatically solve constrained optimization for the best
model with a faster convergence rate. This constrained neu-
ral optimization perspective is likely to benefit many other
applications. 2. We propose the recurrent parameter gener-
ator (RPG), which decouples the network architecture and
the network DoF. We can flexibly choose any desired DoF
to construct the network given a specific neural network
architecture. 3. By separating network architectures from pa-
rameters, RPG becomes a tool to understand the relationship
between the model DoF and the network performance. We
observe an empirical log-linear DoF-Accuracy relationship.

2. Related Work
Many works study model DoF reduction or compression.

We discuss each one and its relationship to our work.
Model Pruning, Neural Architecture Search, and Quan-
tization. Model pruning seeks to remove unimportant param-
eters in a trained model. Recently, it’s proposed to use neural
architecture search as coarse-grained model pruning [68, 16].
Another related effort is network quantization [31, 50, 43],
which seeks to reduce the bits used for each parameter and
can frequently reduce the model size by 4× with minimal
accuracy drop. More recently, [14] presents a framework
for analyzing model scaling strategies that consider network
properties such as FLOPs and activations.
Parameter Regularization and Priors. Regularization has
been widely used to reduce model redundancy [38, 47], al-

image conv1 conv2 convL

…… …
…

leopard

… …

image pose image

depth

normal
image conv1 conv2 convL

…… …
…

leopard

… …

image pose image

depth

normal

RPG shared by layers RPG shared by blocks RPG shared by sub-networks

image conv1 conv2 convL

…… …
…

leopard

… …

image pose image

depth

normal
image classification human pose estimation multitask regression

Figure 3: We demonstrate the effectiveness of RPG on various applications including image classification (Left), human pose estimation
(Middle), and multitask regression (Right). RPGs are shared at multiple scales: a network can either have a global RPG or multiple local
RPGs that are shared within blocks or sub-networks.

leviate overfitting [52, 59], and ensure desired mathemat-
ical regularity [60]. RPG can be viewed as a parameter
regularization in the sense that weight sharing poses many
equality constraints to weights and regularizes weights to a
low-dimensional space. HyperNeat [55] and CPPNs [54] use
networks to determine the weight between two neurons as a
function of their positions. [35, 34] introduced a similar idea
by providing a hierarchical prior for network parameters.
Recurrent Networks and Deep Equilibrium Models. Re-
currence and feedback have been shown in psychology and
neuroscience to act as modulators or competitive inhibitors to
aid feature grouping [21], figure-ground segregation [32] and
object recognition [65]. Recurrence-inspired mechanisms
also achieve success in feed-forward models. There are two
main types of employing recurrence based on if weights are
shared across recurrent modules. ResNet [26], a represen-
tative of reusing similar structures without weight sharing,
introduces parallel residual connections and achieves better
performance by going deeper in networks. Similarly, some
works [56, 53] also suggest iteratively injecting thus-far rep-
resentations to the feed-forward network useful. Stacked
inference methods [48, 64, 63] are also related while they
consider each output in isolation. Some find sharing weights
across recurrent modules valuable. They demonstrate appli-
cations in temporal modelling [63, 66, 36], spatial attention
[44, 9], pose estimation [62, 11], and so on [41, 69]. Such
methods usually shine in modeling long-term dependencies.
In this work, we recurrently share weights across different
layers of a feedback network to reduce network redundancy.

Given stacking weight-shared modules improve the per-
formance, researchers consider running even infinite depth of
such modules by making the sequential modules converge to
a fixed point [40, 4]. Employing such equilibrium models to
existing networks, they show improved performance in many
natural language processing [4] and computer vision tasks
[5, 61]. One issue with deep equilibrium models is that the
forward and backward propagation usually takes much more
iterations than explicit feed-forward networks. Some work
[19] improves the efficiency by making the backward propa-
gation Jacobian free. Another issue is that infinite depth and
fixed point may not be necessary or even too strict for some
tasks. Instead of achieving infinite depth, our model shares

parameters to a certain level. We empirically compare with
equilibrium models in Section 5.
Efficient Network Space and Matrix Factorization. Con-
volution is an efficient and structured matrix-vector multi-
plication. Arguably, the most fundamental idea in building
efficient linear systems is matrix factorization. Given the
redundancy in deep convolutional neural network parame-
ters, one can leverage the matrix factorization concept, e.g.,
factorized convolutions, and design more efficient network
classes [30, 33, 57, 51].

3. Recurrent Parameter Generator

Linearly Constrained Neural Optimization. Consider op-
timizing a network with input data X, parameters Ŵ and
loss function L. The optimization can be written as:

minL(X;Ŵ) s.t. Ŵ = GW(or equally RŴ = 0) (1)

where Ŵ = GW refers to a set of linear constraints, where
G ∈ <N×M is a full-rank tall matrix (i.e. N ≥ M). Here
we refer to Ŵ as the constrained parameters and W as the
free parameters. This constraint is a change of variable, i.e.,
the constrained parameter Ŵ is linearly generated from the
free parameter W by generating matrix G. We can consider
W as a compressed model, which is unpacked into Ŵ to
construct the large neural network. W is directly optimized
via gradient descent and free to update. In this linearly
constrained neural optimization, the model DoF is equivalent
to M , which is the dimension of W. An equivalent form
of the constraint Ŵ = GW is RŴ = 0, where R ∈
<(N−M)×N can be derived from SVD of G.
Recurrent Parameter Generator. Let’s assume that we
construct a deep convolutional neural network containing
L different convolution layers. Let K1,K2, . . . ,KL be the
corresponding L convolutional kernels1. Rather than us-
ing separate sets of parameters for different convolution
layers, we create a single set of parameters W ∈ <M

and use it to generate the corresponding parameters Ŵ =

1A kernel contains all the filters of one layer. In this paper, we treat
each convolutional kernel as a vector. When the kernel is used to do the
convolution, it will be reshaped into the corresponding shape.

[
KT

1 ,K
T
2 , . . . ,K

T
L

]T ∈ <N for each convolution layer:

Ki = Gi ·W, i ∈ {1, . . . , L} (2)

where Gi is a fixed predefined generating matrix, which
is used to generate Ki from W. We call G =[
GT

1 , . . . ,G
T
L

]T
and W the recurrent parameter genera-

tor (RPG). In this work, we always assume that the size
of W is not larger than the total parameters of the model,
i.e., |W| ≤

∑
i |Ki|. This means an element of W will

generally be used in more than one layer of a neural network.
Additionally, the gradient of W is a linear superposition
of the gradients from each convolution layer. During the
neural network training, let’s assume convolution kernel Ki

receives gradient ∂`
∂Ki

, where ` is the loss function. Based
on the chain rule, it is clear that the gradient of W is:

∂`

∂W
=

L∑
i=1

GT
i ·

∂`

∂Ki
(3)

Generating Matrices and Destructive Weight Sharing.
There are various ways to create the generating matrices
{Gi}. While in general G can be any full-rank tall matrix,
this paper focuses on the destructive generating matrices,
which are random orthogonal matrices and could prevent dif-
ferent kernels from sharing the representation during weight
sharing. Random generating matrices empirically improve
the model capacity when the model DoF is fixed. We provide
an intuitive theoretical explanation of how random orthogo-
nal matrices prevent representation sharing as follows.

For easier discussion, let us consider a special case, where
all of the convolutional kernels have the same size and are
used in the same shape in the corresponding convolution
layers. The dimension of W is equal to that of one con-
volutional layer kernel. In other words, {Gi} are square
matrices, and the spatial sizes of all of the convolutional
kernels have the same size, din × dout × w × h, and the
input channel dimension din is always equal to the output
channel dimension dout. In this case, a filter f in a kernel
can be treated as a vector in <dwh. Further, we choose Gi

to be a block-diagonal matrix Gi = diag{Ai,Ai, . . . ,Ai},
where Ai ∈ O(dwh) is an orthogonal matrix that generates
each filter of the kernel Ki from W, and O(·) denotes the
orthogonal group. Similar to the Proposition 2 in [13], we
show in the Appendix C that: if Ai, Aj are sampled from
the O(dwh) Haar distribution and fi, fj are the correspond-
ing filters (generated by Gi, Gj respectively from the same
set of entries of W) from Ki, Kj respectively, then we have

E [〈fi, fj〉] = 0 and E
[
〈 fi
‖fi‖ ,

fj
‖fj‖ 〉

2
]
= 1

dwh . Since dwh

is usually large, the corresponding filters from Ki, Kj are
close to orthogonal and generally dissimilar. This shows that
even when {Ki} are generated from the same entries of W,
they are prevented from sharing the representation.

Though {Gi} are not updated during training, the size
of Gi can be quite large in general, which can create addi-
tional computation and storage overhead. In practice, we can
use permutation and element-wise random sign reflection to
construct a subset of the orthogonal group as permutations
and sign reflections could be implemented with high sim-
plicity and negligible cost. A simple demonstration of {Gi}
is demonstrated in Fig.2U2. Since pseudo-random numbers
are used, it takes only two random seeds to store a random
permutation and an element-wise random sign reflection.
Even Parameter Sampling and Model Ring. While it is
easy to randomly sample elements from W when gener-
ating parameters for each layer, it may not be optimal as
some elements in W may not be evenly used, and some
elements in W used at all due to sampling fluctuation. A
simple equalization technique can be used to guarantee all
elements of W are evenly sampled. Suppose the size of
W is M , and the size of parameter Ŵ of the model to be
generated is N , N > M . As we mentioned earlier, there
are L layers and they require {‖K1‖, . . . , ‖KL‖} parame-
ters respectively. As N > M , we can use W as a ring: we
first draw the first ‖K1‖ parameters from Ŵ followed by a
pre-generated random permutation p1 and a pre-generated
random element-wise sign flipping b1 to construct layer-1
kernel K1. Then we draw the next ‖K2‖ parameters from
Ŵ followed by pre-generated random permutation p2 and a
pre-generated random element-wise sign flipping b2. We con-
tinue this process and wrap around when there is not enough
entries left from Ŵ. We refer to Ŵ together with this sam-
pling strategy as model rings since the free parameters are
recurrently used in a loop. We illustrate the general param-
eter generator in Fig.2U and RPG in Fig.2L. This For data
saving efficiency, we just need to save several random seed
numbers instead of saving the pre-generated permutations
{p1, . . . , pL} and sign flipping operations {b1, . . . , bL}.
Batch Normalization. Model performance is relatively sen-
sitive to the batch normalization parameters. For better per-
formance, each convolution layer needs to have its own batch
normalization parameters. In general, however, the size of
batch normalization is relatively negligible. Yet when W
is extremely small (e.g., 36K parameters), the size of batch
normalization should be considered.

4. RPG at Multiple Scales
We discuss the general idea of parameter generators

where only one RPG is shared globally across all layers
previously. We could also create several local RPGs, each
of which is shared at certain scales, such as blocks and sub-
networks. Such RPGs may be useful for certain applications
such as recurrent modeling.

2Permutations and element-wise random sign reflection conceptually
are subgroups from the orthogonal group, but we shall never use them in
the matrix form for the obvious efficiency purpose.

RPGs at Block-Level. Many existing network architectures
reuse the same design of network blocks multiple times for
higher learning capacity, as discussed in the related work.
Instead of using one global RPG for the entire network, we
could alternatively create several RPGs that are shared within
certain network blocks. We take Res18 [26] as a concrete
example.Res18 has four building blocks. Every block has 2
residual convolution modules. We create four local RPGs
for Res18. Each RPG is shared within the corresponding
building block, where the size of the RPG is flexible and can
be determined by users. Fig.3M) illustrates how RPGs can
be shared at the block-level.
RPGs at Sub-Network-Level. Reusing sub-networks, or
recurrent networks, has achieved success in many tasks as
they iteratively refine and improve the prediction. Parame-
ters are often shared when reusing the sub-networks. This
may not be optimal as sub-networks at different stages iter-
atively improve the prediction, and shared parameters may
limit the learning capacity at different stages. However, not
sharing parameters at all greatly increases the model size.
RPG can be created for each sub-network. Such design
leads to a much smaller DoF, while parameters of differ-
ent sub-networks are orthogonal by undergoing destructive
changes.We show applications of sub-network-level RPGs
for pose estimation and multitask regression (Section 5.3
and 5.4). Fig.3R) illustrates sub-network-level RPGs.

5. Experimental Results
We evaluate the performance of RPG with various tasks

illustrated in Fig.3. For classification, RPG was used for the
entire network except for the last fully-connected layer. We
discuss performance with regard to backbone DoF, the actual
number of parameters of the backbone. For example, Res18
has 11M backbone parameters and 512K fc parameters, and
RPG was applied to reduce 11M backbone DoF only.

5.1. CIFAR Classification

Implementation Details. CIFAR experiments use 128
batch size, 5e-4 weight decay, initial learning rate of 0.1 with
gamma of 0.1 at epoch 60, 120 and 160. We use Kaiming ini-
tialization [25] with adaptive scaling. Shared parameters are
initialized with a particular variance and scale the parameters
for each layer to make it match the Kaiming initialization.
Compared to Deep Equilibrium Models. As a representa-
tive of implicit models, deep equilibrium models [4] reduce
model DoF by finding fix points via additional optimizations.
We compare the image classification accuracy on CIFAR10
and CIFAR100, as well as the inference time on CIFAR100
(Table 1). Following the settings of MDEQ [5], an image
was sequentially fed into the initial convolutional block, the
multi-scale deep equilibrium block (dubbed as MS block),
and the classification head. MDEQ [5] achieves infinite MS
blocks by finding the fixed point of the MS block. We reuse

Filter similarity

a) Large models have high redundancy b) Ablation studies of permutation and sign reflection

Figure 4: a) Large models are known to have high redundancy
and low degree of freedom (DoF). They could be pruned to small
models, e.g. high filter similarity of different layers in VGG16 is
observed. b) Ablation studies of permutation and sign reflection of
Res34-RPG. Having both matrices gives the highest performance.

the MS block two to four times without increasing the model
DoF. RPG achieves 3% - 6% gain on CIFAR10 and 3% - 6%
gain on CIFAR100. RPG inference time is 15 - 25 times
smaller than MDEQ since MDEQ needs additional time to
solve equilibrium during training.
Global RPG with Varying Model DoF. We create one
global RPG to generate parameters for convolution layers of
ResNet and refer to it as ResNet-RPG. We report CIFAR100
top-1 accuracy of ResNet-RPG18 and ResNet-RPG34 at
different model DoF (Table 3 and Fig.6 in Appendix B).
Compared to ResNet, ResNet-RPG achieves higher accu-
racy at the same model DoF. Specifically, we achieve 36%
CIFAR100 accuracy with only 8K backbone DoF. Further,
ResNet34-RPG achieves higher accuracy than ResNet18-
RPG, indicating increasing time complexity gives perfor-
mance gain. We observe log-linear DoF-accuracy relation-
ship, with details in Power Law of the following subsection.
Local RPGs at the Block-Level. In the previous Res-RPG

Table 1: RPG compared with multiscale deep equilibrium models
(MDEQ) [5] on CIFAR10 and CIFAR100 classification. At the
same number of model DoF, RPG achieves 3% - 6% performance
gain with 15 - 25x less inference time. Inference time is measured
by milliseconds per image.

Our RPG (same DoF)Accuracy (%) MDEQ 2x MS blk 3x MS blk 4x MS blk
CIFAR10 85.1 88.5 90.1 90.9
CIFAR100 59.8 62.8 64.7 65.7
Inference time (ms) 3.15 0.12 0.18 0.22

Table 2: ResNet-RPG outperforms existing DoF reduction meth-
ods [23, 12, 67] on CIFAR100. Additionally, a global RPG outper-
forms block-wise local RPGs.

DoF Acc. (%)
R18-vanilla 11M 77.5
R34-RPG.blk 11M 78.5
R34-RPG 11M 78.9
R34-random weight share 11M 74.9
R34-DeepCompression [23] 11M 72.2
R34-Hash [12] 11M 75.6
R34-Lego [67] 11M 78.4
R34-vanilla 21M 79.1

Table 3: ResNet-RPG consistently achieves higher performance
at the same model DoF. We report ImageNet and CIFAR100 top-1
accuracy and backbone DoF for ResNet-vanilla and ResNet-RPG.

Acc. (%) R18-RPG R18-vanilla R34-RPG R34-vanilla
ImageNet 40.0 67.2 70.5 70.5 41.6 69.1 73.4 73.4
CIFAR100 60.2 75.6 77.6 77.6 61.7 76.5 78.9 79.1
Model DoF 45K 2M 5.5M 11M 45K 2M 11M 21M

experiments, we use one global RPG for the entire network.
We also evaluate the performance when RPGs are shared
locally at a block level, as discussed in Section 5.4. In Table
2, compared to plain ResNet18 at the same DoF, our block-
level RPG network gives 1.0% gain. In contrast, our ResNet-
RPG (parameters are evenly distributed) gives a 1.4% gain.
Using one global RPG where parameters of each layer are
evenly distributed is 0.4% higher than multiple RPGs.
Comparison to Baselines. Table 2 compares RPG and other
model DoF reduction methods including random weight
sharing, weight sharing with the deep compression [23],
hashing trick [12] and weight sharing with Lego filters [67].
We also compare with HyperNetworks [22] in Appendix D.
At the same model DoF, RPG outperforms all other baselines,
demonstrating the effectiveness of the proposed method.
RPG for Transformers. We apply RPG for a vision trans-
former ViT [17] and report results in Fig.5a. Specifically,
the ViT-tiny model with 6 transformer layers, 4 attention
heads and 64 embedding dimensions, is used as a baseline.
A log-linear relationship is also identified in ViT-RPG.

5.2. ImageNet Classification
Implementation Details. All ImageNet experiments use
batchsize of 256, weight decay of 3e-5, and an initial learning
rate of 0.3 with gamma of 0.1 every 75 epochs and 225
epochs in total. Our schedule is different from the standard
schedule as the weight-sharing mechanism requires different
training dynamics. We tried a few settings and found this
one to be the best for RPG.
RPG with Varying Model DoF. We use RPG with differ-
ent DoF for ResNet and report the top-1 accuracy (Table 3
and Fig.1e)). ResNet-RPGs consistently achieve higher per-
formance than ResNets under the same model DoF. Specif-
ically, ResNet-RPG34 achieves the same accuracy 73.4%
as ResNet34 with only half of ResNet34 backbone DoF.
ResNet-RPG18 also achieves the same accuracy as ResNet18
with only half of ResNet18 backbone DoF. Further, RPG
networks have higher generalizability (Section 5.6).
Power Law. Empirically, accuracy and model DoF follow a
power law, when RPG DoF is lower than 50% ResNet-vanilla
DoF (Fig.1d). The exponents of the power laws are the same
for ResNet18-RPG and ResNet34-RPG on ImageNet. The
scaling law may be useful for estimating the network ac-
curacy without training the network. Similarly, [29] also
identifies a power law for accuracy and model DoF of trans-
formers. The proposed RPG enables under-parameterized
models for large-scale datasets such as ImageNet, which
may unleash more new studies and findings.

5.3. Pose Estimation
Implementation Details. We superpose sub-networks for
pose estimation with a globally shared RPG. Hourglass net-
works [46] are used as the backbone. An input image is
first fed to an initial convolution block to obtain a feature
map, which is then fed to multiple stacked pose estimation
sub-networks. Each sub-network outputs a pose estima-
tion prediction, which is penalized by the pose estimation
loss. Convolutional pose machine (CPM) [62] share all sub-
networks weights. We create one global RPG to generate
parameters for each sub-network. Our model size is set to the
same as CPM. We also compare with larger models where
parameters of sub-networks are not shared.

We evaluate on MPII Human Pose dataset [2], a bench-
mark for articulated human pose estimation, which consists
of over 28K training samples over 40K people with anno-
tated body joints. We use the hourglass network [46] as
backbone and follow all their settings.
Results and Analysis. We report the Percentage of Correct
Key-points at 50% threshold (PCK@0.5) of different meth-
ods in Table 4. CPM [62] share all parameters for different
sub-networks. We use one RPG that is shared globally at
the same size as CPM. For reference, we also compare with
the no-sharing model as the performance ceiling. Adding
the number of recurrences leads to performance gain for
all methods. At the same model size, RPG achieves higher
PCK@0.5 compared to CPM. Increasing the number of pa-
rameters by not sharing sub-network parameters also leads
to some performance gain.

5.4. Multi-Task Regression
Implementation Details. We superpose sub-networks for
multi-task regression with multiple RPGs at the building-
block level. We focus on predicting depth and normal maps

Table 4: RPG outperforms CPM [62] at the same DoF. We report
pose estimation performance (model DoF) on MPII human pose
compared with CPM [62]. The metric is PCKh@0.5.

Acc. (DoF) CPM [62] RPG No shared w.
1x sub-net 84.7 (3.3M)
2x sub-nets 86.1 (3.3M) 86.5 (3.3M) 87.1 (6.7M)
4x sub-nets 86.5 (3.3M) 87.3 (3.3M) 88.0 (13.3M)

Table 5: RPG achieves the best accuracy without sharing batch
normalize parameters and with permutation and sign reflection. We
report multitask regression errors on S3DIS with sub-net architec-
ture as [49]. Lower is better. All methods share the same DoF.
Sub-net is reused once.

RMSE (%) Depth Normal
Vanilla model 25.5 41.0
RPG with shared BN 24.7 40.3
Reuse & new BN 24.0 39.4
Reuse & new BN & perm. and reflect. 22.8 39.1

.PEFM�%P'

 ↑
ViT-vanilla

LWH
UD
WLR
QV
�WR
�F
RQ
YH
UJ
H�
�[
��
��
�

a) Log-linear DoF-accuracy relationship for ViT-RPG b) RPG converges faster than the vanilla model c) RPG converges faster for different batch sizes

Figure 5: a) A log-linear DoF-accuracy relationship exists for RPGs applied to vision transformer ViT [17]. b) RPG converges faster
than the vanilla model. We plot the CIFAR10 accuracy (smoothed by moving average) versus training iterations for Res18-vanilla and
Res18-RPG. RPG converges at 1k iterations while the vanilla model converges at 1.7k. c) RPG consistently converges faster. The reduction
becomes substantial with the increasing batchsize, e.g., at batchsize 1024, RPG takes 41% less iterations to converge. Denote final accuracy
as Pf , the convergence iteration is defined when current smoothed accuracy (by moving average) is within 5% range of Pf .

Table 6: RPG achieves higher post-pruning CIFAR10 accuracy and
similar post-pruning accuracy drops as SOTA fine-grained pruning
approach IMP [18]. Fine-grained pruning is used for reducing DoF.

acc before acc after ↓ DoF acc drop model DoF
R18-IMP [18] 92.3 90.5 1.8 274k
R18-RPG 95.0 93.0 2.0 274k

Table 7: RPG achieves similar post-pruning ImageNet perfor-
mance as SOTA coarse-grained apporach Knapsack [1] at the same
FLOPs. Coarse-grained pruning is used for reducing RPG FLOPs.

DoF before pruning Pruned acc. FLOPs
R18-Knapsack 11.2M 69.35% 1.09e9
Pruned R18-RPG 5.6M 69.10% 1.09e9

from a given image. We stack multiple SharpNet [49], a
network for monocular depth and normal estimation. Specif-
ically, we create multiple RPGs at the SharpNet building-
block level. That is, parameters of corresponding blocks of
different sub-networks are generated from the same RPG.

We evaluate the monocular depth and normal prediction
performance on a 3D indoor scene dataset [3], which con-
tains over 70K images with corresponding depths and nor-
mals covering over 6,000 m2 indoor area. We follow all
settings of SharpNet [49], a SOTA monocular depth and
normal estimation method.
Results and Analysis. We report the mean square errors
for depth and normal estimation in Table 5. Compared to
one-time inference without recurrence, our RPG network
gives 3% and 2% gain for depth and normal estimation, re-
spectively. Directly sharing weights but using new batch
normalization layers decrease the performance by 1.2% and
0.3% for depth and normal. Sharing weights and normaliza-
tion layers further decrease the performance by 0.7% and
0.9% for depth and normal.

5.5. Pruning RPG
Fine-Grained Pruning. Fine-grained pruning methods aim
to reduce the model DoF by sparsifying weight matrices.

Such methods usually do not reduce the inference speed,
although custom algorithms [20] may improve the speed. At
the same model DoF, RPG outperforms state-of-the-art fine-
grained pruning method IMP [18]. Accuracy drops of RPG
and IMP are similar, both around 2% (Table 6). It is worth
noting that although IMP has no run time improvement in
regular settings, it could save inference time with customized
sparse GPU kernels [20].
Coarse-Grained Pruning. While RPG is not designed to
reduce FLOPs, it can be combined with coarse-grained prun-
ing to reduce FLOPs. We prune RPG filters with the lowest
`1 norms. Table 7 shows that the pruned RPG achieves on-
par performance as state-of-the-art coarse-grained pruning
method Knapsack [1] at the same FLOPs.
5.6. Analysis
Convergence rate. Compared with the vanilla model, RPG
optimizes in a parameter subspace Ŵ = GW with fewer
DoF. Would such constrained optimization lead to a faster
convergence rate? We analyze the convergence rate of Res18-
vanilla and Res18-RPG (DoF is 5.5M, 50% of the vanilla
model) with different batchsizes. All models are trained
with multi-step SGD optimizer and they all reach > 94.1%
final CIFAR10 accuracy. For simplicity, we analyze the first
optimization stage where learning rate has not decayed.

Fig.5b plots the accuracy (smoothed with moving aver-
ages) v.s. training iterations with batchsize 1024. RPG has a
faster convergence rate than vanilla models. We also analyze
the smoothed accuracy and identify the convergence itera-
tion versus batchsize in Fig.5c. RPG consistently converges
faster than the vanilla model, and the reduction becomes
substantial with the increasing batchsize.
Comparison to Model Compression Methods. We report
ResNet-RPG performance with different model DoF and
existing compression methods on ImageNet (Fig.1e). RPG
networks outperform SOTA methods such as [1, 16, 28, 27,
15, 37]. For example, at the same model DoF, our RPG

Table 8: RPG increases the model generalizability. (a) ResNet-RPG has lower training-validation accuracy gap on ImageNet classification.
The metric is training accuracy minus validation accuracy. Lower is better. (b) Using RPG for pose estimation also decreases the training and
validation performance GAP. The metric is training PCK@0.5 minus validation PCK@0.5. Lower is better. (c) ResNet with RPG has higher
performance on out-of-distribution dataset ObjectNet [6]. The model is trained on ImageNet only and directly evaluated on ObjectNet.

(a) IN train-val gap

Acc gap (%) vanilla RPG
R18 -0.7 -2.7
R34 1.1 -2.3

(b) Pose train-val gap

Acc gap (%) no shared w shared w RPG
2x sub-nets 1.15 1.13 0.64
4x sub-nets 1.98 1.70 1.15

(c) OOD on ObjectNet

R18 R34-RPG R34
DoF 11M 11M 21M
Acc. (%) 13.4 16.5 16.0

network has 0.6% gain over the knapsack pruning [1], a
SOTA method of ImageNet pruning.
Storage. RPG models only need to save the effective param-
eter W, which has the size of the model DoF, since the gen-
eration matrix G is saved as a random seed at no cost. The
storage space of the model file can be diminished to satisfy
a smaller storage limit for inference and a faster model file
transfer. Empirically on PyTorch platform, ResNet18-vanilla
model file is 45MB. With no accuracy loss, ResNet18-RPG
model save file size is 23MB (↓ 49%). With 2 percentage
point accuracy loss, RPG save file size is 9.5MB (↓ 79%).
Generalizability. We report the performance gap between
training and validation set on ImageNet (Table 8(a)) and
MPII pose estimation (Table 8(b)). CPM [62] serves as the
baseline pose estimation method. RPG models consistently
achieve lower gaps between training and validation sets,
indicating the RPG model suffers less from over-fitting.

We also report the out-of-distribution performance of
RPG models. ObjectNet [6] contains 50k images with 113
classes overlapping with ImageNet. Existing models are
reported to have a large performance drop on ObjectNet.
We directly evaluate the performance of ImageNet-trained
model on ObjectNet without any fine-tuning (Table 8(c)).
With the same backbone DoF, R18-RPG achieves a 3% gain
compared to R18-vanilla. With the same network architec-
ture design, R34-RPG achieves 0.5% gain compared to R34.
This indicates RPG networks have higher out-of-distribution
performance even with smaller model DoF.
Quantization. Network quantization can reduce model size
with minimal accuracy drop. It is of interest to study if RPG
models, whose parameters have been shrunk, can be quan-
tized. After 8-bit quantization, the accuracy of ResNet18-
RPG (5.6M DoF) only drop 0.1 percentage point on Ima-
geNet, indicating RPG can be quantized for further model
size reduction. Details are in Appendix A.
Security. Permutation matrices generated by the random
seed can be considered as security keys to decode the model.
Further, only random seeds to generate generating matrix G
need to be saved and transferred at negligible cost.

5.7. Ablation Studies
We conduct ablation studies on CIFAR100 to analyze

functions of permutation and reflection matrices (Fig.4b. We
evaluate ResNet-RPG34 with 2M backbone DoF. Permuta-
tion and sign reflection together achieves 76.5% accuracy,

while permutation only achieves 75.8%, and sign reflection
only achieves 71.1%. Training with neither permutation nor
reflection matrices achieves 70.7%. This suggests permuta-
tion and sign reflection matrices increase RPG performance.

6. Discussion
The common practice in neural network compression is

to prune weights from a trained large model with many pa-
rameters or degrees of freedom (DoF). Our key insight is that
a direct and drastically different approach might work faster
and better: We start from a lean model with a small DoF,
which can be linearly unpacked into a large model with many
parameters. Then we can let the gradient descent automati-
cally find the best model under the linear constraints. Our
work is a departure from mainstream approaches towards
model optimization and parameter reduction. We show how
the model DoF and actual parameter size can be decoupled:
we can define an arbitrary network of an arbitrary DoF.

We limit our scope to optimization with random linear
constraints, termed destructive weight sharing. However, in
general, there might also exist nonlinear RPGs and efficient
nonlinear generation functions to create convolutional ker-
nels from a shared model ring W. Further, although RPG
focuses on reducing model DoF, it can be quantized and
pruned to further reduce the FLOPs and runtime.

To sum up, we develop an efficient approach to build an
arbitrarily complex neural network with any amount of DoF
via a recurrent parameter generator. On a wide range of
applications, including classification, pose estimation and
multitask regression, we show RPG consistently achieves
higher performance at the same model DoF. Further, we
show such networks converge faster, are less likely to overfit
and have higher performance on out-of-distribution data.

RPG can be added to any existing network flexibly with
any amount of DoF at the user’s discretion. It provides new
perspectives for recurrent models, equilibrium models, and
model compression. It also serves as a tool for understanding
relationships between network properties and network DoF
by factoring out the network architecture.

References
[1] Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and

Lihi Zelnik. Knapsack pruning with inner distillation. arXiv
preprint arXiv:2002.08258, 2020.

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014.

[3] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017.

[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equi-
librium models. Advances in Neural Information Processing
Systems, 32:690–701, 2019.

[5] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale
deep equilibrium models. Advances in Neural Information
Processing Systems, 33, 2020.

[6] Andrei Barbu, David Mayo, Julian Alverio, William Luo,
Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and
Boris Katz. Objectnet: A large-scale bias-controlled dataset
for pushing the limits of object recognition models. Ad-
vances in neural information processing systems, 32:9453–
9463, 2019.

[7] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle,
and John Guttag. What is the state of neural network pruning?
In Proceedings of Machine Learning and Systems, 2020.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020.

[9] Nicholas J Butko and Javier R Movellan. Optimal scanning
for faster object detection. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2751–2758.
IEEE, 2009.

[10] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
International Conference on Learning Representations, 2018.

[11] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and
Jitendra Malik. Human pose estimation with iterative error
feedback. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4733–4742, 2016.

[12] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International conference on machine
learning, pages 2285–2294. PMLR, 2015.

[13] Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal,
and Bruno Olshausen. Superposition of many models into
one. In Advances in neural information processing systems,
2019.

[14] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and
accurate model scaling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 924–932, 2021.

[15] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5840–5848,
2017.

[16] Xuanyi Dong and Yi Yang. Network pruning via trans-
formable architecture search. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[18] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy,
and Michael Carbin. Stabilizing the lottery ticket hypothesis.
arXiv preprint arXiv:1903.01611, 2019.

[19] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKen-
zie, Stanley Osher, and Wotao Yin. Fixed point networks:
Implicit depth models with jacobian-free backprop. arXiv
preprint arXiv:2103.12803, 2021.

[20] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen.
Sparse GPU kernels for deep learning. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, 2020.

[21] Charles D Gilbert and Mariano Sigman. Brain states: top-
down influences in sensory processing. Neuron, 54(5):677–
696, 2007.

[22] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016.

[23] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Proceedings of
the International Conference on Learning Representations,
2016.

[24] Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng Tu,
Michael Lyu, and Xing Wang. Multi-task learning with shared
encoder for non-autoregressive machine translation. In Pro-
ceedings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human
Language Technologies, pages 3989–3996, 2021.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[27] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pages 2234–2240,
2018.

[28] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Fil-
ter pruning via geometric median for deep convolutional neu-
ral networks acceleration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019.

[29] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christo-
pher Hesse, Jacob Jackson, Heewoo Jun, Tom B Brown, Pra-
fulla Dhariwal, Scott Gray, et al. Scaling laws for autoregres-
sive generative modeling. arXiv preprint arXiv:2010.14701,
2020.

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[31] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[32] JM Hupé, AC James, BR Payne, SG Lomber, P Girard, and J
Bullier. Cortical feedback improves discrimination between
figure and background by v1, v2 and v3 neurons. Nature,
394(6695):784–787, 1998.

[33] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016.

[34] Theofanis Karaletsos and Thang D. Bui. Hierarchical gaus-
sian process priors for bayesian neural network weights.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[35] Theofanis Karaletsos, Peter Dayan, and Zoubin Ghahramani.
Probabilistic meta-representations of neural networks. arXiv
preprint arXiv:1810.00555, 2018.

[36] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, pages 3128–3137, 2015.

[37] Ashish Khetan and Zohar Karnin. Prunenet: Channel pruning
via global importance. arXiv preprint arXiv:2005.11282,
2020.

[38] Anders Krogh and John A Hertz. A simple weight decay can
improve generalization. In Advances in neural information
processing systems, pages 950–957, 1992.

[39] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information processing
systems, pages 598–605, 1990.

[40] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A
theoretical framework for back-propagation. In Proceedings
of the 1988 connectionist models summer school, volume 1,
pages 21–28, 1988.

[41] Ke Li, Bharath Hariharan, and Jitendra Malik. Iterative in-
stance segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 3659–
3667, 2016.

[42] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2018.

[43] C Louizos, M Reisser, T Blankevoort, E Gavves, and M
Welling. Relaxed quantization for discretized neural networks.

In International Conference on Learning Representations.
International Conference on Learning Representations, ICLR,
2019.

[44] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray
Kavukcuoglu. Recurrent models of visual attention. In Ad-
vances in Neural Information Processing Systems, 2014.

[45] Michael C Mozer and Paul Smolensky. Using relevance
to reduce network size automatically. Connection Science,
1(1):3–16, 1989.

[46] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.

[47] Steven J. Nowlan and Geoffrey E. Hinton. Simplifying neu-
ral networks by soft weight-sharing. Neural Computation,
4(4):473–493, 1992.

[48] Varun Ramakrishna, Daniel Munoz, Martial Hebert,
James Andrew Bagnell, and Yaser Sheikh. Pose machines:
Articulated pose estimation via inference machines. In Euro-
pean Conference on Computer Vision, pages 33–47. Springer,
2014.

[49] Michael Ramamonjisoa and Vincent Lepetit. Sharpnet: Fast
and accurate recovery of occluding contours in monocular
depth estimation. The IEEE International Conference on
Computer Vision (ICCV) Workshops, 2019.

[50] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European conference on
computer vision, pages 525–542. Springer, 2016.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
4510–4520, 2018.

[52] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[53] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-
huber. Highway networks. arXiv preprint arXiv:1505.00387,
2015.

[54] Kenneth O Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic program-
ming and evolvable machines, 8(2):131–162, 2007.

[55] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci.
A hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2):185–212, 2009.

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[57] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019.

[58] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture

search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12965–12974, 2020.

[59] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob
Fergus. Regularization of neural networks using dropconnect.
In International conference on machine learning, pages 1058–
1066. PMLR, 2013.

[60] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X
Yu. Orthogonal convolutional neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11505–11515, 2020.

[61] Tiancai Wang, Xiangyu Zhang, and Jian Sun. Implicit fea-
ture pyramid network for object detection. arXiv preprint
arXiv:2012.13563, 2020.

[62] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 4724–4732, 2016.

[63] David Weiss and Benjamin Taskar. Structured prediction
cascades. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 916–
923. JMLR Workshop and Conference Proceedings, 2010.

[64] David H Wolpert. Stacked generalization. Neural networks,
5(2):241–259, 1992.

[65] Dean Wyatte, Tim Curran, and Randall O’Reilly. The limits
of feedforward vision: Recurrent processing promotes robust
object recognition when objects are degraded. Journal of
Cognitive Neuroscience, 24(11):2248–2261, 2012.

[66] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm net-
work: A machine learning approach for precipitation nowcast-
ing. In Advances in neural information processing systems,
pages 802–810, 2015.

[67] Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen,
Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Legonet:
Efficient convolutional neural networks with lego filters. In
International Conference on Machine Learning, pages 7005–
7014. PMLR, 2019.

[68] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas
Huang. Slimmable neural networks. In International Confer-
ence on Learning Representations, 2018.

[69] Amir R Zamir, Te-Lin Wu, Lin Sun, William B Shen,
Bertram E Shi, Jitendra Malik, and Silvio Savarese. Feed-
back networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1308–1317,
2017.

[70] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017.

Appendices

We first show RPG networks could be quantized with min-
imal accuracy drop for compression purpose in Section A.
We then provide a figure revealing log-linear DoF-accuracy
relationship in Section B. We also provide proof for the or-
thogonal proposition in the main paper (Section C). Finally,
we provide detailed comparison and discussion to a closely
related work HyperNetworks [22] in Section D.

Additionally, we provide the most important code to re-
produce the layer superposition experiments on ImageNet in
supplementary as a tgz file. The rest of code is also ready for
release, and will be released after additional internal review.

A. Quantize RPG

Quantization refers to techniques for performing compu-
tations and storing tensors at lower bitwidths than floating
point precision. Quantization can reduce model size with tiny
accuracy drop. Table 9 shows that with 8-bit quantization,
ResNet18-vanilla has an accuracy drop of 0.3 percentage
point, while our ResNet18-RPG has an accuracy drop of 0.1
percentage point. RPG models can be quantized for further
model size reduction with a negligible accuracy drop.

Table 9: RPG model can be quantized with very tiny accu-
racy drop. With 8-bit quantization on ImageNet, ResNet18-
vanilla has an accuracy drop of 0.3 percentage point, while
our ResNet18-RPG has an accuracy drop of 0.1 percentage
point.

Params Acc before Acc after ↓ quantization Acc drop
R18-vanilla 11M 69.8 69.5 0.3
R18-RPG 5.6M 70.2 70.1 0.1

B. CIFAR100 Accuracy versus DoF

Fig.6 plots CIFAR100 classification accuracy versus
model DoF. We observe a similar log-linear relationship
as in ImageNet.

C. Proof to the Orthogonal Proposition

We provide proofs to the orthogonal proposition men-
tioned in Section 3 of the main paper. Suppose we have
two vectors fi = Aif , fj = Aif , where Ai, Aj are sampled
from the O(M) Haar distribution.

Proposition 1. E [〈fi, fj〉] = 0.

←R18-vanilla

Res34-vanilla
↓

Figure 6: Log-linear DoF-accuracy relationship of CIFAR100
accuracy and model DoF on CIFAR100. RPG achieves the same
accuracy as vanilla ResNet with 50% DoF.

Proof.

E [〈fi, fj〉] = E [〈fi, fj〉]
= E [〈Aif ,Ajf〉]

= E
[
〈f ,AT

i Ajf〉
]

= fTE
[
AT

i Aj

]
f

= 0

where AT
i Aj is equivalently a random sample from O(M)

Haar distribution and its expectation is clearly 0.

Proposition 2. E
[
〈 fi
‖fi‖ ,

fj
‖fj‖ 〉

2
]
= 1

M .

Proof.

E

[
〈 fi
‖fi‖

,
fj
‖fj‖
〉2
]
=

E
[
〈Aif ,Ajf〉2

]
‖f‖22‖f‖22

= E

[
〈A f

‖f‖ ,
f

‖f‖〉
2

]
,

where A = AT
i Aj ∼ O(M) Haar distribution

Due to the symmetry,

= E

[
〈A f

‖f‖ , (1, 0, 0, . . . , 0)
T 〉2

]
Let g = A

f

‖f‖ ,

= E
[
g21
]

=
1

M

since g is a random unit vector and E
[∑M

k=1 g
2
k

]
=∑M

k=1 E
[
g2k
]
= 1.

D. Comparison to HyperNetworks

HyperNetworks [22] share similarity with RPG as both
methods reduce model DoF. Specifically, HyperNetworks
rely on learnable modules to generate network parameters.
We compare with them and report results in Table 10. On
CIFAR100 with the embedding dimension of 64 and the
same model size, HyperNetworks has 68x FLOPs as our
RPG, yet 10 percentage points lower than RPG in accuracy.

Table 10: RPG outperforms HyperNetworks [22] with same
DoF on CIFAR100. HyperNetworks has 68x FLOPs as our
RPG, yet 10 percentage points lower than RPG in accuracy.

model DoF FLOPs CIFAR100 Acc.
HyperNet [22] 632k 2.49G 61.3%
RPG 632k 36.7M 71.6%

RPG can be considered as an extreme and minimal ver-
sion of HyperNetworks, one without a network. However,
RPG’s unique design and implementation delivers the fol-
lowing advantages over HyperNetworks:

1. HyperNetworks add substantial FLOPs to the network
and render it less practical. Given a network architec-
ture, RPG adds minimal to no additional computation,
as the permutation and sign reflection can be efficiently
implemented. However, HyperNetworks use a weight
generation network to generate the primary network
weights. A hypernet mainly uses matrix multiplication
and introduces substantial FLOPs. In the table below,
we analyze FLOPs of HyperNetwork for ResNet18 with
the embedding dimension of 64. FLOPs of a vanilla-
Res18 for ImageNet (224 input size) and CIFAR100
(32 input size) are 1.8G and 36.7M, whereas the weight
generation part of the HyperNet-Res18 takes 2.45G
FLOPs. This means the weight generation FLOPs are
1.4 times of vanilla-Res18 for ImageNet and 67 times
of that of CIFAR100. Empirically, we find the train-
ing and inference time HyperNet-Res18 is around 70x
larger than vanilla-Res18.

2. HyperNetworks do not have an arbitrary DoF (number
of reduced parameters). RPG uses a model ring of a size
(model DoF) that can be arbitrarily determined. In Hy-
perNetworks, the weight generation network uses the
same hyper-weight and requires embedding to be of a
certain size so that the matrix multiplication can be used
for generating primary network weights. Therefore, the
model DoF or reduced number of parameters cannot be
arbitrarily determined. In other words, RPG decouples
the model DoF (actual parameters) and the network ar-
chitecture, while HyperNetworks have model DoF and

architecture tightly coupled together, a highly restrictive
limitation.

3. Weights generated by HyperNetworks may be coupled
and not optimized for different layers. HyperNetworks
use only one weight generation network parameter-
ized by hyper-weight to generate all primary network
weights. This may not be optimal as different layers of
the primary network may need different weight gener-
ation networks. Additionally, matrix multiplication is
used for generating weights, and the generated primary
network weights may be coupled. On the other hand,
RPG has destructive weight sharing, which improves
the network performance by decoupling cross-layer net-
work weights. We will add these results and discussions
in the revision to clarify the differences between RPG
and HyperNetworks.

