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Abstract

We explore the challenges of human-in-the-loop frameworks to label wildlife
recognition datasets with a neural network. In wildlife imagery, the main challenges
for a model to assist human annotation are two-fold: (1) the training dataset is
usually imbalanced, which makes the model’s suggestion biased, and (2) there are
complex taxonomies in the classes. We establish a simple and efficient baseline,
including the debiasing loss function and the hyperbolic network architecture, to
address these issues. Moreover, we propose leveraging the semantic correlation
to train the model more effectively by adding a co-occurrence layer to our model
during training. We demonstrate the efficacy of our method in both our real-world
wildlife areal survey recognition dataset and the public image classification dataset,
CIFAR100-LT and CIFAR10-LT.

1 Introduction

Aerial remote sensing technologies [14] are being increasingly used to monitor and survey wildlife
populations safely [20, 22, 24]. However, manually processing real-world data is time-consuming
and expensive for researchers and natural resource agencies [2, 7, 9]. As a result, we explore a
human-in-the-loop approach [3, 6, 21] to utilize a deep neural network to collaborate with human
annotators to efficiently process our real-world wildlife dataset. In particular, our goal is to train
a neural network as an image classification model to actively assist human annotators in labeling
wildlife recognition datasets [17] by suggesting the class of unlabeled images.

When training a network to suggest image classes for real-world digital aerial imagery applications
correctly, we observe two major distinctive points in our multi-species dataset. (1) Imbalanced data
distribution. Like most real-world datasets [23], our dataset also shows extremely imbalanced data
distributions in the animal species [19]. Several dominant species are often observed, along with
many infrequent species that are sparsely represented in datasets. In our dataset, the largest class
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Figure 1: The six classes in our Cape Cod dataset have a hierarchical relationship described
in [17]. Target consists of three super-classes, Scoter Super-class, Common Eider,
Long-tailed Duck. Scoter Super-class could be further divided to Black Scoter,
White-winged Scoter, and Unknown Scoter.

had 6,246 training images, while the smallest class only had 17 training images. This issue could
harm the recognition accuracy as the model prediction can be easily biased towards the abundant
class [18]. (2) Class hierarchy. In addition, as illustrated in Figure 1, the labels in our dataset have a
clear hierarchy. For example, mutually exclusive Target and Non-target categories have the
highest hierarchy. The Target category consists of three second-level categories (super-classes):
Scoter, Common Eider, and Long-tailed Duck. Finally, the Scoter super-class consists
of three fine-grained classes such as Black Scoter, White-winged Scoter, and Unknown
Scoter. As the categories in our class list have different levels of hierarchy, it is necessary to treat
each category differently according to the corresponding hierarchy level.

As a baseline to consider the aforementioned characteristics, we first utilize a simple yet effective
debiasing loss [15] by leveraging the prior class distribution. In addition, to leverage the hierarchical
nature of the class labels, we utilize hyperbolic neural networks [5], to learn the hierarchy in the
labels effectively. To further boost the performance, we propose to learn the semantic correlation
by modeling the co-occurrence among the classes. In particular, we add a learnable co-occurrence
matrix on top of the model’s final layer to refine the probability of the class prediction.

We use a case study of a real-world digital aerial survey dataset of waterbird species collected from
the Atlantic Ocean near Cape Cod, Massachusetts, USA [17]. We show the efficacy of our method
with both our wildlife dataset and the public image classification datasets, the CIFAR100-LT and
CIFAR10-LT dataset [1, 4], where our approach shows favorable performance compared to the
baseline methods. In summary, our contributions are three-fold: (1) We explore a new problem
to actively label our new wildlife recognition dataset, (2) as a model to actively assist the human
annotation process, we establish a simple yet effective baseline model to address the class imbalance
problem and exploit label hierarchy, and (3) we propose a method to model the semantic correlation
in the class labels by adding a co-occurrence layer, which further improves the performance.

2 Modeling Semantic Correlation and Hierarchy

Given an input image X and the label Y , our goal is to learn a classifier that minimizes the clas-
sification error. As mentioned in Sec. 1, our dataset is imbalanced in categories and has a label
hierarchy. Therefore, we apply several methods to address these two challenges, (1) debiasing loss,
(2) hyperbolic model, and (3) semantic correlation based learning.

Debiasing Loss Function. We leverage one of the popular long-tailed image classification methods
named logit adjustment [15] for imbalanced data distribution. Logit adjustment encourages a large
relative margin between logits of rare positive versus dominant negative labels to balanced the
learning. In particular, we apply the logit adjustment [15] as a debiasing loss function during training.
Other concurrent debiasing loss functions, such as margin-based approaches (LDAM [1]), uniformly
increase the margin between a rare positive and all negatives and have relatively poor generalizability
in most scenarios where the negative classes have heavily biased distribution. In contrast, logit
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Figure 2: Our training framework including a hyperbolic module, debiasing loss function, and our
co-occurrence layer to leverage the label correlations.

adjustment loss increases the margin between a rare positive and a dominant negative in the output
probability, which is more suitable for realistic datasets like our dataset.

Hyperbolic Models. To effectively learn the hierarchy in the class labels, we add a hyperbolic
module [5] in our classifier to create an hyperbolic neural network (HNN) that utilizes the hyperbolic
space to embed data with hierarchical structures. In particular, hyperbolic neural networks lift
Euclidean features into hyperbolic space for classification. Hyperbolic neural networks have shown
to be helpful, especially on datasets with known semantic hierarchies. Specifically, we leverage the
clipped hyperbolic classifier [5] method, which is generally effective on standard image classification
benchmarks. This method clips the Euclidean feature magnitude in the hybrid architecture connecting
Euclidean features to a hyperbolic classifier while training HNNs. Hyperbolic features capture the
hierarchical structure of the dataset and improve the model’s image classification performance.

Learning with Semantic Correlations. Moreover, we propose taking advantage of the natural
correlations in the bird species. In particular, if a model gives high likelihood of the black scoter
(non-rare class), the model should give a similar likelihood of the white-winged scoter (rare class) as
well. In addition, the detection of the Non-target species should preclude other bird classes.

In particular, we define a learnable co-occurrence matrix [10, 11] in the form of L× L followed by a
softmax nonlinearity. Each entry of the matrix represents the conditional probability p(Y = i|Y ′ = j)
that the correct class of the given image is Y = j when a primary model prediction Y ′ is j. By adding
the co-occurrence matrix on top of the model’s final layer as a co-occurrence layer, the probability of
the refined class probability is predicted according to the law of total probability:

P (Y = i|X) =
∑
j∈Y

p(Y = i|Y ′ = j) ∗ p(Y ′ = j|X). (1)

This process is illustrated in Fig. 2. Since the co-occurrence layer is learned end-to-end via the
back-propagation from the loss function to the model input, it works as prior knowledge [8, 13, 26]
that can be automatically learned from the target dataset.

3 Experiments

Species Train # Test #
Common Eider 6,246 3,172
Unknown Scoter 466 114
Black Scoter 341 108
White-winged Scoter 45 21
Long-tailed Duck 17 5
Non-target Species 108 38

Table 1: The number of samples in our dataset for
training and testing split. The imbalance ratio of
our dataset is 367:1.

The main dataset we use is an aerial imagery
dataset collected by the U.S. Fish and Wildlife
Service at Nantucket Shoals (Cape Cod), Mas-
sachusetts, in February 2017. After data collec-
tion, wildlife experts manually cropped images
of individual birds (i.e., targets) and annotated
the images into six different classes, illustrated
in Figure 1: The number of samples for each
class is shown in Table 3.

Table 2 shows the quantitative results on our
dataset. The baseline (Vanilla) method shows
relatively poor performance, especially for species with limited training samples such as
Long-tailed Duck (17 training images) and White-winged Scoter (45), which have
0.0% and 38.1% test accuracy, respectively. On the other hand, Common Eider, the class with the
largest number of training samples (6,246), shows 99.1% test accuracy.
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Test accuracy (%)
Species Vanilla +LDAM +LA +LA+H +LA+Corr +LA+H+Corr (Ours)
Common Eider 99.1 93.8 92.0 86.8 91.5 91.8
Black Scoter 95.4 92.6 97.2 87.0 97.2 98.0
White-winged Scoter 38.1 71.4 85.7 61.9 85.7 85.9
Long-tailed Duck 0.0 100.0 100.0 100.0 100.0 100.0
Non-target Species 39.5 68.4 78.9 84.1 81.6 81.9

Average accuracy (%) 54.1 85.3 90.8 82.9 91.2 91.5
Table 2: Quantitative results on our Wildlife dataset. Our final model with logit adjustment loss
(+LA), hyperbolic module (+H), and our semantic co-occurrence aware learning method (+Corr)
shows the best performance is most of the classes.

Methods CIFAR100-LT CIFAR10-LT
Vanilla 38.3 70.4
LDAM [1] 42.0 77.0
LA [16] 43.9 77.7
Ours 45.3 79.0

Table 3: Top-1 accuracy on CIFAR10-LT and CIFAR100-
LT dataset [1, 4] with the imbalance ratio of 100. Our
final model consistently outperforms the baseline methods
across different imbalance factors.
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Table 4: The visualization of
the learned co-occurrence matrix.
Along the Y-axis is the given ac-
tion, and the X-axis enumerates
conditional actions.

While the classification model with a traditional debiasing loss function (LDAM [1]) already improves
the recognition performance over the vanilla model, our model with the logit adjustment loss function
(LA [16]) shows even more performance improvement in all the classes (+31.2% average classification
accuracy improvement from LDAM and +36.7% from LA). The largest gain comes from the two tail
classes, Long-tailed Duck and White-winged Scoter, from 0.0% to 100.0% and 38.1%
to 85.7%, respectively. Despite the improvements in the less abundant classes, the performance of
Common Eider dropped by 7.1%, which is a common phenomenon of imbalanced methods where
the performance of large classes is sacrificed [12, 18, 25].

Upon the logit adjustment loss, adding both the hyperbolic module or our co-occurrence based
learning method gives noticeable performance improvements in the Non-target Species class
by better learning the correlation among the categories. However, the hyperbolic module shows
performance drop in most of the other classes. We conjecture that it is because the number of class in
our Wildlife dataset is too small (which might have relatively weak hierarchy among the labels) and
the hyperbolic module requires large number of parameters (which causes overfitting problem). Note
that combining both the hyperbolic module and our co-occurrence based learning method leads to the
best performance by compensating the weakness of each other.

We also evaluate our method on standard image classification datasets with class imbalance,
CIFAR100-LT and CIFAR10-LT [1, 4] with the imbalance ratio of 100, in order to validate the
efficacy of our method to alleviate imbalance problems. The result is shown in Table 3. As shown
in the table, our method our method shows the best performance compared to the recent powerful
debiasing methods, LDAM [1] or logit adjustment [16]. This signifies that our method is also effective
to alleviate class imbalance on popular benchmarks.

Finally, we visualize the learned co-occurrence matrix from our method in Fig. 4. The corre-
lation between Black Scoter and White-winged Scoter and the correlation between
Long-tailed Duck and Non-target Species can be found in the co-occurrence matrix.
An interesting observation is that there is a correlation between White-winged Scoter and the
Long-tailed Duck, which is not intuitive.
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4 Conclusion

We explore a human-in-the-loop approach to utilize a network to collaborate with human annotators
to process our real-world wildlife dataset. We also present solutions, including the debiasing loss
function, hyperbolic model, and our semantic correlation learning. We hope our challenges and
solutions inspire future researchers in wildlife surveys.
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