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Abstract

We observe that solving the long-tailed distribution problems in real-world image
datasets requires a fine-grained understanding of the local parts in an image. We
propose a novel self-supervised learning framework with a new concept we call
local pseudo-attribute (LPA) that is learned via clustering with local features
without any extra human annotation. Note that the pseudo-attributes can be more
balanced compared to the image-level class labels. Our final method using local
pseudo-attributes achieves state-of-the-art performance through the experiments on
various image classification setups with long-tailed distribution, such as CIFAR100-
LT, iNaturalist, and ImageNet-LT datasets compared to the current long-tailed
recognition methods.

1 Introduction

Real-world datasets mostly exhibit long-tailed data distributions [29]. This motivates the well-
studied problem of long-tailed recognition, which has attracted increasing attention especially using
deep neural networks [4, 10, 16, 17, 24, 31, 32, 33]. Various methods have been proposed to
alleviate the long-tailed distribution problem starting from simple re-sampling [1, 2, 5, 27, 30] and
re-weighting [3, 4, 8, 9, 11, 12]. Most of the existing methods can be seen as machine learning based
approaches, which considers images as data points. In contrast, we propose a vision perspective to
alleviate long-tailed distribution problem and focus on the local relations within the image.

Unlike small-scale datasets like CIFAR-LT [4, 8], realistic image datasets requires fine-grained
scene understanding capability, which makes the long-tailed recognition more challenging. Without
fine-grained understanding capability, a model can be easily confused among the rare class images
(“Robin” or “Hummingbird” in Fig. 2) with similar global structure. In such realistic and fine-grained
image datasets, the key to distinguish the rare class images from the distractor images is the local
parts of the object, such as the color of the body or the length of the beak. We observe in Fig. 1 that
the pairs of rare and non-rare class images that share the same attributes (a long tail of the bird or
pointed ears of the dog). Our goal is to leverage such knowledge from non-rare classes to better
discriminate the rare class samples.

To this end, we propose a novel concept of local pseudo-attributes (LPA) that are obtained in an
unsupervised manner. In particular, we run the K-means clustering on the pixel-level feature vectors
from a model to obtain the pseudo-attribute prototypes. We conjecture that each prototype contains
the specific visual pattern such as “forest-like” or “sky-like.” Then, we aggregate the pseudo-attribute
scores of the samples with the same class to compute the class-level attribute ground truth with the
visual commonality. Fig. 2 shows the examples of the pseudo-attribute ground truth such as “Blue
sky, Blunt beak, Long tail” for “Robin” class that contains the visual commonality within the class.
The rare class “Robin” is assigned with the more discriminative supervision signals by leveraging the
knowledge of the abundant samples for non-rare classes. We name the label as the pseudo-attributes
because these labels contains the attribute information such as the shape or texture without relying on
any extra human labels. Also note that, as the pseudo-attributes are based on the low-level local parts,
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Figure 1: The example of the pairs of rare (top row) and non-rare (bottom row) class samples from
the ImageNet-LT dataset [22]. Although the overall appearance is different between the rare and
non-rare classes, there are local parts with the same attributes that are shared between the rare and
non-rare classes (long tail of the bird, pointed ears of the dogs, white color of the birds, and dotted
patterns on the lizards). We propose to leverage such local attributes to better train rare class images.

the pseudo-attributes are less biased compared to the image-level class label. Given a pseudo-attribute
labels for each class, we use supervised contrastive learning [7] to force the predictions between the
samples with similar pseudo-attribute labels to be similar. Thereby, in Fig. 2, although the global
appearance is similar, the image of “Robin” is pushed towards the image of “Bulbul” while the image
of “Hummingbird” is not. Such different supervision helps the model to discriminate the two similar
rare class images.

Our method achieves the state-of-the-art image classification accuracy on various long-tailed image
classification benchmarks such as CIFAR100-LT [4, 8], iNaturalist [29], and ImageNet-LT [22]
datasets. Our contributions can be summarized as follows: (1) For a long-tailed recognition problem,
we propose a novel concept we call local pseudo-attribute (LPA) that is learned via clustering with
local features which does not require any extra human annotation. (2) We leverage the pseudo-attribute
labels to train our model via contrastive learning so that the model receive discriminative supervision
based on the fine-grained detailed object parts. (3) We evaluate our new method on various data setups
with long-tailed distribution including CIFAR100-LT, iNaturalist, and our ImageNet-LT dataset. Our
method surpasses the current state-of-the-art methods long-tailed recognition methods.

2 Local Pseudo-Attributes

Given an input image x and the class label y, a covolutional network consist of an encoder f(·)
and the decoder g(·) takes the image x as input to compute the class probability sequentially, i.e.,
Z = f(x) ∈ RW×H×D and ŷ = g(GAP (Z)) ∈ RC , where W , H , D, C are the width and
height of the latent spatial feature, dimension of the feature vector, and the number of classes. Here,
z = GAP (Z) is the latent feature vector from the global average pooling. Then, the pooled feature
vector z and the class prediction ŷ are used to compute the supervised contrastive loss function
LPaCo(ŷ, z, y) from [7] to train the model.

In order to improve the model’s fine-grained discrimination among rare classes, we introduce a
novel concept we call local pseudo-attribute (LPA) which are be obtained by clustering the local
features. In particular, we cluster the W ×H number of D-dimensional local features from Z along
the training data to obtain the cluster prototypes that we name the pseudo-attributes. We call this a
pseudo-attribute because this can be the an alternative of the attribute labels that does not require
human labeling effort. Also note that the pseudo-attributes are less biased compared to the original
class label in that the non-rare class and the rare class share similar local parts.

Then, we aggregate the pseudo-attribute scores of the samples with the same class to compute the
class-level attribute ground truth a(y). Given an pseudo-attribute labels for each class, we use the
supervised contrastive learning objective [13] to force the predictions between the samples with
similar pseudo-attribute labels to be similar. Then, we use the combination of the loss functions to

2



Category

Number of 

Samples

Bulbul (Many) Hummingbird (few) Robin (few)

Clustering

• Green forest

• Blunt beak

• Long tail

⋮

• Blue sky

• Pointed beak

• Short tail

⋮

• Blue sky

• Blunt beak

• Long tail

⋮

Pointed beak

Green forest

Blue sky

Long tail

Figure 2: The illustration of the proposed framework with the examples in the ImageNet-LT
dataset [22]. We run K-means clustering to obtain a set of cluster of local features, we call them local
pseudo-attributes. Then, we assign each training image with the pseudo-attribute labels and use the
pseudo-labels to refine the model in a self-supervised way. The model learns to distinguish the rare
class, Robin, from the Hummingbird class by giving different supervision signals (pointed VS blunt
beak and short VS long beak) by leveraging the knowledge from the non-rare class samples (Bulbul).

Methods 100 50 10
LDAM-DRW [4] 42.0 46.6 58.7
LWS [10] 42.3 46.0 58.1
BBN [35] 42.6 47.0 59.1
MisLAS [34] 47.0 52.3 63.2
Logit Adj [23] 43.9 - -
PaCo [7] 52.0 56.0 64.2
TSC [20] 43.8 47.4 59.0
GCL [19] 48.7 53.6 -
CMO [25] 50.0 53.0 60.2
Our Baseline 51.3 55.8 63.2
LPA (Ours) 53.3 57.1 65.1

Table 1: Top-1 accuracy on CIFAR100-LT
dataset. Our final model consistently outper-
forms the state-of-the-art method across different
imbalance factors.

Methods Top-1 accuracy
LDAM-DRW [4] 68.0
LWS [10] 65.9
BBN [35] 66.3
MiSLAS [34] 70.7
Logit Adj [23] 66.4
RIDE [31] 72.6
PaCo [7] 73.2
TSC [20] 69.7
CMO [25] 72.8
GCL [19] 72.0
LPA (Ours) 73.6

Table 2: Top-1 accuracy over all classes
on iNaturalist 2018 with ResNet-50. Our
method achieves the state-of-the-art perfor-
mance on iNaturalist dataset as well.

train the model:
LPaCo(ŷ, z, y) + αLSupCon(z,a(y)), (1)

where α is the hyper-parameter to weight the losses.

3 Experiments

We follow the common evaluation protocol [7, 22] in long-tailed recognition. We conduct experiments
on long-tailed version of CIFAR-100 [4, 8], iNaturalist 2018 [29], and ImageNet [22] datasets.

CIFAR100-LT. The experimental results on CIFAR100-LT are listed in Table 1. As shown in Table 1,
our final model (LPA) consistently outperforms the state-of-the-art methods, PaCo [7] and CMO [26],
across all different imbalance factors by a large margin. In particular, our method surpasses PaCo
by 1.3%, 1.1%, and 0.9% under imbalance factor 100, 50 and 10 respectively, which testify the
effectiveness of our method. Note that our baseline model shows lower performance than PaCo across
different imbalance factors.

iNaturalist and ImageNet-LT. Table 2 lists experimental results on iNaturalist 2018. Under fair
training setting, our local pseudo-attribute (LPA) method consistently surpasses recent state-of-the-art
methods of TSC, CMO, and GCL as well as the CIFAR100-LT dataset. Also, Table 3 shows the
results on the ImageNet-LT. Our method still outperforms the state-of-the-art long-tailed recognition
method, CMO [25], in all the metrics, which signifies the general effectiveness of our method.
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Methods Many Med. Few All
Cross Entropy 65.9 37.5 7.7 44.4
OLTR [22] - - - 46.3
cRT [10] 61.8 46.2 27.4 49.6
LWS [10] 60.2 47.2 30.3 49.9
SSD [21] 64.2 50.8 34.5 53.8
TSC [18] 63.5 49.7 30.4 52.4
CMO [25] 66.4 53.9 35.6 56.2
LPA (Ours) 66.7 55.4 39.0 57.5

Table 3: Top-1 accuracy on ImageNet-LT dataset compared to the state-of-the-art methods with
ResNeXt-50 as backbone. Our method outperforms the state-of-the-art methods in all the metrics.

dome patio, terracecauldron domedome

stopwatch stopwatch scale, weighing machine lens capanalog clock

Figure 3: Image retrieval results with the same pseudo-attributes given a rare class sample. The first
row shows that the model correctly learns the pseudo-attribute for “dome-like” structure. The second
row shows the result of the pseudo-attribute for “watch-like” structure.

Analysis on the pseudo-attributes. Given the the rare class sample as a query, we retrieve images
with the same pseudo-attribute labels in Fig. 3. The figure shows that the learned pseudo-attributes
which helps the model correctly predict the class of the test images. For example, the first and second
rows show the retrieval result of the pseudo-attribute for “dome-like” and “watch-like” structure,
respectively. Note that learning this pseudo-attributes is a self-supervised learning method and does
not require any human labor to label specific attributes.

4 Conclusion

To alleviate the long-tailed distribution in the image classification, we have proposed a self-supervised
learning framework with the novel concept of pseudo-attribute, which does not require extra an-
notations. The proposed model achieved the state-of-the-art performance on various long-tailed
recognition benchmarks such as CIFAR100-LT, iNaturalist, and ImageNet-LT datasets. The possible
future research direction would be applying the pseudo-attributes for other tasks that suffer from the
bias problems such as semi-supervised learning [15, 24] or active learning [6, 14, 28].
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