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Abstract

Real-world visual recognition of an object involves not only its own semantics but
also those surrounding it. Supervised learning of contextual relationships is re-
strictive and impractical with the combinatorial explosion of possible relationships
among a group of objects. Our key insight is to formulate visual context not as a
relationship classification problem, but as a representation learning problem, where
objects located close in the feature space have similar visual contexts. Such a model
is infinitely scalable with respect to the number of objects or their relationships.
We develop a contextual visual feature learning model without any supervision
on relationships. We characterize visual context in terms of spatial configuration
of semantics between objects and their surrounds, and derive pixel-to-segment
learning losses that capture visual similarity, semantic co-occurrences, and struc-
tural correlation. Visual context emerges in a completely data-driven fashion, with
objects in similar contexts mapped to close points in the feature space.
Most strikingly, when benchmarked on HICO for recognizing human-object interac-
tions, our unsupervised model trained only on MSCOCO significantly outperforms
the supervised baseline and approaches the supervised state-of-the-art, both trained
specifically on HICO with annotated relationships!

1 Introduction

Real-world visual perception of an object is far more complex than its own semantic categorization.
What surrounds the object has a great impact. For example, drivers pay more attention to pedestrians
hustling through an intersection than trolling down a sidewalk; A baby holding a knife versus a bottle
would be seen and reacted differently by their caregivers. That is, real-world object recognition
is not about attaching class labels to individual objects in isolation, as studied in computer vision
recognition benchmarks nowadays, but about recognizing objects along with their contexts.

Visual context has been conventionally characterized by statistical co-occurrences of patches and
objects, although its definition varies with different formulations: It has been modeled as spatially
organized image feature (e.g., scene gits [1]), co-occurring object semantics [2, 3, 4, 5, 6], instance
statistics [7], or co-occurring instance graphs [8].

Higher-level visual tasks naturally require the differentiation of visual contexts. In human-object
interaction (HOI) detection [9, 10, 11], action recognition [12, 13], or scene graph generation[14],
semantic classes are defined not just based on the collection of objects themselves, but their poses
and relationships with each other: A person could push a bike, ride a bike, or lean against a bike. In
image captioning [15, 16] and visual question answering [17, 18], co-occurring statistics is further
refined to reflect that interesting events (not any events) are more likely to be named. To understand a
movie [19], object relationships are extensively reasoned spatio-temporally and semantically.
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One way to learn contextual relationships is from annotations. While annotating the semantic
category of objects is time-consuming but not infeasible, annotating visual contexts quickly becomes
impractical with an increasing number of object categories. For example, Visual Genome [14] has
33, 877 objects and 42, 374 pair-wise object relationships alone. With group-wise or spatio-temporal
contexts, the actual number of relationships explodes exponentially. It is not only hard for humans to
annotate, but also ineffective for models to predict a large set of contextual relationships.

Our key insight is to approach visual context as a representation learning problem, not a classification
problem [20, 21]. Instead of predicting discrete relationship categories, we learn to map object
instances of similar (dissimilar) contexts close (far) in some feature space. Where an object instance
is located in the feature space indicates the type of visual context it belongs to. Such a representation
learning model is infinitely scalable, unconstrained by the total number of objects or relationships.

We demonstrate the above concept by learning contextual visual features for recognizing human-object
interactions without using any annotations on such relationships. Existing annotated interactions only
consider a restrictive subset of object-pair relationships, e.g., the pairwise relationship of a person
riding a horse detected on green grass vs. a soccer field carries different perceptual qualities. We
therefore use large-scale generic image datasets such as MSCOCO [16] as the training set, although
they are only annotated with object instances and their semantic categories [22].

We model visual context in terms of spatial configuration of semantics between objects and their
surrounds, and train their feature representations in a contrastive fashion accordingly. We use
a convolutional neural network (CNN) to learn a pixel-wise feature mapper that encodes visual
information centered at each pixel semantically and spatially. Pixels that are closer in the feature
space have not only similar visual appearances in the same semantic category, but also similar spatial
arrangements of surrounding semantics. For example, a person riding a horse on grass, a person
riding a horse on street, a person walking a horse on grass should form their individual clusters
instead of being mixed up in one cluster.

We formulate a pixel-to-segment contrastive learning loss [20] for contextual visual feature learning,
where pixels are attracted to their positive segments and repelled from their negative segments. The
positive and negative segment sets for each pixel are defined based on not only its own instance and
semantic information [23], but also its surrounding semantics.

Visual contexts emergent in such contrastively learned features are completely data-driven and more
general than supervisedly learned models. Benchmarked on HICO [10] for recognizing human-
object interactions for each person instance, our unsupervised model trained only on MSCOCO with
annotations of semantics not relationships outperforms the basic supervised relationship classifier and
approaches the state-of-the-art supervised model, both specifically trained on HICO relationships! In
addition, we show that unsupervised characterization of visual context helps learn more discriminate
features that can improve semantic segmentation performance.

2 Related Work

Instance context. Earlier works studied instance contextual relationships mainly to improve object
detection. [8] proposed an instance-wise exemplar and 2D spatial graph to model context. [3, 6]
and [4, 5] proposed Hand-crafted features and tree-based models to capture context in terms of
co-occurring statistics and spatial configurations among objects and their semantics [7]. Recent works
have developed graphs [24] or spatial memory [25] to encode context in their deep learning models.
We instead capture context implicitly in our learned feature space, and remarkably, we are able to
recognize high-level contextual relationships (e.g., human-object interactions) automatically..

Human-object interaction. Since various Human-Object Interaction detection works constructed
large-scale labeled image datasets [9, 10, 26, 27], significant progress has been achieved for
this problem with different methods such as box transformations [9, 28, 29, 30], two channel
interaction [10, 31], mutual contexts of human pose and object [29, 32, 33], Contextual corre-
lation [34], correlation prior of interactions [35], Visual transformer [36, 37, 38, 39], or Graph
modeling [40, 41, 42, 43, 44]. Beyond typical human and object appearance features, in order to
improve the generalizablilty of the relationship detection, HOI detection works devise various infor-
mation as input such as human pose [29, 45, 46] or linguistic prior knowledge [47, 40, 48, 49, 50],
which require extra human labeling effort to capture such knowledge. More recent works combine
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these various cues [29, 46, 51, 52]. Our model does not require additional cues such as human pose
or language other than RGB images.

Weakly-supervised [53] and zero-shot relationship detection [54, 55, 56, 49, 51, 57] have been
studied to improve data efficiency. However, existing zero-shot learning works require large-scale
external data to pre-train linguistic knowledge. Although [35, 58] uses prior knowledge that can be
obtained from the target training data itself, their method shows limited generalizability on unseen
image domains. Weakly-supervised learning still requires laborious image-level annotations.

In contrast, our unsupervised learning is more general: It requires neither target domain information
nor relationship labels when training on source data such as MSCOCO. That is, our unsupervised
visual context predictor delivers better zero-shot performance than the supervised counterpart!

3 Contextual Visual Feature Learning without Supervision

We approach contextual relationship recognition as a feature learning problem. We map pixels to
points in a feature space, such that object instances are grouped (separated) if they have similar
(different) contextual relationships. Our model does not use or output any pre-defined relationship
categories; it groups objects according to their own semantics and visual contexts. If a relationship
label is desired, we retrieve nearest neighbours of a query in the feature space and transfer their labels.

Unlike supervised learning methods that train a model based on annotated (restrictive) relationships,
e.g., a person riding a bike, our unsupervised relationship learning method trains a model based on
the semantic category distribution at surrounding neighboring patches of the centered object instance.

3.1 Our Task: Unsupervised Visual Relationship Learning

Supervised setting. Given an image and a set of detected objects, visual relationship labeling [9, 10,
14] infers the relationship among object instances. Supervised methods [28, 36, 42] can only reason
in restricted terms specified by training labels, e.g., between a pair of objects. To understand the
relationship among a group of objects, higher-order information needs to be further extracted.

Unsupervised setting. In a stark contrast to these existing methods, we consider a more general but
unsupervised learning setting. We assume no prior knowledge of relationship categories. We train
our model on a generic image dataset, given only semantic and instance labels on pixels. Our goal is
to infer the relationship of each object instance in a test image. For simplification, we detect object
instances using off-the-shelf detectors or ground-truth bounding boxes. For inference, we extract
features within an object’s bounding box, retrieve their nearest neighbors from a labeled set, and
predict relationships by transferring neighbors’ labels (see Fig. 1).

Evaluation metric. We evaluate the retrieval performance based on the interpolated average precision
(AP) metric [59, 60]. We calculate recall (R) and precision (P) by comparing the query’s label to the
retrieved ones. AP measures the interpolated area under the PR-curve, and is commonly adopted for
instance detection and segmentation tasks [16]. See [60] for more details.

3.2 Our framework: Pixel-to-segment Contrastive Learning

SegSort [20] is an end-to-end feature learning framework that learns pixel-wise features and the
corresponding segmentation based on EM-optimization that maximizes the discrimination among
image segments from the entire dataset.

Specifically, a CNN ϕ maps image I to pixel-wise features V = {vvvi}, where vvvi = ϕ(xi) denotes the
unit-length features centered at pixel xi. When V is fixed, SegSort generates an image segmentation
using the spherical K-Means algorithm [61]. The E-step assigns pixels to their nearest segments. The
M-step updates segment features U = {uuus} as the length-normalized average pixel feature within

each segment: uuus =
∑

i∈Rs
vvvi

∥
∑

i∈Rs
vvvi∥ , where Rs is the area of segment s.

Let S = {s} be the set of segments and zi the segment index of pixel i. The posterior probability of

pixel i belonging to segment s is formulated as: p(zi = s|vvvi, U) =
exp(κuuu⊤

s vvvi)∑
t∈S exp(κuuu⊤

t vvvi)
, where κ is the
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Figure 1: Our framework can discover high-level visual contextual relationships automatically.
Take recognition of human-object interactions for example [10], interaction labels are composed of
(person, interaction, object) triplets. Left: Supervised frameworks consider the task as a discrete
classification problem. They can only reason in restricted terms specified by training labels, e.g.,
between a pair of objects. Right: Our framework tackles the task as a feature learning problem. We
learn the feature mappings from semantic and instance labels on pixels. Without any prior knowledge
of relationship categories, we predict the interactions of the query person subject by transferring
nearest neighbors’ labels. Red arrows indicate loss signals.

concentration hyper-parameter. To increase the discrimination among segments, pixel features are
optimized to minimize the corresponding negative log-likelihood loss: − log p(zi = s|vvvi, U).

When ground-truth labels C are provided, SegSort adapts the loss in a soft neighborhood assignment
formulation [62] to enhance groupings of same-label segments. The pixel-segment contrastive loss is:

L(C) = − log
∑
s∈C+

i

p(zi = s|vvvi, U) =

∑
s∈C+

i
exp(κuuu⊤s vvvi)∑

t∈C+
i ∪C−

i
exp(κuuu⊤t vvvi)

(1)

where C defines the positive (negative) set C+
i (C−

i ) for pixel i. C+
i includes all same-label segments

except i’s own segment, and C−
i denotes the set of different-label segments.

3.3 Our Loss: Contextual Visual Feature Learning

The ideal contextual feature mapper should capture not only the visual appearance of the object itself,
but also the statistical distribution and spatial organization of the surrounding semantics. We optimize
the pixel-wise feature mapper with three pixel-to-segment contrastive losses that encode local-to-
global visual contexts: 1) instance-wise discrimination, 2) instance-level co-occurring semantic
statistics, and 3) image-level semantic co-occurrences (Fig. 2). We also introduce an additional
regularization term, resulting in a total of 4 terms in the loss function.

Instance-wise discrimination. The idea is to push instances away from others such that only visually
similar instances stay close in the feature space. Following [23], we contrast pixels with segments
based on their instance labels CO. Positive segments are the ones within pixel i’s instance; negative
segments include different-instance segments within and other than i’s image.

Instance-level co-occurring semantic statistics. The surrounding context should also indicate
how to develop feature mappings for each object instance. For example, a bike rider should be
distinguished from a motorbike rider. We quantify the surrounding contexts and define contrastive
relationship accordingly. Specifically, we calculate the semantic category distribution at the center
and eight neighboring patches of the centered object, where the patch size is the same as object’s
height and width (Fig. 3). Within each patch, we measure the occurrence of each semantic category
(including both things and stuff), resulting in a binary contextual feature vector.
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(a) instance-wise discrimination (b) instance-level co-occurring (c) image-level co-occurring
semantic statistics semantic statistics

Figure 2: We construct three types of contrastive relationships to encode local-to-global visual
contexts in our learned feature mappings. Pixels are attracted to ( repelled by) segments: (a) of the
same (different) instance, (b) of similar (distinctive) semantic surrounds, and (c) belong to similar
(different) image-level scenes. Such global scenes can be approximated by the occurrence of semantic
categories in the image. The idea contextual feature mapper should capture both the visual appearance
of the object itself, and the statistical distribution and spatial organization of the surrounds.

We define local context pseudo labels CL based on such second-order statistics. We compute the
Hamming distance between the contextual feature vectors of different objects. For pixel i, we define
positive segments as the ones belonging to the top-ranked neighbors of i’s object; others are negative
segments. Positive segments are restricted to have the same semantic category. Our goal is to
encourage groupings of object instances embedded in similar contexts.

Image-level co-occurring semantic statistics. We impose a more global regularization at the scene
context level. Following [21], we characterize scene context in terms of the occurrences of semantic
categories. Images with similar distribution of semantic categories tend to have similar scenes.

We ignore the spatial layout, and measure the occurrence of semantic categories within each image,
from which we define global context pseudo labels CG. For pixel i, its positive set includes all
segments from the set of images which share at least one semantic category with i’s image. All other
segments are considered negative. That is, we desire pixels to be separated by their scene types.

Predictive coding regularization. We additionally impose a predictive coding loss to explicitly
enforce structured correlation among pixel features. Intuitively, the feature at one pixel should help
predict the feature at other pixels in the image. Following [63], we apply the regularization in a
denoising autoencoding manner. We derive a noisy set of pixel features V ′ by randomly masking out
a subset of pixel features from V . The goal is to reconstruct V from V ′ using multiple encoder and
decoder layers. Let ψ be the autoencoder, the loss is: LM = ∥V − ψ(V ′)∥22. See [63] for details.

Total training loss. There are 3 pixel-to-segment contrastive feature loss terms and 1 predictive
coding regularization term: L = λOL(CO) + λLL(CL) + λGL(CG) + λMLM . The two types of
losses are complementary to each other: The former enhances feature discrimination without any
regard to spatial correlation, whereas the latter enforces structured correlation among pixels within
an image, without any regard to instances in different images. We integrate these two aspects in the
overall loss to optimize our contextual visual feature.

4 Experiments

We detail our training/testing procedures, and then benchmark our unsupervised visual context model
on zero-shot recognition of human-object interactions and additionally semantic segmentation.

Dataset: HICO [10] is a generic human-object interaction dataset. It is labelled with 600 human-
object interaction categories w.r.t 80 object categories. Both human and object bounding boxes are
provided. The dataset has 38, 118 and 9, 658 images for training and testing.
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Figure 3: We quantify local visual contexts by calculating the semantic category distribution within
each of the nine patches of the centered object (circled by red lines). The patch size is the same
as object’s height and width. Top: For each patch, we measure the occurrence of each semantic
category, resulting in a binary contextual feature vector. Bottom: Based on such statistical contextual
features, we conduct nearest neighbor search for each query object. Top-ranked retrievals have similar
semantic surrounds as the query. We contrast pixels according to such second-order statistics to
encode visual contexts.

Dataste: MSCOCO [16] is a complex scene parsing dataset with 80 things and 91 stuff categories.
Images have a high variety of visual scenes, such as dining, snow skiing, boat piloting, horse riding
etc. We adopt train2017 split (118K images) for training.

Dataset: Cityscapes [64] is a dataset for urban street scene parsing. It contains 19 things and stuff
categories, such as road, pedestrian, and cars etc. 5, 000 images are annotated with high-quality pixel
labels, which are split into 2, 975, 500 and 1, 525 for training, validation and testing.

Dataset: Pascal VOC 2012 is an object-centric semantic segmentation dataset, labelled with 20
object categories and a background class. Compared to MSCOCO, the image scenes are less complex,
with an average of 2.3 objects occur per image (7.3 objects for MSCOCO). We augment the training
set with additional images [65], resulted in 10, 582 and 1, 449 for training and validation.

Supervised baselines. We consider two kinds of supervised baseline methods for comparison: 1)
Spatially Conditioned Graphs (SCG) [42], and 2) vanilla binary classifier. For SCG, we perform
inference using HICO-trained ResNet50-FPN model weights, such that both object detector and
interaction classifier are fine-tuned on HICO dataset. For vanilla binary classifier, we adopt exactly the
same architecture as our method, but average pool pixel-wise features within each human bounding
box. Additional two 1 × 1 convolutional layers are used as the binary classifier to predict the
occurrence of each kind of interaction. Notably, SCG requires pairing a human with an object to
classify their interaction, whereas, vanilla binary classify considers each human individually.

Oracle baselines. We consider an oracle baseline method using ground-truth semantics for HOI
recognition. On HICO dataset, we compute instance-level co-occurring semantic statistics using
ground-truth bounding boxes. We convert bounding boxes into instance and semantic pixel labels. For
each human instance, we calculate semantic category distribution at the center and eight neighboring
patches. We perform nearest neighbor search using such binary context-induced features to infer HOI
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(a) Interaction category (b) Interacting object category

Figure 4: Our unsupervised model approaches the supervised state-of-the-art for recognizing HOIs
on HICO. Left: Performance evaluated on 600 interaction categories. Right: Performance evaluated
on 80 interacting object categories. Our framework discovers high-level contextual relationships
without any prior knowledge of relationship categories.

for the query human instance. Notably, our framework applies the procedure only during training on
MSCOCO, whereas, the oracle baseline infers using HICO ground-truths.

Testing. For inference with our framework on HICO, we average pool and length normalize pixel-
wise features within each human bounding box. We use the ground-truth human boxes but not object
boxes. For SCG, object boxes are predicted with the object detector. For the oracle baseline and our
method, We retrieve 20 nearest neighbors to predict interaction labels. For each query, we count
the occurrence of each interaction category, and adjust the threshold from minimum to maximum
number of occurrence. For both supervised baselines, we adjust the threshold w.r.t the classification
scores. Threshold is applied to decide if the interaction category is detected. We plot the PR-cure and
calculate AP performance correspondingly.

For inference of semantic segmentation on Cityscapes and VOC, we follow [20] to predict pixel
labels by nearest neighbor search. See [20] for more details.

For all experiments, we dot not use multi-scale but only single-scale images during inference.

Results on HICO: HOI recognition. We present the quantitative results for HOI recognition on
HICO dataset. As shown in the left figure of Fig. 4, our method is upperbounded by the oracle
baseline, and we achieve 68.7% of the oracle performance (21.5%vs.31.3% AP). Remarkably, our
method has never seen any HICO image and label, but still obtains comparable performance w.r.t
the SOTA supervised baseline: SCG (21.5%vs.24.3% AP). We report the performance based on the
interacting object category not the interaction category in the right figure of Fig. 4. Our method
achieves 76.5% and 84.7% performance with respect to the oracle and SCG baseline.

We summarize that training using ground-truth labels does not guarantee good testing performance
to distinguish humans with different interactions. Our learned contextual features work as well as
supervised classifiers. However, there is still room for improvement for our method to group instances
according to co-occurring object semantics more precisely.

Note that HICO dataset annotates the human bounding boxes for each interaction label. Although the
same human instance could have multiple interactions, we conduct inference on the human bounding
box of each interaction label, individually. We do not filter out duplicated human instances, resulting
in noisier predictions and less optimal performance than the ones reported in [42].
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Query Top-ranked retrievals

<sit on, bench> <sit on, bench> <sit on, bench> <sit on, bench> <sit on, bench> <sit on, bench>

<hold, bird> <hold, bird> <hold, bird> <hold, bird> <hold, bird> <release, bird>

<blow, cake> <blow, cake> <blow, cake> <blow, cake> <blow, cake> <wield, knife>

<N/A, broccoli><N/A, broccoli><N/A, broccoli><N/A, broccoli><N/A, broccoli> <hold, spoon>

Figure 5: High-level contextual semantics emerge from our learned feature mappings. On HICO,
we compute the average features within each human bounding box and conduct nearest neighbor
retrievals. The ground-truth interaction label are shown in the form of <interaction, object> pair
and put below each human instance. Strikingly, we found instances with the similar contextual
relationships are close in the learned feature space. N/A denotes ‘no interaction’ category.

Dataset Method mIoU.

Cityscapes SegSort 69.49
Our framework 70.38

VOC SegSort 75.98
Our framework 77.71

Table 1: Our contextual regularizations im-
prove semantic segmentation.

Results on VOC and Cityscapes: semantic seg-
mentation. We summarize the efficacy of the
proposed contextual regularizations for semantic
segmentation on VOC and Cityscapes dataset in
Table 1. Compared to SegSort [20], which uses
only semantic pixel labels, we improve the semantic
segmentation performance by 0.89% and 1.73%
mIoU on Cityscapes and VOC. We show that our
proposed regularizations help recognition in terms of
capturing not only pixel itself, but also the surrounding
contexts.

Visual results. We present visual results of nearest neighbor retrievals using our learned feature
mappings in Fig. 5. Human instances of the similar contextual relationships are grouped.

Summary. We develop a contextual visual feature learning model to tackle recognition of human-
object interactions. Without any supervision on relationships, our model approaches the supervised
state-of-the-art and is able to discover such high-level contextual relationships automatically. Limita-
tions: Our model still requires human-labeled supervision, in terms of semantic and instance labels
on pixels. Potential negative societal impacts: Our work does not introduce new societal impacts
but share them with any other recognition or segmentation works.
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A Appendix

We develop a contextual feature learning framework that tackles zero-shot recognition of human-
object interactions. Our proposed regularizations enforce encodings of spatial semantic context in the
latent features. Visual context emerges in a completely data-driven fashion. Our framework achieves
competitive performance against SOTA supervised baselines on HICO dataset. Our proposed losses
also deliver performance gain for semantic segmentation tasks on Pascal VOC and Cityscapes. In
this supplementary, we include more details as followings:

• We present ablation study on our proposed regularizations in A.1.
• We detail our model architecutres in A.2.
• We detail our training procedure and choice of hyper-parameters in A.3.

L(CO) LM L(CG) L(CL) AP

✓ - - - 70.6
✓ ✓ - - 71.1
✓ ✓ ✓ - 71.9
✓ ✓ ✓ ✓ 72.6

λM AP

0.0 71.7
0.5 72.3
1.0 72.6
2.0 71.1

λG AP

0.0 71.6
0.5 72.6
1.0 71.6

λL AP

0.0 70.9
0.66 72.6
1.0 71.6

Table 2: Each of our proposed loss regularizations helps feature mappings to capture visual contexts
better. We report the performance evaluated by interacting object categories on HICO. From left to
right: the performance gain resulted from the addition of each loss, and the effects of loss weightings.

A.1 Ablation study.

We summarize the efficacy of each proposed regularization in Table 2. We report the AP performance
based on interacting object category. By successively adding loss terms LM , L(CG) and L(CL), we
improve the performance by 0.5%, 0.8% and 0.7% AP, compared to the models training with only
instance discrimination loss. We also study the weightings for each loss, and adopt the best set of
hyper-parameters for training.

A.2 Architecture.

For HOI recognition on HICO, we follow UPSNet [66] to build our model architecture. It consists
of a ResNet50 [67] backbone, followed by a FPN [68] layer to generated multi-scale features. The
channel dimension of output features are 256. We fuse the multi-scale features using a deformable
convolutional [69] layer, resulted in 128-dim unit-length output features. For semantic segmentation
on Cityscapes and VOC, we adopt deeplab-v2 [70] model architecture, where ResNet101 is used as
the backbone CNN. The output feature dimension is set to 64.

A.3 Trainig.

For all experiments, we fine-tune ResNet50 backbone, which is pre-trained on ImageNet [71] dataset.
We use 2 Nvidia V100 cards for training. We set initial learning_rate to 0.003, momentum to 0.9,
and weight_decay to 0.0001. Following [70], we adopt poly learning rate policy by multiplying base
learning rate by 1− ( iter

max_iter )
0.9.

On MSCOCO, we set crop_size to 640× 640, batch_size to 12, training iterations to 60, 000. We
iterate spherical K-Means algorithm for 10 steps to partition an image into 49 segments, which are
furthered refined by instance and semantic pixel labels (see [20]). For contrastive losses, we set κ to
12, 16 and 16 for L(CO), L(CL) and L(CG). λO, λL, λG, λM are set to 1.0, 0.66, 0.5, and 1.0.

For training on Cityscapes and VOC, we set crop_size to 512 × 512, batch_size to 12, training
iterations to 30, 000. We iterate spherical K-Means algorithm for 10 steps to partition an image into
36 segments. Such image oversegmentation is likewise refined by instance and semantic pixel labels.
We adopt the same settings for the learning losses.
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