Multi-Spectral Image Classification with Ultra-Lean Complex-Valued Models

Utkarsh Singhal Stella X. Yu Zackery Steck Scott Kangas Aaron A. Reite
NSW floods become most expensive natural disaster on record with $5.5b in claims

By Melinda Hayter, Holly Tregenza, and Indiana Hansen

Posted Mon 21 Nov 2022 at 2:07pm, updated Tue 22 Nov 2022 at 1:15am
Satellite Image (RGB + Infrared, false color)

- Water absorbs IR, so appears **dark blue**
- Vegetation reflects IR, so appears **red**

Source: planet.com
Satellite Image (RGB + Infrared, false color)

Extra EM bands (e.g. infrared) can reveal changes invisible in RGB

Source: planet.com
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging

wavelength (\(\lambda\))

reflectance

Visible	Near-	Mid-infrared
Soil
Green vegetation
Water
Multi-Band Imaging for HADR

Disaster Assessment

Environmental Impact Monitoring
Multi-Band Imaging for HADR

Disaster Assessment

Environmental Impact Monitoring

Agricultural Health Measurement
Multi-Band Imaging for HADR

- Disaster Assessment
- Environmental Impact Monitoring
- Agricultural Health Measurement
- Urban Planning
Common Strategy for Dealing with New Datasets

- Large dataset → supervised learning from scratch
Common Strategy for Dealing with New Datasets

- **Large dataset → supervised learning from scratch**

 Extremely successful for datasets like ImageNet
Common Strategy for Dealing with New Datasets

● **Large dataset** \rightarrow supervised learning from scratch

 Extremely successful for datasets like ImageNet

● **Small dataset** \rightarrow transfer learning
Common Strategy for Dealing with New Datasets

- Large dataset → supervised learning from scratch

 Extremely successful for datasets like ImageNet

- Small dataset → transfer learning

 - Neural Net pre-trained on, e.g., ImageNet
 - Fine-tune on the smaller dataset
 - Extensive data augmentations
How to Handle a Multi-band Dataset?

- Supervised training from scratch?
 - Relatively limited labels
 - ImageNet pre-training?
 - Not 3 channel, encourages reduction to RGB
 - Data augmentation?
 - Common methods like color jitter are inapplicable
How to Handle a Multi-band Dataset?

- Supervised training from scratch?
 - Relatively limited labels
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- Transfer learning from a large RGB dataset?
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB

- **Convert back to RGB?**
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB

- **Convert back to RGB?**
 Loses the original benefits of multi-band data
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

This Work: Complex-valued Deep Learning as an alternative

- **Convert back to RGB?**
 Loses the original benefits of multi-band data
xView Multi-Band Image Dataset

RGB

coastal blue blue green yellow red red edge near-IR1 near-IR2
Results: Simpler and Better Ultra-lean Models
Results: Simpler and Better Ultra-lean Models

Baseline: ResNet18 trained from scratch
Results: Simpler and Better Ultra-lean Models

Baseline: ResNet18 with ImageNet pre-training and data augmentation
Baseline: Reduce down to RGB + ImageNet pre-training + data augmentation
Results: Simpler and Better Ultra-lean Models

Higher accuracy, 194x smaller, no augmentation/pre-training, no RGB conversion
Imbalanced Classification Results

Higher Accuracy for 8 out of 10 classes
Methods: Co-domain Symmetric Models (CDS)[1]

An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations

Co-Domain: Pixel Values
An Image is a Function from Domain to Co-Domain
Domain Transformations Act on the Pixel Coordinates

Domain Transformation

translation

scaling

rotation
Domain Transformations Act on the Pixel Coordinates

Domain Transformation

- **translation**
 - CNN [1]

- **scaling**
 - Scale-Invariant CNN [2]

- **rotation**
 - E(2)-Steerable CNN [3]

[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition
[2]: Xu et al., Scale-Invariance Convolutional Neural Network
[3]: Weiler et al., General E(2)-Equivariant Steerable CNNs
Co-Domain Transformations Act on the Pixel **Values**

Co-domain Transformation

translation

scaling

rotation

CNN [1]

Scale-Invariant CNN [2]

E(2)-Steerable CNN [3]

Domain Transformation

\mathbb{R}^2
Co-Domain Transformations Act on the Pixel *Values*

Domain Transformation

- **Translation**
- **Scaling**
- **Rotation**

Co-domain Transformation

- **CNN [1]**
- **Scale-Invariant CNN [2]**
- **E(2)-Steerable CNN [3]**

Co-Domain Transformations Act on the Pixel *Values*
Co-Domain Encapsulates Diversity of Image Types

Thermal

RGB

Multi-Band

SAR

intensity

color

spectral

complex value
We Can Represent All These Data Types in Complex Values!

Thermal RGB Multi-Band SAR …

Complex valued encodings
Complex-Valued Encoding for MSI Data

\[I = [I_1, I_2, \ldots, I_m] \rightarrow [I_1 + iI_2, \ I_2 + iI_3, \ \ldots, \ I_{m-1} + iI_m] \]

- Adjacent channels are paired into the real/imaginary parts of a complex number.
- Ratio of adjacent channels is represented by the phase.
- Imparts an ordering to the input channels
Robustness to Co-Domain Transformations

complex scaling

\[\vec{Z} \equiv s \cdot \vec{Z} \]

non-invariant

invariant
Robustness to Co-Domain Transformations

complex scaling non-invariant invariant

$\vec{Z} \equiv s \cdot \vec{Z}$

Previously on CIFAR 10:

better generalization color robustness less redundant filters lower bias/variance
Complex-Scale Equi-/In-varient Layers

Equivariant
- Equivariant Convolution
- Equivariant Batch-Norm
- Equivariant Non-Linearity
- Equivariant Pooling

Invariant
- Conjugate Layer
- Division Layer
- Prototype-Distance Invariant Layer
Two Architecture Styles

Type-I

input → EConv → Division Layer → GTReLU → ×2 → Pooling → Fully Connected → Prototype Distance → output

Type-E

input → EConv → Equivariant GTReLU → ×3 → Pooling → Equivariant Fully Connected → Invariant Prototype Distance → output
Summary

- Multi-Band imaging is invaluable for HADR applications.
- Traditional transfer learning approaches are not readily applicable.
- We propose using co-domain symmetric models trained from scratch.
- We propose a complex-valued encoding and use complex-scale invariant models.
- The resulting models have higher accuracy, significantly fewer parameters, no augmentation, no pre-training, and no RGB conversion.
Thank you!