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An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations Co-Domain: Pixel Values
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Domain Transformations Act on the Pixel Coordinates
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Domain Transformations Act on the Pixel Coordinates
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[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition [2]: Xu et al., Scale-Invariance Convolutional Neural Network  [3]: Weiler et al., General E(2)-Equivariant Steerable CNNs



Co-Domain Transformations Act on the Pixel Values
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Co-Domain Transformations Act on the Pixel Values
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Co-Domain Encapsulates Diversity of Image Types
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We Focus on Complex-Valued Data
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We Can Represent All These Data Types in Complex Values!

Thermal RGB Hyperspectral SAR
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Property 1: Equivalence Under Complex-Valued Scaling
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Property 2: Rich Set of Algebraic Operations
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Methods For Handling Complex-Valued Data

Method Complex-scaling? Complex-valued algebra?
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Methods For Handling Complex-Valued Data

Method Complex-scaling? Complex-valued algebra?
Real-valued CNN X X
Deep Complex Nets x /
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Methods For Handling Complex-Valued Data

Method Complex-scaling? Complex-valued algebra?
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Methods For Handling Complex-Valued Data

Method Complex-scaling? Complex-valued algebra?
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Benefits: Complex-Scaling Invariance
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Our model makes predictions invariant to complex-valued scaling



Benefits: Higher Accuracy with Leaner Models

MSTAR: Synthetic Aperture Radar Imaging




Benefits: Higher Accuracy with Leaner Models

MSTAR: Synthetic Aperture Radar Imaging
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Model # Relative | Training dataset size (%)
Params | Params
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Ours 29,536 0.03 ] 69.5 78.3 96.1

Higher accuracy with much leaner models
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Benefits: Diverse Filters, Lower Bias/Variance
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Benefits: Diverse Filters, Lower Bias/Variance

CIFAR 10
. . Real-valued CNN
Bias Variance 14 .
0.6 0.6 Ours
12
§ 10
0.4 0.4 2 g
<
O
=
g 6
=
0.2 0.2 4
2
0l— : = - )
0.0 0.0 0.0 0.2 0.4 0.6 0.8
DCN Real Surreal Ours DCN Real Surreal Ours Similarity

Lower Bias and Variance Less Redundant Filters



Benefits: Robustness Against Some Types of Color Distortion

Encoding color with complex numbers
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Benefits: Robustness Against Some Types of Color Distortion

Encoding color with complex numbers
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Methods: Complex-Scale Equi-/In-variant Layers

Equivariant Invariant
Equivariant Convolution Conjugate Layer
Equivariant Batch-Norm Division Layer

Equivariant Non-Linearity Prototype-Distance Invariant Layer

Equivariant Pooling



Methods: Two Architecture Styles
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Methods: Our Proposed Complex-Valued Encodings

Hyperspectral Sliding channel encoding
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Thank you!

Poster 68a, June 21st, 10AM-12:30PM
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UNIVERSITY OF CALIFORNIA

Contributions

1. New complex-valued learning method based on co-domain
symmetry with respect to complex-valued scaling

2. New leaner classifiers with higher accuracy, better
generalization, more robustness, lower model bias/variance
3. New complex-valued encodings of various types of images
4. Achieve color jitter robustness without any augmentation

Co-Domain Image Transformations

complex-valued
encodings

Yifei Xing Stella X. Yu

Complex-Valued Data Properties

complex scaling complex algebra

Co-domain Symmetry for Complex-Valued Deep Learning
Utkarsh Singhal

Leaner, Better, More Robust Models
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Layer Functions for Co-Domain Symmetry
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Model Architectures: Early or Late Invariance
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