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Abstract—Hyper-spectral imaging (HSI) is a critical remote
sensing modality that captures high-resolution spectral informa-
tion in addition to high spatial resolution. Due to its ability to
capture rich information about the material properties of the
target, HSI has found applications such as agriculture, ecological
monitoring, urban planning, and medicine. However, HSI images
tend to have high spatial resolution and many channels, thus
requiring models that can integrate information over a large
context and identify spectral signatures. HSI classification datasets
are also highly imbalanced, sparsely labeled, and significantly
smaller than standard vision datasets like ImageNet or CIFAR,
thus motivating smaller models with high sample efficiency.

This work combines the strengths of multi-scale representations
and data-driven feature learning. We generalize the butterfly
transform to a learned complex-valued butterfly layer, allowing
for parameter-efficient extraction of hierarchical complex-valued
features from 1D signals. This allows us to create a lean yet highly
accurate hyperspectral image classification model. Benchmarked
on the Indian Pines, ROSIS-03 Pavia University, and Salinas
datasets, our method demonstrates accuracy on par with SSDGL
while using 7x fewer parameters. On the most imbalanced and
sparsely labeled dataset, our method outperforms SSDGL.

Index Terms—complex-valued deep learning, FFT, butterfly
transform, signal processing, hyper-spectral imaging

I INTRODUCTION

HYPER-SPECTRAL imaging (HSI) is an important remote
sensing modality that extends regular photography by

capturing high-resolution spectral information in addition to
high spatial resolution. Recent advances in hyper-spectral
imaging technology produce images with hundreds of channels,
each capturing a narrow band of the electromagnetic spectrum.
Since different materials have different reflectivity profiles
(Figure 1), the spectral fingerprint contains rich information
about the material properties of the target surface. As a
result, hyperspectral images prove invaluable in remote sensing
applications such as agriculture [1], ecological monitoring [2],
urban planning [3], and medicine [4].

Hyper-spectral image classification is the task of classifying
each pixel of an input image into a finite pre-defined set
of classes. Specifically, we aim to learn a function f :
RH×W×C → RH×W×L, which takes an image with height H
and width W , and classifies each C-dimensional pixel of this
image into L classes (see Figure 1). Unlike RGB images, HSI
images have hundreds of channels.

HSI presents several challenges for machine learning ap-
proaches [5]. HSI images tend to have high spatial resolution
and many channels, thus requiring models that can integrate
information over a large context and identify spectral signatures.
However, HSI classification datasets are also highly imbalanced,
sparsely labeled (with as little as 5 pixels for some categories),

Fig. 1: A hyper-spectral image contains high-resolution mea-
surements of both spectral and spatial information. Top left:
Illustration of a hyper-spectral image as a 3D tensor (source
image credit: Google Earth). Top right: Any single pixel
contains spectral information which encodes a unique signature
of the target material. This spectrum can be seen as a 1D
signal. Bottom: Any single channel corresponds to a narrow
band of the electromagnetic spectrum, and contains important
spatial cues which may be more apparent in some bands
than others. Different materials produce significantly different
spectral signatures, and discriminative features extracted from
these signals combined with spatial cues can enable accurate
large-scale classification in remote sensing applications.

and significantly smaller than standard vision datasets, thus
motivating smaller models with high sample efficiency.

Recent advances in deep learning have made significant
progress in HSI classification [6], [7]. Spectral-Spatial Depen-
dent Global Learning (SSDGL) [7] introduces several changes,
including hierarchically-balanced sampling for better training,
a global joint attention module to extract salient information,
and a convolutional LSTM module to process the spectral
information in the neighborhood of each pixel. In particular,
the ConvLSTM formulation treats the spectral information as
a generic 1D sequence, building the representation piecemeal.
This approach has a few drawbacks: LSTMs are notoriously
difficult to train, and the LSTM only processes channel
information at one scale. Additionally, the LSTM processes
the spectral signature as a generic 1D sequence without taking
into account its redundant structure. This redundant structure
could be exploited to increase parameter efficiency further. This
raises an important question:

Can we create a more parameter-efficient learned



representation for spectral signatures?
We propose a method that is parameter-efficient and consid-

ers the data at multiple scales. We take inspiration from the
multi-scale representations in classic signal processing theory
[8]. Representations like Fourier, Wavelet, and Scattering Trans-
forms [9], [10] provide principled and efficient methods for
processing 1D signals. In particular, the Fast Fourier Transform
algorithm [8] computes the Discrete Fourier Transform of a
sequence within O(n log n) time using a divide-and-conquer
approach. The data-flow diagram is called a butterfly diagram
(see Figure 3). These classic representations have a critical
flaw: The basis vectors are fixed and uniformly represent the
entire signal and frequency space, even though the data may
vary in a small area or a few frequencies. For applications
where the input data lies in a low-dimensional subset of inputs,
a data-driven representation is thus of great utility.

Previous deep learning literature has successfully adapted
this network topology for efficient deep learning [11]. However,
these methods view the butterfly topology simply as an efficient
linear layer. This view ignores the ability of Fourier butterflies
to extract multi-scale features from 1D signals. The butterfly
topology, which naturally implements hierarchical feature
extraction, is especially suited to signal analysis applications
such as HSI. Additionally, [11] considers only real-valued
inputs and twiddle factors. This formulation cannot exploit the
benefits of complex-valued algebra and has a limited class of
expressible functions.

This work combines the strengths of complex-valued multi-
scale representations and data-driven feature learning with a
complex-valued butterfly transform.

Our contributions: 1) We generalize the idea of the
Butterfly Transform [11] to create our learned complex-valued
butterfly layer, which allows for parameter-efficient extraction
of complex-valued multi-scale features from 1D signals, 2)
We extend the butterfly architecture to include local spatial
information in the form of butterfly convolutional layers 3) We
replace the convolutional LSTM encoder used in SSDGL with
our proposed layers, achieving a simpler and leaner model. We
benchmark our new model on Indian Pines, Pavia University,
and Salinas datasets, demonstrating accuracy on-par with [7]
on each dataset while using 7x fewer parameters. Additionally,
on the most imbalanced and sparsely labeled dataset (Indian
Pines), our method achieves higher accuracy than [7].

II RELATED WORK

Hyper-spectral imaging: HSI as a remote sensing modality
used in applications like agriculture [1], urban planning [3],
and medicine [4]. In agriculture, hyper-spectral imaging can
be used for crop health assessment, diseases monitoring, and
soil quality estimation [1]. In urban planning, HSI allows for
crucial tasks such as estimating land cover and agricultural
development [12]. Hyper-spectral imaging has also proven
useful for environmental monitoring and protection [13]. In
geology, HSI approaches are used for large-scale mineral
density mapping [2]. Common medical applications of HSI
include organ segmentation and tissue diagnostics [4].

Fig. 2: Our proposed architecture is based SSDGL [7], but
with large convolutions and ConvLSTM modules replaced with
butterfly convolutions, resulting in a leaner yet highly-accurate
model. This model works in four stages, each produced through
a 2x downsampling of the previous layer. The features at each
layer are processed using complex-butterfly layers and joint
attention module before being aggregated and upsampled. The
final result is a pixel-wise classification map. Our modifications
on top of SSDGL are highlighted in orange/red (Butterfly
Convolutions), and yellow (joint attention)

Deep learning for HSI classification: Recent deep learning
approaches have led to significant improvements in classi-
fication accuracy for common HSI datasets [6], [7], [14],
[15]. Traditional CNN-based methods like [14], [16], [17]
struggle with the large number of channels in HSI. Recurrent
variants like [15], [18] use RNNs, and SSGDL [7] uses global
convolutional LSTM modules to process spectral information.
However, this approach results in models of higher architectural
complexity, and recurrent neural networks can lead to training
instability. Another important challenge in HSI classification
is the lack of labeled data, which has been tackled through
semi-supervised and unsupervised learning methods [19]–[21].



Finally, in contrast to popular semantic segmentation tasks,
HSI images are sparsely labeled. The small number of labels
results in lower gradient diversity due to redundant gradients,
and the resulting models experience worse convergence. [6],
[7] tackle this problem through a stratified pixel sampling
strategy. In this strategy, the set of labeled pixels is sampled
in a stratified manner, ensuring a balanced distribution of pixel
samples from each class and a higher gradient diversity. We
refer the reader to [7] for a more detailed review of recent
deep learning advances for HSI classification.

Complex-valued processing: Complex-valued representa-
tions are a cornerstone of engineering and physics [8], [22],
and complex analysis has a rich mathematical history [23].
In the field of deep learning, complex-valued representations
have shown similar utility. [24] shows that a single complex-
valued neuron can solve the XOR problem, indicating higher
representational capacity than real-valued counterparts. [25]
analyzes the form of critical points in a hierarchical complex-
valued network, showing that all critical points are saddle
points for non-regular loss functions. [26] evaluates single
layer complex-valued neural networks on problems such as
symmetry detection. [27], [28] encode geometric properties
of data such as depth ordering and confidence in a complex
vector and learn a metric for this embedding. [29] discusses
convergence and stability guarantees for complex-valued neural
networks and shows better generalization for simulated and
real-world problems. [30] uses complex values to encode
spike timing information in a neural network. [31] tackles
the problem of ultrasound image reconstruction using complex-
valued CNNs. [32] addresses the problem of complex-valued
scaling ambiguity by building complex-scale equivariant and
invariant layers. We refer the reader to [33] for a more detailed
account of the benefits of complex-valued deep learning. Our
work largely builds upon [32], [33].

Butterfly Transform and FFT: Fast Fourier Transform
[8], also commonly known as the Cooley-Tukey algorithm,
is an efficient method for computing the Discrete Fourier
Transform of a finite-length vector. FFT follows a divide-and-
conquer scheme, decomposing the DFT of a single vector into
smaller sub-vector DFT computations. These sub-vector DFTs
are scaled using fixed twiddle factors and linearly combined
to form the full DFT. Due to the divide-and-conquer nature
of this computation, FFT achieves O(n log n) complexity as
opposed to O(n2) achieved by a naive matrix-multiplication
algorithm. However, Fourier Transform is limited to extracting
a set of fixed, complete, and orthogonal features, each with the
same amount of spectral energy. In practical signal-analysis
applications dimensionality reduction may be desired, and in
contrast to the Fourier Transform, learned layers are capable
of adapting to the underlying data and using only necessary
features. Butterfly Transform [11] uses a similar network
topology as FFT butterflies, additionally using learned twiddle
factors to create a linear layer with O(n log n) complexity.
However, the twiddle factors in [11] are real-valued, preventing
this layer from exploiting the benefits of complex-valued
algebra. The real-valued twiddle factors also limit the class

of functions expressed by this layer, introducing additional
challenges to learning spectral features. Finally, we note
that the Butterfly Transform has been studied primarily as
a substitute for fully connected layers, and its applications to
signal processing have been overlooked.

III COMPLEX-VALUED BUTTERFLY TRANSFORM

In this section, we describe the generalization of the Butterfly
transform [11] to complex-valued matrices. For a complex-
valued, n-dimensional input vector x ∈ Cn, complex-valued
butterfly layer can be written as a block matrix B(n,k) ∈ Cn×n

with each block of size n
k × n

k . We define B(n,k) as:
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k ) is a learned complex-valued
diagonal matrix, and each B
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butterfly matrix of size n

k × n
k . This recursive structure is

responsible for the parameter efficiency of this layer.
Thus, given an input vector x ∈ Cn, our method computes

B(n,k)x. As shown in [11], this computation can be simplified
as:
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where each xi is a n
k -dimensional sub-vector of x. This

parametrization uses O(n) parameters at each level of recursion,
resulting in a total of O(n log n) parameters used to define
the entire matrix. This parametrization uses significantly fewer
parameters for large n such as in HSI while extracting rich
features. We note that the critical difference between our
proposed layer and [11] is that our version is complex-valued
and is thus able to learn a larger class of functions.

Butterfly Convolutions: The formulation described in
Equation 2 works for vectors, and is thus equivalent to a
1 × 1 convolution. For HSI, this limits the butterfly layer to
using only spectral information for each pixel. We extend
this formulation by adding a spatial component to Equation 2.
Given an input patch of size m×m indexed by pixel p, we
define the new spatial-spectral butterfly transform as:

B(n,k)x =
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Here, x(p)
j refers to the j-th sub-vector of p-th pixel in the

patch, and Dijp is a 3-dimensional tensor containing complex-
valued twiddle factors. Here, the extra dimension indexes over
pixels. Unlike Equation 2 which only considers a single pixel,
this formulation sums over pixels in a m×m neighborhood,
thus utilizing both spectral and spatial information.



Fig. 3: Complex Butterfly Transform. top: Block diagram
of the layer. The butterfly transform is defined by a sparse
block-wise operation on the sub-vectors of the input vector x,
followed by recursive calls to butterfly transform on each sub-
vector. Given a vector x with sub-vectors x1,x2, . . . ,xn, we
define complex-valued diagonal matrices D11, D12, . . . , Dkk

containing the learned twiddle factors. These matrices act on
the corresponding sub-vectors, and the resulting combined sub-
vectors are processed through recursive calls to Butterfly(n2 , 2).
[11] uses a similar formulation, but with real-valued twiddle
factors. This limits the class of functions learned by the butterfly
transform. Our complex-valued twiddle factors allow for a
larger class of functions. In order to include spatial information,
we also introduce aggregation over patches instead of single
pixels (see Equation 3). bottom: A network topology diagram
of the butterfly layer for a vector with length 8 and base 2.
Each edge represents a complex-valued twiddle factor, and
the valued represented by all edges coming to each node are
summed to determine the value contained in the node. Different
node colors indicate different groups and use different diagonal
matrices. In the general case, for a butterfly transform with
base k, each intermediate node has k input and output edges.
After multiplication by twiddle factors, butterfly transforms are
applied to the sub-vectors recursively.

In order to further reduce parameter consumption, we
decompose the term Dijp = dpDij . This decomposed ver-
sion is equivalent to performing a complex-valued butterfly
transform on each pixel followed by depth-wise convolution.
This reduces the total parameter count from O(m2n logk(n))

to O(m2 + n logk(n)). As our approach is complementary
to the interleaving approach used in [11], we combine these
approaches into a butterfly convolution block.

Fig. 4: Complex Butterfly Conv Block: Since the naive
butterfly transform can only perform 1× 1 convolutions, [11]
interleaves the butterfly transform with depth-wise separable
convolution layers. Our butterfly convolution formulation
accumulates over a local patch in addition to using complex-
valued butterfly transform on the channels. This formulation
is complementary to this approach, so we combine the two
methods to form the Complex Butterfly Conv Block (CBConv).

IV ARCHITECTURE

Our model is a fully convolutional neural network based
on SSDGL [7]. It consists of four stages, each operating at a
different resolution. We use a series of 2× 2-strided complex-
butterfly convolutions and joint-attention blocks to downsample
the input image by 2x at each stage. The features at each stage
are processed using a 1× 1 convolution and then up-sampled
using bilinear sampling. We use CReLU [33] as the non-linear
activation. We refer the reader to Figure 2 for an architecture
diagram. Our proposed model uses only 0.31M parameters,
7x fewer than SSDGL. This section describes how we modify
each SSDGL module to allow for complex-valued processing.

Joint attention Module: We follow [7], combining the
spectral and spatial attention layers into a single block. However,
unlike [7], our proposed Joint Attention Module does not rely
on a Convolutional LSTM. We replace this LSTM with a
Complex Butterfly Convolution, which can extract complex-
valued hierarchical features in a feature-efficient manner. We
also modify the spectral and spatial attention submodules for
complex-valued processing.

Spectral Attention: We modify the spectral attention module
described in SSDGL [7] to make it compatible with complex-
valued features. The role of this module is to re-weight different
parts of the spectrum, modulating each channel by a scaling
constant which lies between 0 and 1. The spectral attention
module first aggregates features over all the pixels to estimate
these channel-wise scaling constants. This module uses two
types of aggregation: global average pooling and global max
pooling. While averages are well-defined for complex number
sets, the same is not true for maximum since the complex



plane cannot be well-ordered. As a result, there are multiple
useful definitions of the ”maximum” operation for complex
numbers and thus multiple possible max-pooling strategies. We
note that in CNNs, the salience of a feature is represented
by its magnitude. This motivates the ”Magnitude MaxPool”
strategy of [32], which aggregates the elements with the largest
magnitude (and thus the highest salience). Following [7],
the averaged-pooled features are processed using complex-
valued MLP, added together, and passed through a thresholding
function. We apply the sigmoid thresholding function to the real-
valued part of the feature vector as this operation incorporates
both magnitude and phase information.

For a complex-valued input feature f ∈ CH×W×C of height
H and width W and containing C channels, we define the
complex spectral attention layer as:

Mc(f) = σ(Re
[
(N1(Avg(f)) +N2(MagPool(f))

]
) (4)

where N1 and N2 are complex-valued MLPs, and Re
[
·
]

extracts the real part of a complex-valued input.
Spatial Attention: We also create a complex-valued version

of SSDGL’s Spatial Attention layer. This module selectively
re-weights different input image pixels, highlighting relevant
areas by multiplying them with 1 and eliminating features from
irrelevant areas by multiplying them with 0. For each pixel, we
aggregate information over all channels to produce a single-
channel attention map Ms ∈ CH×W . Like Channel Attention,
we do this through two methods: averaging the channels and
computing the maximum absolute value over channels. These
two feature maps are concatenated and processed using a
convolutional layer and the complex thresholding function to
produce a spatial attention map.

For a complex-valued input feature f ∈ CH×W×C of height
H and width W and containing C channels, we define the
complex-valued spatial attention layer as:

Ms(f) = σ(Re
[
(L(AvgPool(f));MagPool(f)

]
) (5)

where L is complex-valued convolution layer, and Re extracts
the real part of a complex-valued input.

V EXPERIMENTS

We benchmark our model on three datasets: Pavia University
(Figure 6), Indian Pines (Figure 7), and Salinas (Figure 8).
Indian Pines is the most imbalanced, with as little as 5 pixels
of training data in some categories, whereas Salinas and Pavia
are more balanced. In this section, we describe each dataset
and the corresponding experimental results. Our method is
on-par with SSDGL on Salinas and Pavia, but outperforms
SSDGL on Indian Pines.

V-A Indian Pines Dataset

The Indian Pines [34] dataset consists of an aerial image
captured in Indiana, the USA in 1992 using the AVIRIS
spectrometer. This dataset contains a single 145× 145 pixel
image with 220 channels. This image has a spatial resolution
of 20m, and the channels correspond to the EM spectrum in
the visible and IR range, spanning wavelengths from 400 nm to

Fig. 5: Visualization of our modified version of JAM [7]. Joint
Attention Module: The joint attention module combines spatial
and spectral attention into a single block. Our proposed version
uses a complex butterfly convolution instead of ConvLSTM
[7]. Spectral attention: The spectral attention layer generates
a weighting between 0 and 1 for each individual channel.
Features from the entire image are pooled using average and
magnitude max pooling, and the resulting features are summed
and thresholded in order to predict the channel-wise modulation.
Spatial attention: The spatial attention layer generates a
weighting between 0 and 1 for each individual pixel. The
feature vector corresponding to each pixel is aggregated using
average and magnitude max pooling, and the resulting features
are concatenated and processed through a convolutional layer.
The final feature map is then thresholded in order to predict
the pixel-wise modulation.

2500 nm. Each labeled pixel is classified into 16 different types
of land cover for pixel-wise classification, including various
crops like alfalfa, corn, and wheat. This process is followed by
background pixel removal, retaining 10, 249 pixels. Figure 7
contains a visualization of the original dataset, masked ground
truth, and test predictions made by our model and SSDGL [7].

Following the training strategy of SSDGL [7], we use
5% of the labeled pixels as training data, sampled using the
hierarchically balanced pixel sampling strategy. We evaluate
our method using various accuracy statistics and tabulate them
in Table I. The tabulated metrics include per-class test accuracy,
average accuracy, overall accuracy, and kappa coefficient.
Despite being significantly leaner, our method achieves the
highest accuracy in every class, including the average metrics.

V-B Pavia University Dataset

The Pavia University dataset [35] contains an image of
the University of Pavia, Italy, captured using the Reflective
Optics System Imaging Spectrometer (ROSIS). This 610×340



Fig. 6: Pavia University dataset: Test predictions made
by our model and SSDGL. The ground truth image shows
the segmentation, with the black color designating unlabeled
areas. While both methods make accurate predictions in the
labeled areas, SSDGL produces significantly coarser maps. For
example, SSDGL completely misses the large groups of trees
in the parking lot in the lower-left half of the image. Likewise,
SSDGL’s coarse segmentation map groups several entities into
larger blobs in several other areas. This indicates our method
is comparatively more sensitive to fine changes in spectral
information than SSDGL, which relies heavily on spatial priors.
Multi-band composite image and legend reproduced from [7].

image has 103 bands covering visible and near-IR parts of the
EM spectrum, with wavelengths in the 430 nm-860 nm range.
This dataset contains 42, 776 labeled pixels corresponding to
9 classes, and we use 1% of this data for training. Figure
6 visualizes test predictions for our model and SSDGL. We
evaluate the models using various accuracy metrics and tabulate
them in Table III. On this dataset, our performance closely
matches that of SSDGL, and in all classes and metrics except
Asphalt, our method stays within 0.01% of SSDGL.

V-C Salinas Dataset

The Salinas dataset [35] consists of an aerial image from
Salinas Valley, California, acquired using the AVIRIS sensor.
This dataset contains a single 512 × 145 image with 224
channels. The channels cover the infrared and visible spectrum,
with wavelengths in the 400 nm-2500 nm range. This dataset
contains 16 classes corresponding to crops like corn, lettuce,
and grapes. Figure 8 includes test prediction visualizations for
our method along with SSDGL.

We follow the same training configuration as for the Indian
Pines dataset and show the results in Table II. We note that
the Salinas dataset has been saturated due to recent methods
achieving nearly 100% accuracy. Our method follows the same
trend as SSDGL [7] and FPGA [6], staying within 0.03%.

VI CONCLUSION

We propose a learned complex-valued butterfly convolution.
In contrast to the Fourier Transform, our method can learn
useful features from the data. Our approach is compatible with
complex-valued deep learning and capable of learning a larger

Fig. 7: Indian Pines dataset: Test predictions from our model
and SSDGL. This dataset contains a satellite image with various
crops and land types labels. The ground truth image indicates
the segmentation, with the black color designating unlabeled
areas. Both methods achieve nearly perfect accuracy in the
labeled areas, but our method produces sharper segmentation
maps compared with SSDGL. Multi-band composite image
and legend reproduced from [7].

Fig. 8: Salinas dataset: This dataset contains a high resolution
image with various crop types labeled in the ground truth
segmentation map. Black color designates unlabeled areas,
whereas each other color designates a crop or land type. Multi-
band composite image and legend reproduced from [6].

set of features compared to Butterfly Transform. This com-
bination of complex-valued multi-scale feature representation
and data-driven feature learning allows for leaner yet accurate
models on HSI classification. On the most imbalanced and
sparsely labeled dataset (Indian Pines), our method outperforms
SSDGL [7]. These results demonstrate the benefits of complex-
valued butterfly transforms in signal processing and indicate
exciting directions in complex-valued deep learning.



TABLE I: Results for Indian Pines Dataset. Our model achieves
the highest accuracy for every class and accuracy metric
(OA, AA, Kappa). despite using significantly fewer parameters
compared to SSDGL. Baseline accuracy numbers reproduced
from [7].

Class CNN-based FCN-based
SVM SS-CNN SSRN DBMA MCNN U-Net FPGA SSDGL Ours

1 70.32 72.14 75.57 90.37 94.36 97.67 97.22 100.0 100.0
2 69.63 90.42 90.65 92.72 92.84 92.48 93.07 99.63 99.92
3 58.26 81.48 97.01 95.63 93.02 84.77 89.46 99.24 99.61
4 45.22 71.23 93.36 89.35 95.32 89.33 100.0 100.0 100.0
5 75.48 83.62 98.56 96.92 92.13 81.00 95.63 99.56 99.78
6 96.14 97.19 98.94 99.18 98.86 94.08 97.56 100.0 100.0
7 95.79 91.01 84.21 79.57 84.83 100.0 100.0 100.0 100.0
8 87.72 92.34 98.36 99.11 98.63 98.90 100.0 100.0 100.0
9 75.03 96.39 97.61 97.91 92.47 78.95 100.0 100.0 100.0

10 66.25 81.75 81.03 92.08 94.76 89.49 96.64 99.68 100.0
11 77.62 87.39 93.02 95.15 96.28 97.81 96.74 99.36 99.66
12 67.28 83.03 95.72 90.71 94.12 86.50 91.65 99.11 99.64
13 96.93 97.42 99.81 99.81 96.95 98.97 100.00 100.00 100.0
14 95.07 95.31 95.79 97.11 98.79 98.58 99.91 100.00 100.0
15 35.48 74.04 92.25 88.13 92.83 92.08 99.72 100.00 100.0
16 97.61 94.61 96.57 97.05 87.32 93.18 100.00 100.00 100.0
OA 75.31 89.82 92.21 94.43 94.78 93.20 96.18 99.63 99.85
AA 71.12 83.73 93.03 93.81 93.37 92.11 97.33 99.79 99.91

Kappa 0.7173 0.8783 0.9115 0.9365 0.9437 0.9222 0.9564 0.9958 0.9982

TABLE II: Results for the Salinas Dataset. Our model achieves
close to perfect accuracy (within 0.03%), whereas SSDGL
achieves 100% accuracy on every metric. Baseline accuracy
numbers reproduced from [6].

Class Patch-based Patch-free
SVM S-CNN Gabor-CNN DFFN 3D-GAN FPGA SSDGL Ours

1 99.61 100 100 99.99 75.35 100 100 100
2 99.69 97.75 88.06 99.94 98.49 100 100 100
3 99.56 98.88 99.25 100 100 100 100 100
4 99.41 100 100 100 99.76 99.92 100 100
5 98.72 99.93 98.88 99.11 100 99.11 100 100
6 99.77 89.48 100 99.95 99.97 100 100 99.97
7 99.52 99.30 98.94 99.43 99.45 100 100 100
8 76.74 98.69 99.48 99.56 98.30 99.94 100 99.99
9 99.37 99.34 97.27 100 99.95 100 100 100

10 95.13 100 99.21 99.79 99.79 99.77 100 100
11 99.32 99.93 100 99.48 100 100 100 100
12 99.70 99.89 100 99.84 100 100 100 100
13 99.15 88.62 100 99.96 100 100 100 100
14 98.38 88.72 99.79 99.95 100 100 100 100
15 75.56 90.62 94.31 99.45 99.52 99.99 100 99.96
16 99.23 99.96 93.38 99.96 90.25 99.88 100 100

OA 90.92 97.62 97.63 99.71 98.22 99.92 100 99.99
AA 96.18 96.94 98.04 99.78 97.75 99.91 100 100

Kappa 0.8985 0.9510 0.9734 0.9967 0.9793 0.9991 1.0 0.9999

TABLE III: Results for Pavia University Dataset. Our model
shows on-par accuracy compared to SSDGL, with OA, AA,
and Kappa within 0.01% of the accuracy demonstrated by
SSDGL [7]. Baseline accuracy numbers reproduced from [7].

Class CNN-based FCN-based
SVM SS-CNN SSRN DBMA MCNN U-Net FPGA SSDGL Ours

1 85.82 92.21 97.41 96.26 96.53 94.06 97.83 100.0 99.74
2 96.02 90.27 99.10 98.31 99.26 98.67 99.95 100.00 99.99
3 65.46 79.82 88.61 89.16 87.15 78.30 91.28 100.00 99.90
4 81.24 92.67 99.81 97.53 93.68 96.01 95.85 99.67 99.67
5 99.23 99.41 100.00 99.72 97.26 100.00 100.00 100.00 100.0
6 67.69 86.86 95.51 97.98 96.41 99.80 99.76 100.00 100.0
7 53.86 79.85 92.16 85.51 88.74 79.56 99.73 100.00 100.0
8 86.28 92.83 89.03 80.70 93.81 99.58 98.05 99.92 99.92
9 99.92 93.93 99.96 91.12 93.79 99.25 97.86 100.00 100.0

OA 86.54 90.14 96.55 95.13 96.28 96.09 98.68 99.97 99.92
AA 73.52 83.52 95.73 93.48 94.69 93.47 97.82 99.95 99.91

Kappa 0.8192 0.8768 0.9543 0.9353 0.9481 0.9480 0.9825 0.9996 0.9990
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