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Abstract

In image classification, data augmentation and the usage of
additional data has been shown to increase the efficiency of
clean training and the accuracy of the resulting model. How-
ever, this does not prevent models from being fooled by ad-
versarial manipulations. To increase the robustness, Adver-
sarial Training (AT) is an easy, yet effective and widely used
method to harden neural networks against adversarial inputs.
Still, AT is computationally expensive and only creates one
adversarial input per sample of the current batch. We propose
Broad Adversarial Training (BAT), which combines adver-
sarial training and data augmentation in the decision space,
i.e., on the models output vector. By adding random noise
to the original adversarial output vector, we create multiple
pseudo adversarial instances, thus increasing the data pool
for adversarial training. We show that this general idea is ap-
plicable to two different learning paradigms, i.e., supervised
and self-supervised learning. Using BAT instead of AT for su-
pervised learning, we can increase the robustness by 0.56%
for small seen attacks. For medium and larger seen attacks,
the robustness increases by 4.57% and 1.11%, respectively.
On large unseen attack, we can also report an increase in the
robustness by 1.11% and 0.29%. When combining a larger
corpus of input data with our proposed method, we report a
slight increase of the clean accuracy and increased robust-
ness against all observed attacks, compared to AT. In self-
supervised training, we monitor a similar increase in robust
accuracy for seen attacks and large unseen attacks, when it
comes to the downstream task of image classification. In ad-
dition, for both observed self-supervised models, the clean
accuracy also increases by up to 1.37% using our method.

Introduction
The performance of deep learning models in various do-
mains, e.g., image classification (Zhai et al. 2021), seman-
tic image segmentation (Tao, Sapra, and Catanzaro 2020),
or reinforcement learning (Tang et al. 2017) is already on a
high level and constantly improving. Among other aspects,
ongoing research and advances in data augmentation (Cubuk
et al. 2020) techniques, as well as the creation of more real-
istic synthetic inputs (Ho, Jain, and Abbeel 2020) contribute
to this success. Both techniques aim to enrich the training
data, which increases the performance. However, when it
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comes to safety-critical applications, e.g., autonomous driv-
ing, adversarial inputs pose a threat. By applying small but
malicious manipulations to the input, the prediction of the
model can change drastically.

Starting by manipulating digital inputs, several authors,
e.g., (Goodfellow, Shlens, and Szegedy 2014; Carlini and
Wagner 2017; Madry et al. 2017), developed different tech-
niques to calculate and create the necessary manipulations
to fool neural networks into misclassifying a given input.
Later, these attacks were adapted or extended to also work
in the physical world (Athalye et al. 2018; Worzyk, Kahlen,
and Kramer 2019; Ranjan et al. 2019).

One widely used technique to harden neural networks
against such attacks is Adversarial Training (AT), which is
simple but yet very effective. The idea is to create adversarial
inputs during the training process, and include or exclusively
use them for training. Thereby, the model learns to be more
resilient against these worst-case perturbations. (Madry et al.
2017) for example, proposed a method referred to as Pro-
jected Gradient Descent (PGD) which is very successful in
finding adversarial inputs and furthermore use these adver-
sarial instances exclusively for training a given model. Even
though effective, all to us known adversarial training tech-
niques, only create one adversarial input per sample in the
current batch.

To increase the impact of any given adversarial instance
during adversarial training, we propose to combine adver-
sarial training and data augmentation in the decision space,
specifically, manipulating the output vector of a given adver-
sarial instance. In contrast to clean inputs, which represent
the assumed reality in the input space, adversarial instances
are calculated, and basically exist, based on flaws in the de-
cision boundary of a model. Ultimately, the output vector of
a given model defines the decision calculated by the model.
Similar to data augmentation on clean inputs increasing the
data pool and leading to better clean performance, increas-
ing the data pool of adversarial samples in the output space
leads to better robustness. The overall concept is shown in
Figure 1.

In Figure 1a, the decision space during traditional adver-
sarial training is displayed. Based on the current decision
boundary (bold line) and the output vector for a clean sample
(orange circle), an adversarial input (blue cross) is created,
whose output vector is located on the wrong side of the de-
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Figure 1: Difference between traditional (1a) and Broad (1b) Adversarial Training. Given the output vector of a clean sample
(orange circle) and the current decision boundary (solid line), adversarial inputs (blue cross) lying on the wrong side of the
decision boundary are created. When adding the adversarial samples to the training process, the decision boundary adapts
accordingly (dashed line). During Broad Adversarial Training, the initial adversarial output vector is perturbed randomly within
a given radius to create a set of additional pseudo adversarial inputs (smaller blue crosses). This extends the impact of any single
adversarial input on the adversarial decision boundary (dashed line) during training.

cision boundary. The adversarial decision boundary (dashed
line) is then optimized to contribute for the adversarial input.

Figure 1b outlines our extension to this process. Based on
the output vector of an adversarial input (large blue cross),
multiple pseudo adversarial inputs (small blue crosses) are
created by applying conditioned normally distributed ran-
dom noise within a predefined radius to the initial adversar-
ial output vector. By scattering the adversarial output vector,
we widen its impact on the new adversarial decision bound-
ary (dashed line).

The remainder of this paper is structured as follows. In the
Background section, we introduce the supervised, as well as
self-supervised adversarial training methods used for the ex-
periments in this paper. Afterwards, we define our proposed
BAT method in more detail, followed by the experiments and
their discussion. Finally, we put our work in context with
other related work, and conclude the paper.

Background
Supervised Adversarial Training
PGD: One of the widest known techniques for adversar-
ial training is Projected Gradient Descent (PGD), proposed
by (Madry et al. 2017). Instead of using clean samples dur-
ing training, the authors use the corresponding adversarial
instances, created based on the following iterative equation,

x0 = x

xi+1 = ΠB(x,ε)

(
xi + αsign

(
∇xiLCE

(
θ, xi, y

)))
.

(1)

This function is initialized by the original input x and cal-
culates the gradients, regarding the intermediate adversarial
input xi, of the cross-entropy loss LCE away from the true
label y, based on the current parameters of the model θ. The
sign of the gradients is multiplied by a step size parameter α
and added to the current intermediate adversarial input. The
projection Π then limits the perturbation to be within an ε-
ball around the initial input x. The parameter ε essentially
governs the allowed amount of perturbation. For example,

ε = 8/255 regarding the ℓ∞ norm would state, that each
pixel of the original input vector is allowed to be increased
or decreased by not more than 8 values.

Self-supervised Adversarial Training
More recently, adversarial training is also applied to self-
supervised training. The general goal of self-supervision is
to train for some pretext tasks where no labels are required.
After training, the model and its parameters are transferred
to a given downstream task, e.g., image classification. There-
fore, the overall model in self-supervised learning is split
into a backbone and a projector. The backbone can be based
on, e.g., a ResNet architecture (He et al. 2016), stripped
of the last fully connected layer. The projector reduces the
dimensionality of the backbones output vector to a usu-
ally 128-dimensional vector. To train without labels, given a
batch of samples {x1, ..., xb}, each sample is duplicated and
transformed by a given series of random transformations t,
e.g., cropping and flipping. The resulting transformed ver-
sions of the same origin, i.e., t1 (xi) and t2 (xi) are called
positive pair, while pairs of samples with different origin,
i.e., t (xi) and t (xj) with i ̸= j are called negative pair.
The pretext task of the models used in this paper is to max-
imise the distance between the output vectors of negative
pairs while minimising the distance between the output vec-
tors of positive pairs. How the distance is calculated differs
between the training techniques.

After pretraining for the pretext task, the backbone is kept
and the projector is discarded. Instead of the projector, a
downstream task-specific head is attached. The parameters
of the backbone are usually frozen and only the head is
trained. In essence, self-supervised pretraining aims to learn
good feature representations which can, later on, be used for
the given downstream task.

RoCL: (Kim, Tack, and Hwang 2020) added adversarial
training to the SimCLR (Chen et al. 2020) framework and
dubbed it Robust Contrastive Learning (RoCL). To calculate
the distance between positive and negative pairs, SimCLR



uses the cosine similarity sim. Because of the different loss
function, (Kim, Tack, and Hwang 2020) adapted PGD (cf.
Equation 1) accordingly to use the contrastive loss instead
of the cross-entropy loss. All functions are given in Table 3
in Appendix .

To implement adversarial training, (Kim, Tack, and
Hwang 2020) essentially use the adversarial inputs to extend
the positive and negative pairs to triplets. During training,
they aim to minimize the distance between the two trans-
formed inputs of the positive pairs, as well as the distances
between the two transformed inputs each and the thereof cre-
ated adversarial input. While maximising the distance to the
negative samples. The formalization of the RoCL objective
is given in Table 3, where t (x)+δ is the adversarial sample.
The overall training loss is then calculated based on the stan-
dard contrastive loss only considering the clean transformed
samples, plus the adversarial loss based on the triplets of two
transformed inputs and the additional adversarial input.

One challenge using SimCLR as the basic framework is
that it requires a large batch size to achieve good perfor-
mance (Chen et al. 2020). In this type of self-supervised
learning, the number of observed negative samples is essen-
tial for a good performance, and SimCLR does not incor-
porate any form of dictionary or memory bank to increase
their number. Only the samples from the current batch are
used for the calculations. When including adversarial sam-
ples into the training process, the number of inputs to be
stored on the GPU is increased and results in a reduction of
the feasible batch size.

AMOC: Another widely known self-supervised frame-
work is Momentum Contrast (MoCo) proposed by (He et al.
2020). The conceptual idea is the same as for SimCLR, i.e.,
minimising the distance between positive instances while
maximising the distance towards negative samples. How-
ever, to overcome the problem of large batch sizes, (He et al.
2020) implement a dictionary or memory bank. In addition,
they use two networks of the same architecture and the same
initial weights. One model is referred to as the query en-
coder, which is updated after each batch as usual. The other
model is called momentum or key encoder, whose param-
eters are a copy of the query encoder, delayed by a pre-
defined momentum. This makes the output of the key en-
coder slightly different from the output of the query encoder,
which can be considered as an additional form of data aug-
mentation. After processing the inputs of the current batch
by both models, the output vectors of the momentum en-
coder are enriched by output vectors of previous batches,
stored in the dictionary. Thereby, a large number of negative
samples can be created consistently, leading to overall better
performance. The loss, given in Table 3, is then calculated
based on the output vectors q of the query encoder and the
enriched output vectors k of the key encoder. Furthermore,
τ is a temperature parameter, and M refers to the memory
bank of old key vectors.

Based on this framework, (Xu and Yang 2020) proposed
an extension for adversarial training. They introduce a sec-
ond memory bank to store exclusively the historic adversar-
ial output vectors, and to further disentangle the clean and

adversarial distribution, they use dual Batch Normalization
as proposed by (Xie et al. 2020). The optimization problem
they solve is given in Table 3, with t1 and t2 being two differ-
ent random transformations from a set T of possible trans-
formation, and δ being the adversarial perturbation. Mclean
and Madv refer to the clean, and adversarial memory bank,
respectively. As for the loss function, (Xu and Yang 2020)
tested different memory bank and batch normalization com-
binations, and reported good results for a combination they
refer to as ACC. The ‘A’ indicates, that the adversarial per-
turbation is injected into the query encoder, while the key en-
coder does not observe and perturbation, as well as the clean
memory bank Mclean is used. The formulation to calculate
the ACC loss is given in Table 3. Intuitively, by compar-
ing the adversarial output vectors of the query encoder with
clean samples from the key encoder, as well as the mem-
ory bank, the query encoder fq learns to classify adversar-
ial inputs as its clean augmentation. To create the adversar-
ial perturbation in the first place, (Xu and Yang 2020) use
PGD as well, but with the MoCo loss instead of the cross-
entropy loss. Finally, the overall training loss is calculated
as a weighted sum of the standard MoCo loss solely trained
on clean data, and the selected, e.g., ACC loss to incorporate
adversarial instances.

Method
Multiple approaches for adversarial training are outlined in
the Background section. Our goal is to develop a method
that is not specifically tailored to one approach, but rather
generalizable between different sorts of adversarial training.
Therefore, given an input x and a neural network f , f (x) de-
notes the general output vector. In supervised learning, this
vector would be the logits, while in self-supervised learn-
ing, this would be the 128-dimensional output vector of the
projector.

After an adversarial input x′ and in consequence also
its output vector f (x′) has been created by one of the
approaches in the Background section, we create multiple
pseudo adversarial inputs f (x′

s) by adding conditioned nor-
mal distributed random noise,

f (x′)s = f (x′) +N (0, 1) · δx′,x · αs , (2)

where δx′,x is defined as

δx′,x = f (x′)− f (x) (3)

and αs is a hyperparameter, used to scale the ball around
the initial adversarial output vector f (x′), introduced by the
random noise. Intuitively, δx′,x defines the element-wise dif-
ference that the initial adversarial output vector is moved
away from the original instance in the decision space, while
αs scales this initial manipulation.

To confirm that this type of decision space data manipu-
lation is suitable and label preserving, we create randomly
perturbed adversarial output vectors for a standard, clean
trained model (ST) and track their classification behaviour.
In Figure 2, the results for an ST model are shown in the
most left bar of each group. The blue (bottom) portion of the
bar indicates the percentage of pseudo adversarial instances
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Figure 2: Percentages of pseudo adversarial inputs being
classified as indicated, depending on the perturbation scal-
ing factor αs. The bars of each group show the results based
on the following models: Left bar: Standard trained model;
Middle bar: Adversarial trained model; Right bar: Broad
adversarial trained model. C(noisy) = C(adversarial) indi-
cates the perturbed adversarial output vector is classified the
same, as the initial adversarial input. C(noisy) = C(clean)
gives the percentage of pseudo adversarial inputs, which re-
turn to the original true classification area, while C(noisy)
!= C(adversarial) != C(clean) gives the percentage of pseudo
adversarial inputs moving to some different, third class when
perturbed randomly.

being classified the same, as the initial adversarial input. The
orange (middle) portion indicates the number of pseudo ad-
versarial output vectors returning to the classification area
of the initial clean sample, and the green (top) portion gives
the percentage of instances that move to a third classification
area, which is neither the class of the clean nor the initial ad-
versarial sample.

We can observe that for sufficiently small perturbation
100% of the pseudo adversarial instances are classified the
same, as the initial adversarial input. This demonstrates em-
pirically, that the applied conditioned random noise as a
form of data augmentation in the decision space can be com-
pletely ‘label preserving’. Only with larger perturbation ra-
dius, more and more perturbed adversarial output vectors
move towards a third classification area. The samples return-
ing to their originally true class, however, can be ignored,
since the adversarial instances are labelled to have the same
class as their clean counterparts during training. Therefore,
the assigned label for these instances would not change.

A different perspective to the classification changes
shown in Figure 2 is to empirically evaluate the local
smoothness of the decision surface. If already for small ran-
dom perturbation an instance moves into another classifica-
tion area, the decision boundary might be sharply twisted
at that point. If only at larger perturbations the instances
move into another class area, the decision boundary can be
assumed to be more smooth.

The second bar of each group displays the correspond-
ing behaviour for an adversarially trained model. Similarly
to the clean model, at small perturbation radius, almost all
pseudo adversarial instances are classified the same as the
initial adversarial instance. However, with increasing manip-
ulation, more and more noisy instances move to the original
or a third classification area. Compared to ST, the number

of pseudo adversarial instances staying adversarial reduces.
This can be explained by the fact, that the attack strength is
kept constant, while the decision boundary in AT is pushed
towards the observed adversarial instances. Thereby, in ST
the adversarial instances are moved further into the wrong
classification area, and thereby can endure more random per-
turbation before moving either back or to a third classifica-
tion area. For an AT trained model, the adversarial instances
are already closer to the decision boundary and are thereby
moved to either the original or a third classification area at
lower random perturbation sizes. This observation also in-
dicates, that for training with pseudo adversarial output vec-
tors, the scatter radius should be reduced over time. Thereby,
the risk of assigning instances to a third classification area
with a potentially incorrect label could be minimized.

As a final comparison, the third bar of each group shows
the corresponding classifications for pseudo adversarial in-
stances on a BAT model. Here we can see that the number
of pseudo adversarial instances being classified as the initial
adversarial instance is higher compared to normal adversar-
ial training. The number of instances moving to a third clas-
sification area is smaller as well for the BAT model com-
pared to the AT model. This indicates a smoother local deci-
sion boundary when a model is trained with BAT compared
to AT.

Having verified that applying random perturbation as a
form of data augmentation in the decision space is a valid
option, our overall pseudo-code is given in Algorithm 1.
Aside from the scalar for the perturbation radius αs, we also
introduce a hyperparameter to define the number of addi-
tionally created pseudo adversarial instances sk. Each addi-
tional pseudo adversarial instance only requires the calcula-
tion of random noise and evaluation of the given loss func-
tion. Addition and multiplication to create the pseudo ad-
versarial instances regarding time complexity are in O (1),
while evaluating the loss function, since independent from
the parameters added for BAT, can also be considered to be
in O (1). Therefore, our extension to implement BAT adds a
time complexity in O (n) with the number of created pseudo
adversarial inputs to the overall training procedure. In Ta-
ble 6 in Appendix , the additional time demand for each
scattered input during the different training methods, is em-
pirically evaluated and listed.

To even out the effect of having multiple pseudo adversar-
ial instances, we calculate the mean loss and add it, weighted
by some factor λ, to calculate the overall loss as

Ltotal = ιLclean + κLadv + λLscatter, (4)

where ι, κ, and λ could be different weights for the different
loss functions.

Results and Discussion
Dataset and Model: All experiments were run on the
Cifar-10 dataset (Krizhevsky, Hinton et al. 2009). For su-
pervised learning, we did an additional set of experiments
marked with +, which uses another 1 million synthetic data
points based on Cifar-10, provided by (Gowal et al. 2021).
The authors report an increase in adversarial robustness us-
ing the additional synthetic data. The model used for all ex-



Algorithm 1: Broad Adversarial Training (BAT).
Input: Dataset D, model f , parameter θ, Loss

function L, # attack steps k, # scatter
instances sk, scatter scalar αs

foreach iter ∈ number of training iteration do
foreach x ∈ minibatch B = {x1, . . . , xm} do

Lclean = L (f (x))
x′ = generateAdversarial (x)
Ladv = L (f (x′))
Broad Adversarial Operation:
δx′,x = f (x′)− f (x)
for sk instances do

f (x′)s = f (x′) +N (0, 1) · δx′,x · αs

Ls += L (f (x′)s)
end
Lscatter =

Ls

sk
Ltotal = ιLclean + κLadv + λLscatter
Optimize θ over Ltotal

end
end

periments is a ResNet-18 architecture, implemented in the
provided repositories of (Kim, Tack, and Hwang 2020) for
RoCL, and (Xu and Yang 2020) for AMOC. The experi-
ments for the supervised case were run based on the AMOC
framework. More details are provided in Appendix .

Hyperparameters for training: For all experiments, we
used the provided hyperparameters suggested by (Kim,
Tack, and Hwang 2020) for RoCL, and (Xu and Yang 2020)
for AMOC, when applicable. More details are provided in
Appendix .

Attacks: During training, the adversarial inputs were cre-
ated governed by a perturbation size of ε = 8/255 regarding
ℓ∞. Therefore, the ℓ∞ attacks are referred to as seen, even if
only for a small perturbation size, while the ℓ2 and ℓ1 attacks
were completely unseen during the training procedure. For
adversarial training, we used the parameters provided by the
respective frameworks, listed in Appendix .

To challenge the trained models, the adversarial inputs
were created with PGD as given in Equation 1 over 20 it-
eration steps, with a relative step size α of 0.1 to the given
allowed amount of perturbation. The overall evaluation was
conducted based on the respective functions in the AMOC
framework, which itself draws the attacks from the foolbox
framework (Rauber, Brendel, and Bethge 2017).

Hyperparameters for BAT: For BAT, we found that a
good number of additional inputs is sk = 10. In prelimi-
ary studies we found that introducing too many additional
data points adds too much noise to the training process and
thereby reduces the overall performance. On the other hand,
too few pseudo adversarial instances do not have any impact
on the overall performance. Similarly, setting the scatter ra-
dius too small results in no effect on the results, while setting
it too large, as shown in Figure 2, will move the pseudo ad-
versarial inputs increasingly towards and over the decision

boundary of a different classification area, and thereby re-
duces the performance. For supervised BAT, we found that
a surprisingly large initial αs = 2.5 decayed by a cosine
scheduler, yields the best results. Training AMOC, setting
the initial αs = 0.25 decayed by a cosine scheduler works
best, respectively for RoCL an initial α0.1 decayed by a
stepwise function reducing the initial αs by 0.01 every 100
epochs.

For the weight of the scatter loss to the overall loss, we
found that in supervised broad adversarial training the same
weight for the original adversarial loss and the scatter loss
works best. Similarly, while pretraining AMOC, an equal
contribution of the clean, the original adversarial, and the
scatter loss yields the best results. For RoCL, a weight of
λ = 0.25 for the scatter loss yields the best results, com-
bined with a weight of ι = κ = 1.0 for the clean and original
adversarial loss.

Results
The results for the supervised experiments are given in Ta-
ble 1, where each value represents the mean value over 5
different runs. For the self-supervised experiments, the re-
sults are listed in Table 2. The upper part reports the results
where only the classification head was optimized, while the
parameters of the pretrained model were frozen. The lower
part, indicated by Self-supervised + finetune, reports the re-
sults where also the parameters of the pretrained model were
optimized during training of the classification head. A B- in
front of the given method indicates, that our proposed adap-
tation was applied to the following training mechanism. The
results for experiments run for 200 epochs are also the mean
value over 5 different runs.

Discussion
Taking a look at the results of the supervised methods in Ta-
ble 1, using only the original Cifar-10 data, we can report,
that the robust classification accuracy can be increased for
all seen, as well as large unseen attack, when using BAT
instead of AT. For small seen perturbation, the robust clas-
sification accuracy increases by 0.56%, while for large per-
turbation size the accuracy increases by 1.11%. Considering
unseen attack, the robust classification accuracy for small
attacks is reduced when using BAT, however, with increas-
ing attack size, this reduction is converted to an increase
for large perturbation sizes. Considering ℓ2 governed attacks
with ε = 0.75, the robust classification accuracy can be in-
creased by 1.11% using BAT, while for ℓ1 governed attacks
with ε = 16.16, the robust classification accuracy increases
only slight by 0.29% using BAT instead of AT.

When using the additional 1 million data points, we can
reaffirm that it increases the clean, as well as robust accu-
racy for all training methods and attacks compared to train-
ing without the additional data, as (Gowal et al. 2021) re-
ported. Comparing AT and BAT using additional data, we
can report that BAT improves on the robust classification ac-
curacy in all observed attacks, as well as a slight increase in
the clean accuracy, compared to AT. Even for small unseen
attacks, e.g., ℓ2 governed attacks with ε = 0.25, the robust
accuracy increases by 0.11% using BAT over AT. For larger



Method Anat

seen unseen
PGD20 l∞ PGD20 l2 PGD20 l1

ϵ 8/255 16/255 32/255 0.25 0.5 0.75 7.84 12 16.16
LCE 93.92 0.00 0.00 0.00 8.27 0.17 0.00 15.07 3.37 0.61
AT 81.85 52.49 22.21 1.25 73.83 63.11 50.91 70.52 62.95 54.66
BAT 76.60 53.05 26.78 2.36 69.63 61.56 52.02 67.04 61.37 54.95
L+

CE 95.04 0.00 0.00 0.00 12.42 0.58 0.04 21.75 6.21 1.84
AT+ 84.15 59.22 29.70 2.60 76.78 67.51 56.09 73.47 66.06 58.05
BAT+ 84.20 59.80 30.49 2.81 76.89 68.08 56.86 73.61 66.75 58.81

Table 1: Results on Cifar-10 for supervised trained models with standard cross entropy training LCE, adversarial PGD training
(AT), and our proposed Broad Adversarial Training (BAT). For the experiments marked with +, 1 million additional synthetic
data points based on Cifar-10 were used for training. During training, the initial adversarial instances were created governed by
ℓ∞ with a strength of 8/255. All experiments were run 5 times and the mean value is reported.

attacks, the robust accuracy benefits more from using BAT
over AT.

Observing the results for AMOC when only the classifi-
cation head is trained, given in Table 2, we can report similar
behaviour. The clean accuracy is slightly reduced, while the
classification accuracy for seen attacks increases in all com-
binations of AMOC and head training, except one combina-
tion for a large perturbation size. The increase in robustness
can range from 0.03% to 1.01%, depending on the attack
size. When AMOC is trained for 1000 epochs, instead of
200, the robust classification accuracy for large and some-
times medium unseen attacks increases as well, between
0.04% and 1.22%.

For RoCL, introducing our proposed pseudo adversar-
ial instances into the self-supervised pretraining, the clean
accuracy increases between 0.04% and 1.37%. Also, the
robustness against seen attacks increases for small and
medium-sized attacks between 0.81% and 2.02%. Interest-
ingly, the robustness for large seen attacks only increases
by 0.13% using B-RoCL during pretraining and BAT for
the classification head is applied. Similar to AMOC, RoCL
also becomes more robust to medium and/or large unseen
attacks, when trained with additional pseudo adversarial in-
puts. The robustness there increases between 0.25% and
3.25%. Particularly for the combination B-RoCL+AT, our
proposed pretraining leads to better clean and robustness
accuracy against almost all attacks compared to standard
RoCL+AT.

When during training of the classification head also the
parameters of the pretrained models are finetuned, we ob-
serve an increase in clean, as well as robust accuracy for
AMOC, too. In particular, comparing B-AMOC+B-AF with
AMOC+AF trained for 1000 epochs, we observe that the
performance increases against almost all attacks between
0.35% and 0.9%. If we assume AMOC+AF as the reported
baseline, B-AMOC+B-AF increase the robustness against
all seen attacks between 0.13% and 0.25%, as well as
against medium and large unseen attacks between 0.11%
and 0.24%.

To further investigate why BAT is sometimes weaker re-
garding unseen attacks, we calculated the perturbation size
of successful ℓ2 and ℓ1 governed attacks regarding ℓ∞. The

resulting distributions are given in Figure 3 in Appendix ,
where the x-axis indicates the perturbation size regarding
ℓ∞, and the y-axis shows the number of successful attacks.
We recommend inspecting the figures digitally to zoom in
for better visibility. The distribution of manipulation sizes
based on attacks controlled by ℓ2 is given in blue (legend
top), while the values for ℓ1-attacks are shown in orange
(legend middle), and for ℓ∞-attacks in green (legend bot-
tom). The grey vertical line gives a landmark of a pertur-
bation of ℓ∞ = 8/255, which is the perturbation size seen
during adversarial and broad adversarial training. The left
column of each pair shows the corresponding distributions
for small perturbation size, while the right column shows
the respective distribution for large perturbation size.

The top row shows the results when the attacked model
was trained on clean data only. We can see that the applied
manipulation of attacks governed by ℓ2 and ℓ1 is generally
lower than the adversarial manipulation applied by the cor-
responding ℓ∞-attack. This could explain why even models
trained on clean samples are, to some extend, robust against
ℓ2 and ℓ1 controlled attacks, as we can observe in Table 1.

The second and third rows show the resulting perturba-
tion size distributions for attacks on an adversarial trained
network, resp. broad adversarial trained model. Here we can
see that the perturbation of ℓ2- and ℓ1-attacks is larger re-
garding ℓ∞ than the perturbation of the corresponding ℓ∞-
attack, especially for a small perturbation size. Since dur-
ing training both models have seen adversarial samples of
the perturbation size ℓ∞ = 8/255, this indicates why both
also become more robust, but not perfect, against ℓ2- and
ℓ1-attacks in general, but probably not why BAT performs
worse than standard AT on unseen attacks.

Observing the pixel level manipulations applied by ℓ2-
and ℓ1-attacks, evaluated regarding ℓ∞ might give more
insights why BAT is worse regarding small perturbations,
compared to AT. The resulting perturbations, exemplary for
the blue color channel of an observed input, are shown in
Figure 4 in Appendix for a standard trained model, in Fig-
ure 5 for an AT trained model, and in Figure 6 for a broad ad-
versarial trained model. The visualization indicates whether
the pixel value of the adversarial input was increased (red,
top of the right bar aside the grid) or decreased (blue, bot-



Method Anat

seen unseen
PGD20 l∞ PGD20 l2 PGD20 l1

ϵ 8/255 16/255 32/255 0.25 0.5 0.75 7.84 12 16.16
Self-supervised:
200 epochs:
AMOC + LCE 79.03 36.61 7.46 0.05 67.93 54.82 41.53 66.27 58.53 50.74
B-AMOC + LCE 78.88 37.09 8.15 0.05 67.64 54.58 41.37 65.77 57.91 50.19
AMOC + AT 74.79 43.97 14.53 0.19 67.10 58.10 48.09 66.03 60.78 54.92
B-AMOC + AT 74.58 44.57 15.45 0.26 66.88 57.93 48.21 65.72 60.43 54.64
AMOC + BAT 74.32 44.08 15.15 0.24 66.63 57.92 48.21 65.62 60.78 54.82
B-AMOC + BAT 74.25 44.59 15.85 0.28 66.64 57.75 48.18 65.49 60.21 54.44
1000 epochs:
AMOC + LCE 86.52 44.91 11.46 0.11 77.04 63.59 50.39 75.47 68.27 59.75
B-AMOC + LCE 85.90 45.17 12.02 0.14 76.78 64.29 50.99 75.38 68.64 60.97
AMOC + AT 84.48 50.87 16.85 0.26 77.07 67.28 56.00 76.14 70.45 64.43
B-AMOC + AT 83.80 50.89 17.81 0.38 76.35 66.79 56.16 75.44 69.78 64.29
AMOC + BAT 83.88 51.00 17.46 0.33 76.44 66.41 55.77 75.51 69.87 63.67
B-AMOC + BAT 83.40 51.08 18.47 0.37 75.97 66.45 56.11 75.15 69.48 63.83
RoCL + LCE 83.69 38.49 8.73 0.66 65.98 61.12 44.47 68.03 67.59 60.42
B-RoCL + LCE 85.06 40.44 9.54 0.63 65.37 62.86 47.42 66.42 66.63 63.67
RoCL + AT 79.65 47.35 16.33 0.36 67.33 65.18 53.38 68.20 68.17 65.58
B-RoCL + AT 79.69 49.36 17.41 0.33 67.58 66.15 54.64 68.21 68.54 66.68
RoCL + BAT 78.63 47.31 16.29 0.25 68.34 64.92 53.04 68.92 69.27 65.34
B-RoCL + BAT 79.69 49.33 17.22 0.38 67.59 66.03 54.47 68.38 68.43 66.73
Self-supervised
+ finetune
200 epochs:
AMOC + AF 82.87 52.60 22.11 1.11 74.65 63.56 50.77 71.20 63.32 54.81
B-AMOC + AF 83.29 52.98 21.69 1.14 74.84 63.80 50.96 71.28 63.33 54.73
AMOC + B-AF 82.19 52.73 22.23 1.28 73.71 63.51 51.04 70.43 63.05 54.62
B-AMOC + B-AF 82.60 52.98 22.34 1.26 74.28 63.51 50.92 70.81 63.05 54.40
1000 epochs:
AMOC + AF 83.28 52.82 22.04 1.12 74.95 63.87 51.38 71.79 63.83 55.13
B-AMOC + AF 84.00 53.08 21.74 1.09 75.44 64.65 51.20 71.95 64.20 55.33
AMOC + B-AF 81.85 52.62 22.51 1.38 73.77 63.21 50.99 70.82 63.16 54.55
B-AMOC + B-AF 82.76 53.07 22.17 1.32 74.63 64.11 51.49 71.17 63.83 55.30

Table 2: Results on Cifar-10 for self-supervised trained models. In the first part, the classification head was trained without
adapting the pretrained features. In the second part, the parameters of the pretrained model were also adapted during training
the classification head. LCE, AT, and BAT define, whether the classification head, and in case of finetuning the pretrained
models, were trained on clean, adversarial, or with addition of pseudo adversarial inputs, respectively. A B- before the given
self-supervised method indicates, that our proposed extension was applied. During training, the initial adversarial instances
were created governed by ℓ∞ with a strength of 8/255.



tom of the right bar aside the grid), regarding the pixel value
of the original input.

In all cases, we observe that ℓ2 and ℓ1 governed attacks
tend to only slightly perturb the vast majority of pixel val-
ues while selecting a handful of pixels that are heavily per-
turbed. This is because the overall perturbation size for ℓ2
and ℓ1 is calculated over all pixels. Those attacks tend to
spend their perturbation budget on the pixels, which seem
to have the most impact on the classification. When the at-
tack has the freedom to perturb each pixel independently, as
is the case for ℓ∞-attacks, the overall perturbation is larger.
This also underlines the observation that clean trained mod-
els are more robust to ℓ2- and ℓ1-attacks. Particularly, when
including additional input data during training, which intro-
duces a larger variety of pixel value combinations. While at
the same time, clean trained models are completely defence-
less against attacks governed by ℓ∞, which create manipu-
lations that can not be covered by more clean data as the
manipulations are too large and unnatural.

Considering these observations, we propose that BAT is
less robust against small perturbations by ℓ2- and ℓ1-attacks,
because it overfits to the observed perturbations, or more
precisely the output vectors of such adversarial inputs, based
on ℓ∞ during training. In particular, since Cifar-10 includes
only 50,000 samples.

This assumption is supported by the results for the super-
vised trained models, reported in Table 1, which used the ad-
ditional 1 million samples for training. This additional data
seem to prevent BAT from overfitting to the observed adver-
sarial perturbation, as the variability in the input data, and
thereby the variability in the pseudo adversarial instances,
increases. This results in higher robustness to unseen at-
tacks, compared to standard AT.

Another future step to prevent the potential overfitting
would be to further investigate the manipulation distribu-
tions of ℓ2- and ℓ1-attacks, and in particular the distribution
of their respective output vectors in the decision space. The
gained insights could help to apply more sophisticated data
augmentation in the decision space than the simple condi-
tioned random noise we use here. Also, observing the distri-
bution of clean sample output vectors could help to prevent
pseudo adversarial inputs from jumping into a third classifi-
cation area, as shown in Figure 2.

Related Work
Recent works, e.g., (Madaan, Shin, and Hwang 2021; Rusak
et al. 2020; Dong et al. 2020), propose to incorporate random
noise into their techniques to increase the robustness of mod-
els against adversarial perturbations. To that end, (Madaan,
Shin, and Hwang 2021) and (Rusak et al. 2020) employ
some kind of generator, trained to create perturbations which
are applied to the input vector, i.e., the image, before they are
fed through the classification model. (Dong et al. 2020) as
well, aim to model a distribution for each input which, when
drawn from with very high probability returns an adversarial
sample for the given input. Based on this learned adversarial
distribution, the classification model itself is trained to min-
imize the expected loss over the adversarial distribution. In

all these cases, the random manipulation is applied to the in-
put vector, while we manipulate the output vector of a given
adversarial sample. Because the works operate on different
parts of the model, it should be possible to combine the tech-
niques, to further increase adversarial robustness.

Regarding manipulating the output vector, mixup (Zhang
et al. 2018) drew a lot of attention recently. (Lee, Lee, and
Yoon 2020) took the idea of mixup and combined it with
adversarial training, calling it Adversarial Vertex Mixup
(AVM). Essentially, at first they create an adversarial sam-
ple and push it further in the adversarial direction to create
the so called adversarial vertex. Then, instead of using two
clean inputs as in the original mixup paper, they merge the
initial clean sample and the adversarial vertex to form a new
input. Since the clean sample and the adversarial vertex have
the same label, the authors use some form of label smooth-
ing function, e.g., by (Szegedy et al. 2016) to convert the
one-hot encoded labels to a conditionally randomized distri-
bution. Merging these two distributions give the new label
for the mixup between the clean sample and the adversarial
vertex. In contrast to this work, we create multiple adversar-
ial instances, instead of one. AVM could be visualised as a
line between the adversarial vertex and clean sample from
which the new inputs are drawn. Our method creates a ball
around the initial adversarial output vector from which mul-
tiple samples are drawn as new output vectors for training.

Conclusion

Using data augmentation and larger datasets have shown
to be supporting and sometimes even essential (Riquelme
et al. 2021) to achieve better classification results and bet-
ter generalisation. However, using these techniques does not
yield robustness against adversarial manipulations. Instead,
techniques like adversarial training are necessary to harden
neural networks against unforeseen perturbations, which can
fool the classification.

Since adversarial inputs are created in and defined by the
output space, which ultimately leads to the decision of a
model, we proposed to combine adversarial training with
data augmentation in the output space, referring to as Broad
Adversarial Training (BAT). We show, that already applying
simply conditioned random noise to the output vectors of
adversarial inputs, and thereby create multiple new pseudo
adversarial inputs, can increase the robustness, and in some
cases even the clean accuracy.

Extending standard Adversarial Training (AT) (Madry
et al. 2017) to BAT for training on Cifar-10, increases the
robustness against seen attacks by 0.55% for small pertur-
bations and by 1.11% for larger perturbation size. On large
unseen ℓ2-attacks the robust accuracy increases as well by
1.11%, and for large ℓ1-attacks by 0.29%. Increasing the
clean data pool by another 1 million data points, using
BAT increases the robust accuracy for all observed attacks
between 0.12% and 0.79%, as well as the clean accuracy
slightly by 0.05%. Similar results can also be reported for
self-supervised learning, where using BAT can increase the
robust and clean accuracy, as well.
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Appendix
Optimization problems and loss functions
In Table 3 the respective loss functions and optimization
problems used in training AMOC and RoCL are listed, with
the explanation of the used symbols in the caption.



Contrastive loss
Lcon,θ (x, {xpos}, {xneg})

:= − log

∑
{f(x)pos}

exp(sim(f(x),{f(x)pos})/τ)∑
{f(x)pos}

exp(sim(f(x),{f(x)pos})/τ)+
∑

{f(x)neg}
exp(sim(f(x),{f(x)neg})/τ)

RoCL PGD t1 (x)
i+1

= ΠB(t1(x),ε)

(
t1 (x)

i
+ αsign

(
∇t1(x)

iLcon,θ

(
t1 (x)

i
, {t2 (x)}, {t1 (x)neg}

)))
RoCL argmin

θ
Ex∼D

[
maxδ∈B(t1(x),ε) Lcon,θ

(
t1 (x) + δ, {t2 (x)}, {t1 (x)neg}

)]
MoCo Loss LNCE = − log

exp(q·kpos/τ)
exp(q·kpos/τ)+

∑
kneg∈M exp(q·kneg/τ)

AMOC minθq,θk Ex∈DEt1,t2∈T max∥δ∥,∥δ′∥≤ε L (t1 (x) + δ, t2 (x) + δ′,Mclean,Madv)

AMOC ACC LACC = LNCE (fq (t1 (x) + δ;BNadv) , fk (t2 (x) ;BNclean) ,Mclean)

Table 3: Loss functions and optimization problems defined for the used self-supervised adversarial training methods. In all
formulations x is a given clean sample, f indicates the observed model, and δ is the adversarial perturbation. Also t1 and t2
define two different random transformation, while τ is some temperature hyperparameter. The contrastive loss is used within the
RoCL framework, based on SimCLR, where xpos and xneg give the positive and negative samples, respectively. The similarity
sim between two output vectors is calculated as the cosine similarity. To create an adversarial sample, the PGD equation (cf.
Equation 1) is adapted by replacing the cross entropy loss with the contrastive loss. For the MoCo Loss, q and k represent the
query and key encoder, respectively, and M is the used memory bank. While standard MoCo only defines one memory bank,
within the AMOC framework the authors use two memory banks Mclean and Madv to store the clean and adversarial historical
samples. AMOC ACC is one specific loss function within the overall AMOC framework, for which the authors report good
results, and which is therefore used in this study.

Training parameters
In Table 4 all necessary hyperparameter for training the
AMOC models are given, as well as for the supervised mod-
els/classification heads with clean, i.e., LCE, and adversar-
ial, i.e., AT, samples. The explanation for the certain ab-
breviations, e.g., which transformation are used under the
term simclr, are explained in the caption. The same applies
for the comprehensive list of hyperparameters for training
RoCL and the respective classification heads, given in Ta-
ble 5.

Further details:
• All experiments were run on NVIDIA GeForce GTX

1080.
• For RoCL training, we were not able to use the suggested

batch size of 256 per GPU with our hardware.
• For RoCL we changed the projector to consist of 2, in-

stead of 1, linear layers, followed by a normalization
layer.

• Finetuning RoCL with only adversarial inputs led in our
experiments to a classification accuracy of 10%. Using
additional clean samples, we achieved a robust accuracy
around 30%, which is 10% lower than the reported val-
ues, and would not be comparable to standard adversarial
training. Therefore, RoCL + AF was excluded from our
experiments.

Additional time demand
In Table 6 the mean time required for one step of the in-
dicated adversarial training method is listed. Further down,

we split the time demand into the creation of the initial ad-
versarial instance, which already takes up between 40.97 to
66.92% of the overall time. Calculating δx′,x is only required
once. Because for AT, the output vector of the clean sample
is not calculated during training, the proportional time re-
quirement is comparable large to the unsupervised methods,
where the output vector is already calculated independent of
our adaptation. Creating each pseudo adversarial input only
adds a small portion, between 0.2% to 0.52% to the overall
time demand per step. For RoCL the evaluation of the loss
function furthermore takes up 84.96% of the time to create
one pseudo adversarial instance. We explain this compara-
ble large time demand by the fact that the RoCL framework
implements the loss function itself, while AMOC uses the
cross entropy loss provided by pytorch and does very lim-
ited own computation in context of the loss evaluation.

Differences between the attacks



AMOC 200 AMOC 1000 AT head AT LCE head LCE

GPU 1 1 1 1 1 1
optimizer sgd sgd sgd sgd sgd sgd
momentum 0.9 0.9 0.9 0.9 0.9 0.9
weight decay 5e-4 5e-4 5e-4 5e-4 2e-4 2e-4
learning rate 0.1 0.1 0.1 0.1 0.1 0.1
- decay cosine cosine FC TOTAL FC TOTAL
epochs 200 1000 25 40 25 40
warmup epochs 10 10
batch size 256 256 128 128 128 128
transform simclr simclr default default default default
attack:
type ℓ∞ ℓ∞ ℓ∞ ℓ∞
ε 8/255 8/255 8/255 8/255
step size 2/255 2/255 2/255 2/255
# steps 5 5 10 10
attack weight κ 0.5 0.5 1.0 1.0
scatter operation:
sk 10 10 10 10
αs 0.25 0.25 2.5 2.5
scatter decay cosine cosine cosine cosine
scatter weight λ 0.5 0.5 1.0 1.0
MoCo specific:
dim mlp 512 512
dim head 128 128
τ 0.2 0.2
# samples in Mclean 32768 32768
# samples in Madv 32768 32768
key encoder
momentum 0.999 0.999

Table 4: Full list of parameters for training AMOC, as well as the supervised models/classification heads with clean, i.e., LCE,
and adversarial, i.e., AT, samples. FC is implemented to decaying the learning rate by a factor of 10 at epochs 10 and 15, while
TOTAL reduces the learning rate by a factor of 10 at epochs 30 and 35. A default transformation is implemented as padding by
4, random resized cropping to 32, random horizontal flipping. SimCLR as transformation is composed of: random cropping of
size 32, applying color jitter with a strength of 0.4 to the brightness, contrast, and saturation, while the hue is perturbed with
strength 0.1, all with a probability of 0.8, random grayscale with a probability of 0.2, applying gaussian blur with a probability
of 0.5, and random horizontal flipping. All inputs are converted to tensors, i.e., to the range [0, 1].



RoCL AT head LCE head
GPU 2 1 1
base optimizer SGD SGD SGD
- momentum 0.9 0.9 0.9
- weight decay 1e-6 5e-4 5e-4
- learning rate 0.1 0.2 0.2
optimizer LARS
- eps 1e-8
- trust coeff 0.001
learning rate
decay cosine

warmup GradualWarmUp
- lr multiplier 15
- warumup epochs 10
epochs 1000 150 150
batch size 128 per GPU 128 128
transform simclr simclr simclr
attack:
type ℓ∞ ℓ∞
ε 0.0314 (≈ 8/255) 0.0314 (≈ 8/255)
step size 0.007 (≈ 2/255) 0.007 (≈ 2/255)
# steps 7 10
attack weight κ 1.0 1.0
scatter operation:
sk 10 10
αs 0.1 2.5
scatter decay stepwise cosine
scatter weight λ 0.25 1.0
RoCL specific:
τ 0.5
λRoCL 256

Table 5: Full list of parameters for training RoCL, as well as the supervised classification heads with clean, i.e., LCE, and
adversarial, i.e., AT, samples. To train RoCL (Kim, Tack, and Hwang 2020) use the LARS (You, Gitman, and Ginsburg 2017)
optimizer based on SGD with the given parameters. The initial learning rate is increased during the first 10 epochs by an overall
factor of 15. Afterwards the learning rate is decayed by a cosine scheduler. Their input transformation is composed of: applying
color jitter with a strength of 0.4 to the brightness, contrast, and saturation, while the hue is perturbed with strength 0.1, all with
a probability of 0.8, random grayscale with a probability of 0.2, random horizontal flipping, and random resized cropping of
size 32. All inputs are converted to tensors, i.e., to the range [0, 1].



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

linf_from_l2
linf_from_l1
linf_from_linf

(a) Small Perturbation for LCE

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

linf_from_l2
linf_from_l1
linf_from_linf

(b) Large Perturbation for LCE

0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1000

2000

3000

4000

Fr
eq

ue
nc

y

linf_from_l2
linf_from_l1
linf_from_linf

(c) Small Perturbation for AT

0.4 0.2 0.0 0.2 0.4 0.6
0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y
linf_from_l2
linf_from_l1
linf_from_linf

(d) Large Perturbation for AT

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1000

2000

3000

4000

Fr
eq

ue
nc

y

linf_from_l2
linf_from_l1
linf_from_linf

(e) Small Perturbation for BAT
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(f) Large Perturbation for BAT

Figure 3: Distribution of perturbation size, measured regarding ℓ∞, for attacks governed by ℓ2 (blue), ℓ1 (orange), and ℓ∞
(green) on the indicated trained model. The gray line indicates a perturbation size of ℓ∞ = 8/255, giving a landmark for seen
adversarial inputs during adversarial training.
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(d) Large Perturbation by ℓ1
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(e) Small Perturbation by ℓ∞
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(f) Large Perturbation by ℓ∞

Figure 4: Perturbation for each pixel governed by ℓ2 (top), ℓ1 (middle), and ℓ∞ (bottom), measured regarding ℓ∞ on a LCE
trained model.
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(a) Small Perturbation by ℓ2
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(c) Small Perturbation by ℓ1
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(d) Large Perturbation by ℓ1
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(e) Small Perturbation by ℓ∞
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(f) Large Perturbation by ℓ∞

Figure 5: Perturbation for each pixel governed by ℓ2 (top), ℓ1 (middle), and ℓ∞ (bottom), measured regarding ℓ∞ on a PGD
adversarial trained model.
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(a) Small Perturbation by ℓ2
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(c) Small Perturbation by ℓ1
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(d) Large Perturbation by ℓ1
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(e) Small Perturbation by ℓ∞
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(f) Large Perturbation by ℓ∞

Figure 6: Perturbation for each pixel governed by ℓ2 (top), ℓ1 (middle), and ℓ∞ (bottom), measured regarding ℓ∞ on our
proposed broad adversarial trained model.



operation mean in ms std in ms % of overall time
AT:
overall time per step 777.55 30.37
create initial adversarial input 429.14 16.61 55.19
calculate δx′,x 43.65 4.03 5.61
create one pseudo adversarial input 1.56 3.68 0.20
calculate the loss within scattering 0.09 0.02 0.01
AMOC:
overall time per epoch 1180.50 59.58
create initial adversarial input 483.61 26.72 40.97
calculate δx′,x 0.10 0.01 0.01
create one pseudo adversarial input 3.65 7.23 0.31
calculate the loss within scattering 0.26 0.19 0.02
RoCL:
overall time per epoch 1342.06 52.27
create initial adversarial input 898.09 35.55 66.92
calculate δx′,x 0.81 0.14 0.06
create one pseudo adversarial input 7.04 1.25 0.52
calculate the loss within scattering 5.98 1.22 0.45

Table 6: Time demand for different operations during BAT given in ms. For each method we list the overall mean time and
standard deviation for one step, as well as the time required to calculate the initial adversarial input. The overall scatter operation
is split into calculating δx′,x, which is only performed once, and the creation of one pseudo adversarial input. In particular, we
also list the time required to evaluate the loss function for the created pseudo adversarial instance.


