
Tied Block Convolution:
Leaner and Better CNNs with Shared Thinner Filters

Xudong Wang and Stella X. Yu
UC Berkeley / ICSI

{xdwang, stellayu}@berkeley.edu

Abstract
Convolution is the main building block of a convolutional
neural network (CNN). We observe that an optimized CNN
often has highly correlated filters as the number of chan-
nels increases with depth, reducing the expressive power of
feature representations. We propose Tied Block Convolution
(TBC) that shares the same thinner filter over equal blocks of
channels and produces multiple responses with a single filter.
The concept of TBC can also be extended to group convolu-
tion and fully connected layers, and can be applied to various
backbone networks and attention modules.
Our extensive experimentation on classification, detection,
instance segmentation, and attention demonstrates that TBC
is consistently leaner and significantly better than standard
convolution and group convolution. On attention, with 64×
fewer parameters, our TiedSE performs on par with the stan-
dard SE. On detection and segmentation, TBC can effectively
handle highly overlapping instances, whereas standard CNNs
often fail to accurately aggregate information in the presence
of occlusion and result in multiple redundant partial object
proposals. By sharing filters across channels, TBC reduces
correlation and delivers a sizable gain of 6% in the average
precision for object detection on MS-COCO when the occlu-
sion ratio is 80%. Our code is publicly available.

Introduction
Convolution is the main building block of a convolutional
neural network (CNN), which has been widely successful
on image classification (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2016; Xie et al. 2017; Simonyan and Zisser-
man 2014), object detection (Girshick 2015; Ren et al. 2015;
He et al. 2017), image segmentation (Kirillov et al. 2019;
Long, Shelhamer, and Darrell 2015; Chen et al. 2017, 2018)
and action recognition (Ji et al. 2012; Wang et al. 2016; Car-
reira and Zisserman 2017; Wang et al. 2018). However, stan-
dard convolution is still costly in terms of computation, stor-
age, and memory access. More importantly, an optimized
CNN often develops highly correlated filters.

We can evaluate pairwise filter similarity in standard con-
volution (SC), using the cosine similarity of guided back-
propagation patterns (Springenberg et al. 2014) averaged
over a set of ImageNet images. Fig. 1 shows that the fil-
ter correlation increases with the layer depth: Filters at the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

layer 2 layer 4 layer 6

layer 8 layer 10 layer 12

(a) Correlation matrix

0.3 0.5 0.7 0.9

layer 2
layer 4
layer 6
layer 8
layer 10
layer 12

(b) Histograms

Figure 1: Filters of an optimized CNN become more simi-
lar at an increasing depth. (a) Correlation matrix of 64 ran-
domly selected filters at selected layers of the VGG16 Ima-
geNet classifier. We compute the similarity between two fil-
ters based on their guided back-propagation patterns (Sprin-
genberg et al. 2014) averaged on a set of images. As the
layer goes deeper from 2 to 12, the pairwise similarity in-
creases overall and the matrix turns from red to light yellow.
(b) Normalized histograms of these pairwise filter similari-
ties. As the number of channels increases with depth from
64 to 128 to 256, the curve shifts right and becomes far nar-
rower, i.e., more filters become similar.

same layer become more similar from early to later layers,
reducing the expressive power of feature representations.

How to optimize a CNN with less redundancy has been
studied (Howard et al. 2017; Zhang et al. 2018; Ma et al.
2018; Xie et al. 2017), often by exploring dependencies
across space and channel dimensions. In SC, while each
filter can have a reduced size spatially, it extends to the
entire set of channels, whereas in group convolution (GC)
(Krizhevsky, Sutskever, and Hinton 2012), a filter only con-
volves with a subset of input channels. Therefore, if there are
B groups of input channels, each GC layer reduces the num-
ber of parameters B times by reducing the size of each fil-
ter by B times. Depth-wise convolution (DW) is an extreme
case of GC, where each group only contains one channel,
maximally reducing the parameter count.

While GC and DW are effective at reducing the model
size, there is no correlation between filters, resulting in an
isolated representation without cross-channel connections.
Instead of simply reducing the size of each filter as in GC

Activations map
2×ℝ$×%&×'&

two full-size filters 2×ℝ()×*×*

Input ℝ()×%)×') Activations map
2×ℝ!×#!×$!

two full-size filters 2×ℝ%"×&×&

Input ℝ%"×#"×$"

(a) Standard Convolution

Activations map
2×ℝ$×%&×'&

two half-size filters 2×ℝ()/+×,×,

Input 2×ℝ()/+×%)×') Activations map
2×ℝ!×#!×$!

two half-size filters 2×ℝ%"/'×(×(

Input 2×ℝ%"/'×#"×$"

(b) Group Convolution

one half-size filters 1×ℝ$%/'×(×(

Activations map
2×ℝ*×+,×-,Input 2×ℝ$%/'×+%×-%

one half-size filters 1×ℝ!!/#×%×%

Activations map
2×ℝ&×'"×("Input 2×ℝ!!/#×'!×(!

(c) Tied Block Convolution

Figure 2: Convolution operators. To generate two activation maps, standard convolution requires two full-size filters and group
convolution requires two half-size filters, however, our tied block convolution only requires one half-size filter, i.e., the number
of parameters is reduced by 4×. The idea of TBC can also be applied to fully connected and group convolutional layers.

and DW, we further reduce redundancy by exploring the
connections among filters on subsets of channels and con-
sequently increasing the power of each filter.

Directly reducing the number of filters is known to re-
duce the model capacity (He et al. 2016). However, since
SC filters become more similar (Fig. 1), we can reduce the
effective number of filters by reusing them across channels.

We propose such a simple alternative called tied block
convolution (TBC): We split C input channels into B equal
blocks, and use a single block filter defined only on C

B chan-
nels to produce B responses. While SC produces two re-
sponses with two full-size filters each spanning entire C
channels, TBC at B=2 produces two responses with a sin-
gle half-size filter spanning only C

2 channels (Fig. 2). TBC
is GC shared across groups, and TBC at B=1 is SC.

Extending the concept of TBC in a straightforward fash-
ion to the fully connected layer and the group convolution
layer, we obtain tied block fully connected layer (TFC) and
the tied block group convolution (TGC) respectively.

Our TBC utilizes each filter, memory access, and samples
more effectively. 1) At B=2, TBC obtains twice responses
with one half-size thin filter, achieving 4 times model re-
duction. 2) As the same thin filter is applied to each of the
B blocks, TBC has more efficient memory access by uti-
lizing GPU’s parallel processing. 3) Since each thin filter
is trained on B times more samples, learning also becomes
more effective. 4) Since each set of TBC filters are applied to
all input channels, TBC could aggregate global information
across channels and model cross-channel dependencies.

While TBC is appealing in theory, its advantage over SC
or GC in practice could depend upon neural network ar-
chitectures. We apply TBC/TFC/TGC to various backbone
networks, including ResNet (He et al. 2016), ResNeXt (Xie
et al. 2017), SENet (Hu, Shen, and Sun 2018) and ResNeSt
(Zhang et al. 2020), and propose their tied versions: TiedRes-
Net, TiedResNeXt, TiedSENet and TiedResNeSt.

We conduct extensive experimentation on classifica-
tion, detection, segmentation, and attention, demonstrating
TBC/TGC/TFC’s significant across-the-board performance
gain over standard convolution, group convolution, and fully
connected layer function. For example, TiedResNet consis-
tently outperforms ResNet, ResNeXt and HRNetV2 (Wang
et al. 2019) by a larger margin with a much leaner model

(Fig. 6). We obtain similar performance boost and model re-
duction on a varity of frameworks, tasks and datasets.

Our empirical insight is that filter redundancy in an op-
timized CNN not only reduces the effective model capac-
ity, but also makes it unable to capture diverse outputs and
thereby loses performance. For object detection on MS-
COCO, standard CNNs often fail to accurately locate target
object regions and aggregate useful information in the fore-
ground. Consequently, there are multiple overlapping partial
object proposals, preventing a single full object proposal to
emerge from the proposal pool. Our TiedResNet can handle
highly overlapping instances much better and increase the
average precision (AP) by 6% (in particular, 8.3% in AP at
IoU= 0.75) when the occlusion ratio is 80%.

Related works
Backbone Networks. AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) is the first CNN success with significant ac-
curacy gain on the ILSVRC competition. However, large
kernels and fully connected layers greatly increase the
model size. With smaller kernels, GoogleNet (Szegedy et al.
2015) and VGGNet (Simonyan and Zisserman 2014) only
need 12 times fewer parameters to outperform (Krizhevsky,
Sutskever, and Hinton 2012; Zeiler and Fergus 2014). How-
ever, large network depths cause vanishing gradient prob-
lems, later to be solved by the residual connection design in
ResNet (He et al. 2016). Since the depth of a CNN model is
no longer an issue, researchers have begun to explore how
to use parameters more efficiently. At a comparable model
complexity, ResNeXt (Xie et al. 2017) outperformes ResNet
on many major tasks, mainly due to the use of efficient group
convolution. With a careful design of the architecture, HR-
NetV2 (Wang et al. 2019) achieves the state-of-the-art per-
formance on multiple major tasks. Compared to these works
using either GC or SC, our TBC further utilizes the full po-
tential of each thinner filter. We provide detailed compar-
isons with these networks.
Group-wise Convolution. Group convolution (GC)
(Krizhevsky, Sutskever, and Hinton 2012) is proposed
to remove filter redundancy. Since each GC filter only
convolves with features in its group, with the same number
of channels, this mechanism can reduce the number of

parameters within each layer by a factor of B, where B
is the number of groups. When the number of groups
is the same as the number of input feature channels, GC
becomes identical to depth-wise convolution (DW) (Howard
et al. 2017). Both GC and DW greatly reduce the model
redundancy by reducing the size of each filter. However,
they do not exploit the correlation between (learned) filters.

As each filter in GC or DW only responds to a partial in-
put feature map, the ability to integrate information across
channel dimensions is reduced in GC and completely lost
in DW. In contrast, our TBC filter is shared across all in-
put channels, and thus its responses over subsets of channels
become comparable and relatable. This mechanism also in-
troduces another benefit: With only one fragmentation, TBC
can take full advantage of the powerful parallel computing
capabilities of GPUs.
Attention Modules. (Hu, Shen, and Sun 2018) introduces
the squeeze-and-excitation (SE) module to adaptatively re-
calibrate channel-wise feature responses. (Cao et al. 2019)
unifies SE and a non-local (Wang et al. 2018) module into
a global context block (GCB). While SE and GCB are rel-
atively light, SE (GCB) still counts for 10% (25%) of the
model size. Our tied block convolution and tied fully con-
nected layers can be integrated into various attention mod-
ules and significantly reduce the number of parameters:
2.53M vs 0.04M for SE and 10M vs 2.5M for GCB.

Tied Block Convolution Network Design
We first analyze TBC and TGC to guide us in network de-
sign. We also develop TFC and apply to attention modules.

TBC Formulation
Let X ∈ Rci×hi×wi and X̃ ∈ Rco×ho×wo denote the in-
put and output features respectively, where c, h, w are the
number of channels, the height and width of feature maps
respectively. The kernel size is k × k and the bias term is
ignored for clarity.
Standard Convolution, denoted by ∗, can be formulated as:

X̃ = X ∗W (1)

where W ∈ Rco×ci×k×k is the SC kernel. The number of
parameters for SC is thus: co × ci × k × k.
Group Convolution first divides input feature X into G
equal-sized groups X1, ..., XG with size ci/G× hi × wi

per group. Each group shares the same convolutional filters
Wg . The output of GC is computed as:

X̃ = X1 ∗W1 ⊕X2 ∗W2 ⊕ · · · ⊕XG ∗WG (2)

where ⊕ is the concatenation operation along the channel
dimension, Wg is the convolution filters for group g, where
g ∈ {1, . . . , G}, Wg ∈ R

co
G ×

ci
G×k×k. The number of pa-

rameters for GC is: G× co
G ×

ci
G × k × k.

Tied Block Convolution reduces the effective number of fil-
ters by reusing filters across different feature groups with the
following formula:

X̃ = X1 ∗W ′ ⊕X2 ∗W ′ ⊕ · · · ⊕XB ∗W ′ (3)

1 2 4 8 16 32
B

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

se
co

nd
s

7.78

10.32

12.17

14.83

17.56

20.82

7.78 8.22
7.51

9.19

6.00

8.17

GC
TBC

Figure 3: TBC has a flat (vs. GC’s linear) compute with
respect to the block number. The time cost of process-
ing 1k iterations of each feature map using the RTX 2080Ti
GPU is plotted against B. When B increases, GC increases
the time cost almost linearly. In contrast, when using a larger
B, TBC keeps a similar time cost. Different block numbers
B were tested for GC and TBC, the total FLOPs at these
values were fixed by changing the total filter number. When
B = 1, GC and TBC are equal to SC. Input feature map size
is 56×56×2048.

where W ′ ∈ R
co
B ×

ci
B ×k×k is the TBC filters shared among

all the groups. The parameter number is: co
B ×

ci
B × k × k.

TBC vs. GC. While TBC is GC with filters shared across
groups, it has several major distinctions from GC in practical
consequences (assume that the block number B is the same
as the group number G).

1. TBC has B× fewer parameters than GC.
2. TBC only has one fragmentation on GPU utilization,

whereas GC has G fragmentations, greatly reducing the
degree of parallelism. Fig.3 shows that the processing
time increases linearly with the number of groups in GC,
whereas our TBC keeps almost the same processing time.

3. TBC can better model cross-channel dependencies. Since
each set of GC filters are only convolved on subsets of
channels, GC has trouble comparing and aggregating in-
formation across channels. However, each set of TBC fil-
ters are applied to all input channels and can better model
cross-channel dependencies.

4. TBC-based TiedResNet greatly surpasses GC-integrated
ResNeXt on object detection and instance segmentation
tasks. TiedResNet-S can even outperform ResNeXt with
2× model size reduction, demonstrating that TiedResNet
makes more effective use of model parameters.

Tied Block Group Convolution (TGC) The idea of tied
block filtering can also be directly applied to group convo-
lution, formulated as:

X̃ =(X11 ∗W ′1 ⊕ · · · ⊕X1B ∗W ′1)⊕ · · ·⊕
(XG1 ∗W ′G ⊕ · · · ⊕XGB ∗W ′G)

(4)

where W ′g ∈ R
co
BG×

ci
BG×k×k, Xgb ∈ R

ci
BG×hi×wi is the

divided feature map, g ∈ [1, G] and b ∈ [1, B].
Tied Block Fully Connected Layer (TFC) Convolution is
a special case of fully connected (FC) layer, just as FC is a
special case of convolution. We apply the same tied block
filtering idea to FC. Tied block fully connected layer (TFC)
shares the FC connections between equal blocks of input

TBC (1 × 1)

Conv (1 × 1)

TBC (3 × 3) TBC (3 × 3) TBC (3 × 3) TBC (3 × 3)

!𝐗

𝐗

TBC (3 × 3)

mixer

Concatenate

Split

(a) TiedResNet

TBC (1 × 1)

Conv (1 × 1)

TGC (3 × 3) TGC (3 × 3) TGC (3 × 3) TGC (3 × 3)

!𝐗

𝐗

TBC (3 × 3)

mixer

Concatenate

Split

(b) TiedResNeXt

Input

(h, w, c)

…

TBC, 1x1,
c’/k/r

TBC,
3x3, c’/k

…

TBC, 1x1,
c’/k/r

TBC,
3x3, c’/k

Split 1 Split r

Cardinal 1

Split Attention

Concatenate
(h, w, c’/k)

Conv, 1x1, c
(h, w, c’)

(h, w, c)

TBC, 1x1,
c’/k/r

TBC,
3x3, c’/k

…

TBC, 1x1,
c’/k/r

TBC,
3x3, c’/k

Split 1 Split r

Cardinal k

Split Attention

(c) TiedResNeSt

Figure 4: Diagram of bottleneck modules for (a) TiedResNet with 4 splits (b) TiedResNeXt with 4 splits and (c) TiedResNeSt.
Each tied block convolution (TBC) and tied block group convolution (TGC) has a specific block number.

Residual

𝐶×1×1 global pooling

𝐶×𝐻×𝑊

sigmoid𝐶×1×1

Scale

𝐶×𝐻×𝑊

Tied Block FC𝐶×1

ReLU𝐶
𝑟 ×1

Tied Block FC𝐶
𝑟 ×1

(a) TiedSE

1×𝐻×𝑊
Conv (1×1)

Tied Block Conv (1×1)

LayerNorm, ReLU

𝐶×𝐻×𝑊

Softmax
𝐻𝑊×1×1𝐶×𝐻𝑊

Tied Block Conv (1×1)

Context Modeling

𝐶×1×1

𝐶/𝑟×1×1

𝐶/𝑟×1×1

Transform𝐶×1×1

(b) TiedGCB

Figure 5: Diagram of Tied attention modules. (a) TiedSE
module replaces FC in the original squeeze-and-excitation
(SE) module (Hu, Shen, and Sun 2018) to be TFC. (b)
TiedGCB module replaces standard convolution in global
context block (GCB) (Cao et al. 2019) with TBC.

channels. Like TBC, TFC could reduce B2 times parame-
ters and B times computational cost.

TBC/TGC in Bottleneck Modules
The ResNet/ResNeXt/ResNeSt bottleneck modules have 1×
1 and 3×3 convolutional filters. We apply TBC/TGC differ-
ently as in Fig.4. For 3× 3 in ResNet and ResNeXt, we split
all the filters into groups; each group has its own TBC/TGC
setting. This choice allows different levels of sharing and is
motivated by network visualization works (Zeiler and Fer-
gus 2014; Bau et al. 2017): Filters assume different roles
at different layers and some are unique concept detectors
(Agrawal, Carreira, and Malik 2015; Bau et al. 2017). For
the 1×1 convolutions at the entry and the exit of bottlenecks,
we replace the entry one by TBC with B=2 to allow filter
sharing, while maintaining the exit convolution to aggregate
information across channels. Since ResNeSt replaces 3 × 3
convolutions to be multi-path and split attention modules
with k cardinals, 3× 3 convolutions occupy less proportion
of the overall model complexity. Therefore, we only replace
all 3×3 convolution to be TBC with B = 2 as in 1×1 convo-
lution. Further increase of B would only marginally reduce
the model size but greatly reduce the model performance.

The default setting for TiedResNet-50 (TiedResNeXt-50)
is 4 splits with base width of 32 (64), i.e. 4s×32w (4s×64w),

and the default setting for TiedResNet-S (TiedResNeXt-50-
S) is 4s×18w (4s×36w). Our TiedBottleNeck reaches more
than 1% performance improvement in term of top-1 accu-
racy on ImageNet-1K. However, losing cross-channel inte-
gration could weaken the model. To add it back, we intro-
duce a mixer that fuses outputs of multiple splits. Introduc-
ing the mixer increases performance by another 0.5%. The
input to the mixer can be either concatenation or element-
wise sum of split outputs. Table 6 shows that element-wise
sum has a better trade-off.

TBC and TFC in Attention Modules
We apply TBC and TFC to attention modules such as SE
(Hu, Shen, and Sun 2018) and GCB (Cao et al. 2019), by
simply replacing SC and FC with their tied block counter-
parts (Fig. 5). Both designs significantly reduce the number
of parameters without dropping performance.

Experimental Results
We conduct extensive tests of TBC, TGC and TFC on ma-
jor benchmarks for object recognition, object detection, in-
stance segmentation and attention.

ImageNet Classification
Implementation. We follow standard practices and perform
data augmentation with random cropping to size 224×224
pixels (He et al. 2016). We train the network using SGD
with a momentum of 0.9 and a mini-batch of 256 on 8 GPUs.
The learning rate is initially set to 0.1 and then decayed 10×
every 30 epochs for a total of 100 epochs.
Performance gain. Table 1 compares the recognition accu-
racy of multiple models on ImageNet-1k (Deng et al. 2009)
validation set. In Table 1, TiedResNet50-S beats ResNet50
in terms of top-1 accuracy with only 60% flops and 54%
parameters, likewise for TiedResNet101-S. With similar
model complexity, TiedResNet50 and TiedResNet101 can
beat benchmarks by more than 1.5% and 1.4% separately
with 10% parameter reduction. Similar tendency can be ob-
served for TiedResNeXt and TiedSENet. To further prove
the effectiveness of TBC, we integrate it with current SOTA
model ResNeSt. With only 59% of parameters and 82% of
computation cost, TiedResNeSt-50-S obtains better perfor-
mance than ResNeSt-50-S on ImageNet-1k.

20 30 40 50 60 70 80
#params (M)

37.0

38.0

39.0

40.0

AP
 (%

)

TR-50-S

TR-50

TR-101-S

TR-101

R-50

R-101

X-50-32x4d

X-101-32x4d
X-101-64x4d

(a) RetinaNet (Det)

TiedResNet,w/ TBC
ResNet,w/ SC
ResNeXt,w/ GC

20 30 40 50 60 70 80
#params (M)

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

AP
 (%

)

TR-50-S

TR-50

TR-101-S

TR-101

R-50

R-101

X-50-32x4d

X-101-32x4d

X-101-64x4d

HR-V2-W18

HR-V2-W32

HR-V2-W48

(b) Cascade R-CNN (Det)

TiedResNet,w/ TBC
ResNet,w/ SC
ResNeXt,w/ GC
HRNetV2

20 30 40 50 60 70 80
#params (M)

35.0

36.0

37.0

38.0

39.0

AP
 (%

)

TR-50-S

TR-50

TR-101-S

TR-101

TR-152-S

R-50

R-101

R-152

X-50-32x4d

X-101-32x4d

X-101-64x4d

HR-V2-W18

HR-V2-W32

HR-V2-W48

(c) Mask R-CNN (Seg)

TiedResNet,w/ TBC
ResNet,w/ SC
ResNeXt,w/ GC
HRNetV2

20 30 40 50 60 70 80
#params (M)

39.0

40.0

41.0

42.0

43.0

44.0

AP
 (%

)

TR-50-S

TR-50

TR-101-S

TR-101

TR-152-S

R-50

R-101

R-152

X-50-32x4d

X-101-32x4d

X-101-64x4d

HR-V2-W18

HR-V2-W32

HR-V2-W48

(d) Mask R-CNN (Det)

TiedResNet,w/ TBC
ResNet,w/ SC
ResNeXt,w/ GC
HRNetV2

Figure 6: TiedResNet consistently outperforms ResNet, ResNeXt and HRNetV2 with much fewer parameters, experimented on
single-stage detector RetinaNet and two-stage detectors Cascade R-CNN and Mask R-CNN. We plot #params of backbones
vs. their Average Precision on object detection and instance segmentation tasks of MS-COCO val-2017.

model params(M) GFlops top-1(%) top-5(%)

ResNet50 (He et al. 2016)
baseline 25.6 4.2 76.2 92.9
TiedResNet50-S 13.9 (54%) 2.5 (60%) 76.2 92.9
TiedResNet50 22.0 (86%) 4.4 (105%) 77.6 93.6
ResNet101 (He et al. 2016)
baseline 44.6 7.9 77.4 93.6
TiedResNet101-S 24.0 (54%) 4.8 (61%) 77.7 93.8
TiedResNet101 39.4 (88%) 8.6 (109%) 78.8 94.2
ResNeXt101-32×8d (Xie et al. 2017)
baseline 88.8 16.5 79.3 94.5
TiedResNeXt101-S 64.0 (65%) 14.6 (78%) 79.3 94.5
SENet101 (Hu, Shen, and Sun 2018)
baseline 49.1 7.9 77.6 93.9
baseline ‡ 49.1 7.9 78.3 94.2
TiedSENet101-S 26.4 (54%) 5.2 (66%) 79.0 94.5
TiedSENet101-S † 26.4 (54%) 5.2 (66%) 80.9 95.3
TiedSENet101 41.8 (85%) 9.1 (115%) 79.8 94.8
ResNeSt-50-fast (Zhang et al. 2020)
baseline ‡ 27.5 4.4 78.6 93.9
TiedResNeSt50-S 16.5 (60%) 3.6 (82%) 78.8 94.6
VS. pruning methods and Mobile nets (large model version)
Taylor-FO-BN 14.2 2.3 74.5 -
ShuffleNet-50 † - 2.3 74.8 -
GhostNet-50 (s=2) 13.0 2.2 75.0 92.3
TiedResNet50-S 13.9 2.5 76.2 92.9

Table 1: Recognition accuracy and model size compar-
ison on ImageNet-1k. The integration of TBC/TFC/TGC
can obtain consistent performance improvements to various
backbone networks. TiedResNet-S even greatly surpasses
current SOTA pruning methods Taylor-FO-BN-ResNet50
(Molchanov et al. 2019) and Mobile architecture GhostNet
(large model version) (Han et al. 2020). These results prove
that TBC makes more efficient use of parameters. Baselines
are copied from Pytorch model zoo, their TBC versions are
trained for 100 epochs on 8 2080Ti GPUs to make fair com-
parisons, unless otherwise noticed. † denotes: trained with
larger epochs, label smoothing, cosine learning scheduler
and heavier data augmentation. ‡ denotes: re-implemented
results with released codes and 100 training epochs.

Object Detection and Instance Segmentation
MS-COCO (Lin et al. 2014) consists of 80 object cate-
gories with 118K/5K/208K images for training (train-2017),
validation (val-2017) and testing (test-2017) respectively.
Average Precision (AP) across IoU thresholds from 0.5 to
0.95 with an interval of 0.05 is evaluated. Detection perfor-
mance at various qualities, AP50 and AP75, and at differ-
ent scales, APS, APM and APL, are reported. All models are
trained on train-2017 split and results reported on val-2017.
Implementation. We use baseline backbones and our
TiedResNet model in PyTorch implemented (Chen et al.
2019) detectors. The long and short edges of images are re-
sized to a maximum of 1333 and 800 respectively without
changing the aspect ratio. Since 1× learning schedule (LS)
is under-sutured, we only report results on 2× LS for both
baselines and our models.
Results. We conduct thorough comparisons with ResNeXt
and ResNet on multiple state-of-the-art frameworks includ-
ing single-stage detector, RetinaNet (Lin et al. 2017), and
two-stage detectors and Mask R-CNN (He et al. 2017) as in
Fig.6. Since (Chen et al. 2019) re-implemented results are
generally better than those in the original papers, we report
re-implemented results for fair comparisons.
Object detection. As in Fig.6, using TiedResNet as back-
bone, single-stage detector RestinaNet and two-stage detec-
tor Cascade R-CNN and Mask R-CNN consistently outper-
form baselines by 2% to 2.5% in terms of box AP. TiedRes-
Net101 on RetinaNet even greatly outperforms the much
heavier-weight ResNeXt101-64×4d. Detailed comparison
on various frameworks and Pascal VOC (Everingham et al.
2015) are in appendix materials.
Instance segmentation. With light-weight TiedResNet-S
and comparable sized TiedResNet backbones, we observe
an increase in APmask by 1.1% and 2.1% respectively. No
matter how strong the baseline detector is, we always ob-
serve a boost in AP, corroborating the effectiveness of TBC.
Highly occluded Instances. Since occlusion requires the
network to accurately detect the target area and distinguish
different instances at the same time, the performance on im-
ages with large occlusion reveals the network’s localization

0.0 0.2 0.4 0.6 0.8
occlusion ratio

33
34
35
36
37
38
39
40
41
42
43

AP

TiedResNet
ResNet

(a) r vs. AP

0.2 0.4 0.6 0.8
occlusion ratio

33
34
35
36
37
38
39
40
41
42
43

AP
@

75
TiedResNet
ResNet

(b) r vs. AP75 (c) Sample results at various occlusion ratios using ResNet (row 1) and TiedResNet (row 2)
Figure 7: Our TiedResNet consistently outperforms ResNet on MS-COCO object detection under occlusion. AP (a) and
AP at IoU = 0.75 (b) are plotted against occlusion ratio r. When r = 0.8, TiedResNet increases by 8.3% at AP75 and 5.9% at
AP, much more effective at handling highly overlapping instances. (c) TiedResNet has much fewer false positive proposals, and
has a significantly better instance segmentation quality. We use Mask R-CNN as the detector.

framework backbone #params (M) APmask

Mask R-CNN ResNet50 25.6 31.5
Mask R-CNN TiedResNet50-S 13.9 32.5
Mask R-CNN TiedResNet50 22.0 33.6

Table 2: Comparison on instance segmentation task of
Cityscapes val set and number of parameters for backbone
networks, with Mask R-CNN (He et al. 2017) as detector.

capabilities. The occlusion ratio (r) of each image is:

r =
total overlap area
total instance area

(5)

The AP averaged over IoU 0.5 to 0.95, and at IoU=0.75,
AP75, are used as standard and restricted evaluation met-
rics respectively. Fig.7a and Fig.7b shows that ResNet is
greatly affected by occlusion, AP75 drops by more than 6%
at r = 0.8, whereas our TiedResNet only slightly decreases
by 0.7%, exceeding the baseline of 8.3%. Similarly, as the
occlusion rate becomes larger, the improvement on AP in-
creases from 2.8% to 5.9%. These quantitative results in
MS-COCO indicate TiedResNet’s strong capability of han-
dling highly overlapping instances, especially on restricted
evaluation metric. Fig.7c shows that TiedResNet has fewer
false positive proposals and better segmentation quality.
Why larger gain on single-stage detector? Fig.8 shows
that TiedResNet localizes the target area much better than
ResNet/ResNeXt, which is especially beneficial for a single-
stage detector that does not has a proposal regression layer.
Performance on Cityscapes. Since Cityscapes (Cordts
et al. 2016) is a small dataset, thus deeper networks will gen-
erally overfit it. Therefore, we only deploy experiments with
50 layers backbone for Cityscapes datasets. Table 2 shows
that TiedResNet50 can reach 2.1% gain for APmask.

Lightweight Attention
Fig. 5 shows our lightweight attention modules. The SE
module can be seen as a special case of our TiedSE when
B=1; likewise, GCB is TiedGCB at B=1.
Results of TiedSE. All experiments in Table 3 use reduction
ratio of 16 for both baseline and our model. Several hyper-
parameter settings of our TFC layer are investigated. Since

model B top-1 (%) top-5 (%) #params (ratio)

SEResNet-50, model params = 28.1M
w/ SE - 76.71 93.38 2.53M (100%)
w/ SE ‡ - 77.08 93.51 2.53M (100%)

w/ TiedSE 2 77.07 93.53 0.64M (25%)
w/ TiedSE 4 77.11 93.52 0.16M (6.4%)
w/ TiedSE 8 77.09 93.52 0.04M (1.6%)

EfficientNet-B0, model params = 5.3M
w/ SE - 77.1 93.3 0.65M (100%)

w/ TiedSE 2 77.3 93.4 0.16M (25%)
w/ TiedSE 4 77.1 93.3 0.04M (6.4%)

Table 3: Using only 1.6% (6.4%) of the parameters, the
performance of TiedSE is better than SE on SERes-
Net50 (EfficientNet-B0). We compared #params of atten-
tion module SE/TiedSE with various backbones and their
recognition accuracy on ImageNet-1k. Performance with
different hyper-parameters B is investigated. ‡ denotes our
re-implementation results.

our re-implemented baseline results are better than those in
(Hu, Shen, and Sun 2018), we report our results for fair com-
parison. While SE is light weight, it still incurs 10% param-
eters of overall model. Table 3 shows that, at B=8, with 64×
parameters reduction, TiedSE still obtains comparable per-
formance. TiedSE significantly reduces parameters without
sacrificing performance not only on SEResNet but also on
Mobile architecture EfficientNet (Tan and Le 2019).

Results of TiedGCB. Global context blocks (GCB) (Cao
et al. 2019) enhance segmentation and detection predic-
tions with global context modeling and long-range depen-
dencies. GCB integrated with TBC can significantly reduce
the number of parameters without losing performance. Ta-
ble 4 shows that TiedGCB achieves 1.8% and 1.4% gain
in APmask and APbbox respectively, with 16× parameters re-
duction. Although group convolution can reduce parameters
by 2×, as each GC filter only sees a subset of features, the
ability to model cross-channel dependencies is also reduced,
losing APmask and APbbox by 0.4%.

framework B APbbox APbbox
50 APmask APmask

50 #params

Mask R-CNN - 37.3 59.0 34.2 55.9 -
+GCB - 38.9 61.0 35.5 57.6 10M (100%)

+TiedGCB 2 39.1 61.0 35.6 57.6 2.5M (25%)
+TiedGCB 4 38.6 60.8 35.2 57.2 1.3M (13%)

Table 4: Comparison on #params of attention module
GCB/TiedGCB (Cao et al. 2019) and their performance
on object detection and instance segmentation tasks of MS-
COCO val-2017. The effects of different B are studied here.

O
ri

gi
n

R
es

N
et

R
es

N
eX

t
Ti

ed
R

es
N

et

Figure 8: TiedResNet focusing on target objects more prop-
erly than ResNet and ResNeXt. We compared Grad-CAM
visualization among ResNet50, ResNeXt50 and TiedRes-
Net50 for images in Row 1. The grad-CAM (Selvaraju et al.
2017) is calculated for the last convolutional output.

model setting params GFlops top-1 top-5

TiedResNet-50 2s×48w 23.8 4.4 77.27 93.53
TiedResNet-50 4s×32w 22.0 4.4 77.61 93.62
TiedResNet-50 6s×24w 23.0 4.6 77.37 93.66
TiedResNet-50 8s×18w 23.8 4.4 77.21 93.54

Table 5: Ablation study on splits number and base width
of each split. Accuracies (%) on ImageNet-1k are listed.

mixer top-1 acc. top-5 acc. #params (M)

element-sum 77.61% 93.62% 22.0
concatenate 77.65% 93.64% 26.7

Table 6: Ablation study on fusion method of mixer module.

Ablation Studies
Influence of split number. As investigated in (Zeiler and
Fergus 2014; Bau et al. 2017; Xu et al. 2015), the pro-
portions of units/filters that correspond to various visual
concepts, such as color, texture, objects, part, scene, edge
and material, are different with a variety of levels of inter-
pretability (Agrawal, Carreira, and Malik 2015; Bau et al.
2017). It may be useful to group different functional filters
together for different levels of sharing. In Table 5, we split
all the channels in the 3×3 convolutional layer into s splits.
Each split has base width of w, and B is 1,2,4,8 separately
for the four 3×3 TBC layers in 4s × 32w settings. In Table
5, the best performance and model complexity trade-off can
be reached at 4s× 32w. Table 5 also shows the necessity of

0.0 0.2 0.4 0.6 0.8

1.00%

2.00%

3.00%

4.00%
TiedResNet
ResNet

(a) Layer 9
0.0 0.2 0.4 0.6 0.8

2.0%

4.0%

6.0%

8.0%
TiedResNet
ResNet

(b) Layer 18
0.0 0.2 0.4 0.6 0.8

1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0% TiedResNet

ResNet

(c) Layer 36
Figure 9: Our TiedResNet learns less correlated filters than
ResNet, with filter similarity histograms shifted left.

splitting input feature maps into several chunks, when there
are only 2 splits, top-1 accuracy will drop 0.4%.
Mixer module in TiedBottleneck. Since we split the input
feature map into several splits, the inter-dependency across
these splits is missed. To track the inter-dependency, a mixer
is used to aggregate cross-split information. Several fusion
methods are investigated in Table 6. Using concatenation
reaches the best accuracy, but it introduces much more pa-
rameters. We thus choose elementwise-sum as the fusion
function as a trade-off between accuracy and model size.
Filter similarity. We use ImageNet pre-trained ResNet50
and TiedResNet50-S to compare the cosine filter similarity
at different layers. Pairwise cosine similarity between filters’
guided back-propagation patterns (Springenberg et al. 2014)
averaged in 1000 ImageNet val split are used to generate
these histograms. As in Figure 9, axis x is the cosine simi-
larity and axis y is the probability density. Compared with
VGG(Simonyan and Zisserman 2014), ResNet(He et al.
2016) has less redundancy, and our TiedResNet has the least
similarity and thus removes most redundancy throughout the
depth layers, which validates our hypothesis and motivation.
Grad-CAM visualization. To provide a qualitative compar-
ison among different backbone networks, we apply grad-
CAM (Selvaraju et al. 2017) using images from ImageNet.
Grad-CAM uses the gradient information flowing into the
last convolutional layer of the CNN to understand each neu-
ron. The resulting localization map highlights important re-
gions in the image for predicting the concept and reflects
the network’s ability to utilize information in the target ob-
ject area. Fig.8 shows TiedResNet focusing on target objects
more properly than ResNet and ResNetX, suggesting that
the performance boost comes from accurate attention and
noise reduction of irrelevant clutters.

This property is very useful for object detection and in-
stance segmentation, as these tasks require the network to
focus more accurately on the target region and aggregate fea-
tures from it. Incorrect attention to the target area would also
lead to a large number of false positive proposals (Fig.7c).

Summary
We propose Tied Block Convolution (TBC) that produces
multiple responses with a single thinner filter shared across
equal blocks of channels. This concept is extended to group
convolution and fully connected layer function, and applied
on various backbone networks and attention modules, with
consistent accuracy gain and model reduction. TBC reduces
filter redundancy in an optimized CNN and effectively ex-
pands model expression, resulting in better object detection
and segmentation especially with occlusion.

Acknowledgements. This research was supported, in part,
by Berkeley Deep Drive and DARPA.

References
Agrawal, P.; Carreira, J.; and Malik, J. 2015. Learning to
see by moving. In Proceedings of the IEEE International
Conference on Computer Vision, 37–45.

Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; and Torralba, A.
2017. Network dissection: Quantifying interpretability of
deep visual representations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
6541–6549.

Cao, Y.; Xu, J.; Lin, S.; Wei, F.; and Hu, H. 2019. GC-
Net: Non-local Networks Meet Squeeze-Excitation Net-
works and Beyond. arXiv preprint arXiv:1904.11492 .

Carreira, J.; and Zisserman, A. 2017. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6299–6308.

Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun,
S.; Feng, W.; Liu, Z.; Xu, J.; Zhang, Z.; Cheng, D.; Zhu, C.;
Cheng, T.; Zhao, Q.; Li, B.; Lu, X.; Zhu, R.; Wu, Y.; Dai,
J.; Wang, J.; Shi, J.; Ouyang, W.; Loy, C. C.; and Lin, D.
2019. MMDetection: Open MMLab Detection Toolbox and
Benchmark. arXiv preprint arXiv:1906.07155 .

Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and
machine intelligence 40(4): 834–848.

Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and
Adam, H. 2018. Encoder-decoder with atrous separable con-
volution for semantic image segmentation. In Proceedings
of the European conference on computer vision (ECCV),
801–818.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler,
M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B.
2016. The cityscapes dataset for semantic urban scene un-
derstanding. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 3213–3223.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.

Everingham, M.; Eslami, S. M. A.; Van Gool, L.; Williams,
C. K. I.; Winn, J.; and Zisserman, A. 2015. The Pascal Vi-
sual Object Classes Challenge: A Retrospective. Interna-
tional Journal of Computer Vision 111(1): 98–136.

Girshick, R. 2015. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, 1440–1448.

Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; and Xu, C.
2020. GhostNet: More features from cheap operations. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 1580–1589.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 .
Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7132–7141.
Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2012. 3D convolutional
neural networks for human action recognition. IEEE trans-
actions on pattern analysis and machine intelligence 35(1):
221–231.
Kirillov, A.; Girshick, R.; He, K.; and Dollár, P. 2019.
Panoptic feature pyramid networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 6399–6408.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P.
2017. Focal loss for dense object detection. In Proceedings
of the IEEE international conference on computer vision,
2980–2988.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740–755. Springer.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431–3440.
Ma, N.; Zhang, X.; Zheng, H.-T.; and Sun, J. 2018. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 116–131.
Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; and Kautz,
J. 2019. Importance estimation for neural network pruning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 11264–11272.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 91–99.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.

Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Ried-
miller, M. 2014. Striving for simplicity: The all convolu-
tional net. arXiv preprint arXiv:1412.6806 .
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A.
2015. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 1–9.
Tan, M.; and Le, Q. V. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946 .
Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao,
Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. 2019. Deep
high-resolution representation learning for visual recogni-
tion. arXiv preprint arXiv:1908.07919 .
Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.;
and Van Gool, L. 2016. Temporal segment networks: To-
wards good practices for deep action recognition. In Euro-
pean conference on computer vision, 20–36. Springer.
Wang, X.; Girshick, R.; Gupta, A.; and He, K. 2018. Non-
local neural networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 7794–
7803.
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; and He, K. 2017. Ag-
gregated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1492–1500.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend
and tell: Neural image caption generation with visual at-
tention. In International conference on machine learning,
2048–2057.
Zeiler, M. D.; and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818–833. Springer.
Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Zhang, Z.; Lin,
H.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al.
2020. Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955 .
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shufflenet:
An extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 6848–6856.

