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Abstract. Deep learning (DL) based unrolled reconstructions have shown
state-of-the-art performance for under-sampled magnetic resonance imag-
ing (MRI). Similar to compressed sensing, DL can leverage high-dimensional
data (e.g. 3D, 2D+time, 3D+time) to further improve performance. How-
ever, network size and depth are currently limited by the GPU memory
required for backpropagation. Here we use a memory-efficient learning
(MEL) framework which favorably trades off storage with a manage-
able increase in computation during training. Using MEL with multi-
dimensional data, we demonstrate improved image reconstruction perfor-
mance for in-vivo 3D MRI and 2D+time cardiac cine MRI. MEL uses far
less GPU memory while marginally increasing the training time, which
enables new applications of DL to high-dimensional MRI.

Keywords: Magnetic Resonance Imaging (MRI) · Unrolled reconstruc-
tion · Memory-efficient learning.

1 Introduction

Deep learning-based unrolled reconstructions (Unrolled DL recons)[2, 19, 1, 5,
21, 11] have shown great success at under-sampled MRI reconstruction, well be-
yond the capabilities of parallel imaging and compressed sensing (PICS)[12, 4,
16]. These methods are often formulated by unrolling the iterations of an image
reconstruction optimization[5, 1, 21] and use a training set to learn an implicit
regularization term represented by a deep neural network. It has been shown
that increasing the number of unrolls improves upon finer spatial and temporal
textures in the reconstruction[5, 1, 17]. Similar to compressed sensing and other
low-dimensional representations, DL recons can take advantage of additional
structure in very high-dimensional data (e.g. 3D, 2D+time, 3D+time) to fur-
ther improve image quality. However, these large-scale DL recons are currently
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limited by GPU memory required for gradient-based optimization using back-
propagation. Therefore, most Unrolled DL recons focus on 2D applications or are
limited to a small number of unrolls. In this work, we use our recently proposed
memory-efficient learning (MEL) framework[9, 23] to reduce the memory needed
for backpropagation, which enables the training of Unrolled DL recons for 1)
larger-scale 3D MRI; and 2) 2D+time cardiac cine MRI with a large number of
unrolls (Figure 1). We evaluate the spatio-temporal complexity of our proposed
method on the Model-based Deep Learning (MoDL) architecture [1] and train
these high-dimensional DL recons on a single 12GB GPU. Our training uses far
less memory while only marginally increasing the computation time. To demon-
strate the advantages of high-dimensional reconstructions to image quality, we
performed experiments on both retrospectively and prospectively under-sampled
data for 3D MRI and cardiac cine MRI. Our in-vivo experiments indicate that
by exploiting high-dimensional data redundancy, we can achieve better quanti-
tative metrics and improved image quality with sharper edges for both 3D MRI
and cardiac cine MRI.

Fig. 1. GPU memory limitations for high-dimensional unrolled DL recons: a) Com-
pared to a 2D unrolled network, the 3D unrolled network uses a 3D slab during train-
ing to leverage more redundancy, but is limited by GPU memory. b) Cardiac cine DL
recons are often performed with a small number of unrolls due to memory limitations.
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2 Methods

2.1 Memory-efficient learning

As shown in Figure 2 a), unrolled DL recons are often formulated by unrolling
the iterations of an image reconstruction optimization[5, 1]. Each unroll consists
of two submodules: CNN based regularization layer and data consistency (DC)
layer. In conventional backpropagation, the gradient must be computed for the
entire computational graph, and intermediate variables from all N unrolls need
to be stored at a significant memory cost. By leveraging MEL, we can process
the full graph as a series of smaller sequential graphs. As shown in Figure 2 b),
first, we forward propagate the network to get the output x(N) without com-
puting the gradients. Then, we rely on the invertibility of each layer (required)
to recompute each smaller auto-differentiation (AD) graph from the network’s
output in reverse order. MEL only requires a single layer to be stored in memory
at a time, which reduces the required memory by a factor of N . Notably, the
required additional computation to invert each layer only marginally increases
the backpropagation runtime.

Fig. 2. a) In conventional DL recon training, gradients of all layers are evaluated
as a single computational graph, requiring signifcant GPU memory. b) In MEL, we
sequentially evaluate each layer by: i) Recalculate the layer’s input x(n−1), from the
known output x(n). ii) Reform the AD graph for that layer. iii) Backpropagate gradients
q(n−1) through the layer’s AD graph.

2.2 Memory-efficient learning for MoDL

Here, we use a widely used Unrolled DL Recon framework: MoDL[1]. We formu-
late the reconstruction of x̂ as an optimization problem and solve it as below:

x̂ = arg min
x
‖Ax− y‖22 + µ‖x−Rw(x)‖22, (1)

where A is the system encoding matrix, y denotes the k-space measurements and
Rw is a learned CNN-based denoiser. For multi-channel MRI reconstruction, A
can be formulated as A = PFS, where S represent the multi-channel sensitivity
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maps, F denotes Fourier Transform and P is the undersampling mask used
for selecting the acquired data. MoDL solves the minimization problem by an
alternating procedure:

zn = Rw(xn) (2)

xn+1 = arg min
x
‖Ax− y‖22 + µ‖x− zn‖22,

= (AHA + µI)−1(AHy + µzn)
(3)

which represents the CNN-based regularization layer and DC layer respectively.
In this formulation, the DC layer is solved using Conjugate Gradient (CG)[20],
which is unrolled for a finite number of iterations. For all the experiments, we
used an invertible residual convolutional neural network (RCNN) introduced in
[3, 14, 6], whose architecture is composed of a 5-layer CNN with 64 channels per
layer. Detailed network architecture is shown in Figure S1. The residual CNN is
inverted using the fixed-point algorithm as described in [9], while the DC layer
is inverted through:

zn =
1

µ
((AHA + µI)xn+1 −AHy). (4)

2.3 Training and evaluation of memory-efficient learning

With IRB approval and informed consent/assent, we trained and evaluated MEL
on both retrospective and prospective 3D knee and 2D+time cardiac cine MRI.
We conducted 3D MoDL experiments with and without MEL on 20 fully-sampled
3D knee datasets (320 slices each) from mridata.org[18]. 16 cases were used for
training, 2 cases were used for validation and other 2 for testing. Around 5000 3D
slabs with size 21×256×320 were used for training the reconstruction networks.
All data were acquired on a 3T GE Discovery MR 750 with an 8-channel HD
knee coil. An 8x Poisson Disk sampling pattern was used to retrospectively un-
dersample the fully sampled k-space. Scan parameters included a matrix size of
320×256×320, and TE/TR of 25ms/1550ms. In order to further demonstrate the
feasibility of our 3D reconstruction with MEL on realistic prospectively under-
sampled scans, we reconstructed 8× prospectively undersampled 3D FSE knee
scans (available at mridata.org) with the model trained on retrospectively under-
sampled knee data. Scanning parameters includes: Volume size: 320×288×236,
TR/TE = 1400/20.46ms, Flip Angle: 90◦, FOV: 160 mm×160 mm× 141.6 mm.

For the cardiac cine MRI, fully-sampled bSSFP cardiac cine datasets were
acquired from 15 volunteers at different cardiac views and slice locations on 1.5T
and 3.0T GE scanners using a 32-channel cardiac coil. All data were coil com-
pressed[24] to 8 virtual coils. Twelve of the datasets (around 190 slices) were used
for training, 2 for validation, and one for testing. k-Space data were retrospec-
tively under-sampled using a variable-density k-t sampling pattern to simulate
14-fold acceleration with 25% partial echo. We also conducted experiments on a
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prospectively under-sampled scan (R=12) which was acquired from a pediatric
patient within a single breath-hold on a 1.5T scanner.

We compared the spatio-temporal complexity (GPU memory, training time)
with and without MEL. In order to show the benefits of high-dimensional DL
recons, we compared the reconstruction results of PICS, 2D and 3D MoDL with
MEL for 3D MRI, and 2D+time MoDL with 4 unrolls and 10 unrolls for cardiac
cine MRI. For both 2D MoDL and 3D MoDL with MEL, we used 5 unrolls, 10
CG steps and Residual CNN as the regularization layer. A baseline PICS recon-
struction was performed using BART[22]. Sensitivity maps were computed using
BART[22] and SigPy[13]. Common image quality metrics such as Peak Signal
to Noise Ratio (pSNR), Structual Similarity (SSIM) [8] and Fréchet Inception
Distance (FID)[7] were reported. FID is a widely used measure of perceptual
similarity between two sets of images. All the experiments were implemented
in Pytorch [15] and used Nvidia Titan XP (12GB) and Titan V CEO (32GB)
GPUs. Networks were trained end-to-end using a per-pixel l1 loss and optimized
using Adam [10] with a learning rate of 1× 10−4.

3 Results

We first evaluate the spatio-temporal complexity of MoDL with and without
MEL (Figure 3). Without MEL, for a 12GB GPU memory limit, the maximum
slab size decreases rapidly as the number of unrolls increases, which limits the
performance of a 3D reconstruction. In contrast, using MEL, the maximum slab
size is roughly constant. Figure 3 b) and c) show the comparisons from two
different perspectives: 1)GPU memory usage; 2)Training time per epoch. Results
indicate that for both 3D and 2D+time MoDL, MEL uses significantly less GPU
memory than conventional backpropagation while marginally increasing training
time. Notably, both MoDL with and without MEL have the same inference time.

Figure 4 shows a comparison of different methods for 3D reconstruction.
Instead of learning from only 2D axial view slices (Figure 1 a), 3D MoDL with
MEL captures the image features from all three dimensions. Zoomed-in details
indicate that 3D MoDL with MEL is able to provide more faithful contrast
with more continuous and realistic textures as well as higher pSNR over other
methods. Figure 5 demonstrates that MEL enables the training of 2D+time
MoDL with a large number of unrolls (10 unrolls), which outperforms MoDL
with 4 unrolls with respect to image quality and y-t motion profile. With MEL,
MoDL with 10 unrolls resolves the papillary muscles (yellow arrows) better than
MoDL with 4 unrolls. Also, the y-t profile of MoDL with 10 unrolls depicts
motion in a more natural way while MoDL with 4 unrolls suffers from blurring.
Meanwhile, using 10 unrolls over 4 unrolls yields an improvement of 0.6dB in
validation pSNR.

Table 1 shows the quantitative metric comparisons (pSNR, SSIM and FID)
between different methods on both 3D MRI and cardiac cine MRI reconstruc-
tions. The results indicate that both 3D MoDL with MEL and 2D+time MoDL
with MEL outperform other methods with respect to pSNR, SSIM and FID.
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Fig. 3. Spatio-temporal complexity of MoDL with and without MEL. a) Tradeoff be-
tween 3D slab size z and a number of unrolls n with a 12GB GPU memory limitation.
b) and c) show the memory and time comparisons for MoDL with and without MEL.

metric method 3D MRI 2D cardiac cine MRI

pSNR
(dB)

PICS 31.01±1.97 24.69±2.74
2D MoDL 31.44±2.07 -

3D MoDL with MEL 32.11±2.05 -
2D+time MoDL: 4 unrolls - 26.87±2.98

2D+time MoDL with MEL: 10 unrolls - 27.42±3.21

SSIM

PICS 0.816±0.046 0.824±0.071
2D MoDL 0.821±0.044 -

3D MoDL with MEL 0.830±0.038 -
2D+time MoDL: 4 unrolls - 0.870±0.042

2D+time MoDL with MEL: 10 unrolls - 0.888±0.042

FID

PICS 46.71 39.40
2D MoDL 43.58 -

3D MoDL with MEL 41.48 -
2D+time MoDL: 4 unrolls - 36.93

2D+time MoDL with MEL: 10 unrolls - 31.64

Table 1. Quantitative metrics (pSNR, SSIM and FID) of different methods on 3D
MRI and cardiac cine MRI reconstructions (mean ± standard deviation of pSNR and
SSIM).

Figure 6 a) and Figure S2 show the reconstruction results on two representa-
tive prospectively undersampled 3D FSE knee scan. Note that in this scenario,
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Fig. 4. A representative comparison of different methods (PICS, 2D MoDL, 3D MoDL
with MEL) on 3D knee reconstruction (Sagittal view and Coronal view are shown).
pSNRs are shown under each reconstructed image.

there is no fully-sampled groud truth. Despite there exists some difference be-
tween the training and testing (e.g., matrix size, scanning parameters), 3D MoDL
with MEL is still able to resolve more detailed texture and sharper edges over
traditional PICS and learning-based 2D MoDL. Figure 6 b) and Video S1 shows
the reconstruction on a representative prospective undersampled cardiac cine
scan. We can clearly see that enabled by MEL, 2D+time MoDL with 10 unrolls
can better depicts the finer details as well as more natural motion profile.

4 Conclusions

In this work, we show that MEL enables learning for high-dimensional MR re-
constructions on a single 12GB GPU, which is not possible with standard back-
propagation methods. We demonstrate MEL on two representative large-scale
MR reconstruction problems: 3D volumetric MRI, 2D cardiac cine MRI with
a relatively large number of unrolls. By leveraging the high-dimensional image
redundancy and a large number of unrolls, we were able to get improved quanti-
tative metrics and reconstruct finer details, sharper edges, and more continuous
textures with higher overall image quality for both 3D and 2D cardiac cine MRI.
Furthermore, 3D MoDL reconstruction results from prospectively undersampled
k-space show that the proposed method is robust to the scanning parameters
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Fig. 5. a) Short-axis view cardiac cine reconstruction of a healthy volunteer on a 1.5T
scanner. k-Space data was retrospectively undersampled to simulate 14-fold accelera-
tion with 25% partial echo (shown in b) and reconstructed by: 2D+time MoDL with 4
unrolls, 2D+time MoDL with MEL and 10 unrolls. c) Validation pSNR of MoDL with
4 unrolls and MoDL with 10 unrolls.

and could be potentially deployed in clinical systems. Overall, MEL brings a
practical tool for training the large-scale high-dimensional MRI reconstructions
with much less GPU memory and is able to achieve improved reconstructed
image quality.
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Fig. 6. a) Representative reconstruction results on a prospectively undersampled 3D
FSE knee scan using different methods (PICS, 2D MoDL and 3D MoDL with MEL).
b) Representative reconstruction results on a prospectively undersampled cardiac cine
dataset. y-t motion profiles are shown along with the reconstructed images.
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6 Supplementary Material

Fig. S1. Architectures of 3D MoDL framework and CNN based regularization layer.
a) Zero-filled reconstruction is passed through N1 unrools consisting of a CNN based
denoiser Rw and N2 CG update steps. b) The CNN uses a Residual CNN architecture
with convolutional blocks (3×3×3 kernel, 64 channel) and ReLU activations, which has
been proved to be invertible.
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Video. S1. A dynamic video for a representative reconstruction results on a prospec-
tively undersampled cardiac cine scan (See attached MP4 file).
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Fig. S2. A representative reconstruction results on prospectively undersampled 3D
FSE knee scan with the model trained on retrospectively undersampled knee data
using different methods (PICS, 2D MoDL and 3D MoDL with MEL). Representative
slices from 3 different views (Axial, Sagittal, Coronal) are shown here.


