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Figure 1:We approach contextual object recognition as a pixel-wise feature representation learning problem that accomplishes supervised panoptic segmentation
while discovering and encoding visual context automatically. Top row from left to right) input image, panoptic embeddings, panoptic predictions, and panoptic
labels. We overlay panoptic embeddings with the resultant over-segmentation boundaries. Middle row) After extracting panoptic embeddings from a CNN and
the resultant over-segmentation, we use the segment prototype features to find nearest neighbors, within the image (middle) or across images (right), of each
query segment (in red). These retrieval results probe what’s learned in the embedding space. Bottom row) sample pedestrian retrieval results. We can retrieve a
person crossing a somewhat empty street without any such context labeling during training.

ABSTRACT
Real-world visual recognition is far more complex than object recog-
nition: There is stuff without distinctive shape or appearance, and
the same object appearing in different contexts calls for different
actions. While we need context-aware visual recognition, visual
context is hard to describe and impossible to label manually.
∗The first two authors contributed equally to this research.
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We consider visual context as semantic correlations between
objects and their surroundings that include both object instances
and stuff categories. We approach contextual object recognition as
a pixel-wise feature representation learning problem that accom-
plishes supervised panoptic segmentation while discovering and
encoding visual context automatically.

Panoptic segmentation is a dense image parsing task that seg-
ments an image into regions with both semantic category and object
instance labels. These two aspects could conflict each other, for
two adjacent cars would have the same semantic label but different
instance labels. Whereas most existing approaches handle the two
labeling tasks separately and then fuse the results together, we
propose a single pixel-wise feature learning approach that unifies
both aspects of semantic segmentation and instance segmentation.

Our work takes the metric learning perspective of SegSort but
extends it non-trivially to panoptic segmentation, as wemust merge
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segments into proper instances and handle instances of various
scales. Our most exciting result is the emergence of visual context in
the feature space through contrastive learning between pixels and
segments, such that we can retrieve a person crossing a somewhat
empty street without any such context labeling.

Our experimental results onCityscapes and PASCALVOCdemon-
strate that, in terms of surround semantics distributions, our re-
trievals are much more consistent with the query than the state-
of-the-art segmentation method, validating our pixel-wise repre-
sentation learning approach for the unsupervised discovery and
learning of visual context.
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1 INTRODUCTION
Visual recognition is often modeled as identifying the semantic
category of an object, based on its distinctive appearance or geom-
etry. However, real-world visual recognition is far more complex:
There are not only uncountable visual semantics (known as stuff as
opposed to things) such as shrubs, hedges, and rivers, but the same
object identified in different visual contexts could call for drastically
different actions. For example, seeing a pedestrian in the middle
of a road would prompt an autonomous driving system to quickly
stop the car, whereas seeing a pedestrian on a side walk would
require no special attention.

We need context-aware visual recognition, but visual context is
hard to describe, as it could be anything related to given images and
visual task. In practice, visual context has been modeled as a global
image feature such as scene gist [59], statistically co-occurring ob-
ject categories [16, 17, 37, 56, 64] and object instances [69], 2D spa-
tially co-occurring instances [53], and more recently fine-grained
interactions among objects [7, 25].

We consider visual context as semantic correlations between
objects and their surroundings, which could include both object
instances and stuff categories. We approach contextual object recog-
nition as a pixel-wise feature representation learning problem that
accomplishes supervised panoptic segmentation while discovering
and encoding visual context automatically (Fig. 1).

Panoptic segmentation [34] is a dense image parsing task [72]
that segments an image into regions with both semantic category
and object instance labels. These two aspects could conflict each
other, for two adjacent cars in an image would be labeled with the
same semantic label (car) but different instance labels (car #1 vs.
car #2). Existing approaches thus tackle them separately with two

branches, each optimized for semantic segmentation and instance
segmentation respectively [15, 33, 40, 78, 79]. However, additional
modules are required to integrate semantic and instance predictions
and resolve disagreements between the two branches.

We propose a single pixel-wise feature learning approach that
unifies both aspects of semantic segmentation and instance seg-
mentation. We map each pixel to a point in the latent feature space
with a convolutional neural network (CNN). Our learning objec-
tive is to bring pixels belonging to the same instance or the same
stuff closer, and to separate them far from other object instances
and stuff regions, both within the same image and across different
images. With subsequent feature clustering and classification, we
can derive instance and semantic segmentation predictions from
this common feature representation.

Unlike most methods that formulate image segmentation as a
pixel-wise classification task that predicts the semantic category
or object instance directly, our supervised panoptic segmentation
method takes the metric learning perspective as SegSort [29], with
a contrastive learning loss between individual pixels and segments,
but extends segment sorting according to both semantic and in-
stance labels. This extension is highly non-trivial, as we must merge
segments into proper instances and handle instances of various
scales. We dub our method Panoptic Segment Sorting (PSS).

Our most exciting result is the emergence of visual context in
the feature space through contrastive learning between pixels and
segments. Although the labels provided during training are only
concerned with semantic instance categories not visual context,
our learned feature is able to encode not only the object instance or
stuff category that a pixel is part of, but also the visual context it is
embedded into. That is, by design of supervised segmentation, pixels
for different parts of a bus assume similar features (Fig. 1middle), yet
by contrastive learning of grouping relationships between pixels
and segments, the feature of the pedestrian in the query image
also encodes the visual context of a person crossing a somewhat
empty street, and all the nearest neighbour retrievals from the image
gallery also have such visual context (Fig. 1 bottom).

We propose a context metric that measures how well the se-
mantic distribution in the surround of an object of interest in the
query image is captured in the retrieval. Our experimental results
on Cityscapes [18] and PASCAL VOC [21] demonstrate that the con-
text of instances retrieved by our panoptic embedding is much more
consistent with the query. Our pixel-wise representation learning
points to a novel promising way to discover and learn visual context
without any context supervision.

2 RELATEDWORK
Image parsing and panoptic segmentation. The task of image
parsing is first introduced in [72], where they formulate the solution
in a Bayesian framework and construct a parsing graph as output.
Since then, a lot of work has attempted to solve holistic scene un-
derstanding ([54, 64, 71, 80, 85]). Recently, [34] reintroduce image
parsing in the context of deep learning with large-scale datasets and
new evaluation metric, renaming the task as panoptic segmentation
as to unify the well-developed semantic and instance segmentation.
Many research efforts [14, 23, 33, 38–41, 45, 63, 73, 74, 78, 79] have
followed quickly. The common approaches embrace the concept of

https://doi.org/10.1145/3476098.3485056
https://doi.org/10.1145/3476098.3485056


Figure 2: Our proposed Panoptic Segment Sorting (PSS) adopts feature learning with a pixel-to-segment contrastive loss, followed by segment merging (classifi-
cation) for inferring instance (semantic) segmentation. We first over-segment an image with the pixel-wise embedding extracted from a CNN. Each segment is
represented by a prototype feature (the average of pixel embeddings), which is then used for classifying segments (semantic predictions) and/ormerging segments
into an object instance (instance predictions). Our features automatically encode object-centric visual context. An extra center seeding branch can facilitate the
merging process by designating seed segments. The overall losses include (1) the SegSort loss [29] for embeddings, (2) the cross-entropy softmax loss for classifi-
cation, and (3) the regression loss for seed locations. PSS uses joint feature representations for both instance and semantic segmentation tasks.

unifying instance and semantic segmentation by integrating the
time-tested object proposal and segmentation framework popular-
ized by Mask R-CNN [26].

Instance segmentation. This task is generally approached by
two camps of solutions: top-down or bottom-up. The top-down ap-
proaches [8, 19, 20, 26, 42, 48] adopt a two-stage framework where
the bounding boxes are proposed by a detection network [65] and
the segmentation masks are produced by an add-on head. The
bottom-up approaches [1, 2, 6, 22, 32, 35, 47, 49, 58, 60–62, 84]
predict and encode pair-wise relationships in various forms and
segment the instance accordingly.

Instance context. Instance contexts and relationships are explored
mainly to enhance the detection performance. Earlier work [53]
models the appearances and 2D spatial context as a graph. Hand-
crafted features [37, 56], tree-based models [16, 17] are then devel-
oped to model co-occurring statistics and spatial configurations
among object categories and object instances [69]. Recently, re-
searchers integrate graphs [13] or spatial memory [12] into the
deep learning framework. The distinction of our work is that our
model does not explicitly model contexts yet is able to discovers
novel contexts automatically.

Semantic segmentation. Current state-of-the-art semantic seg-
mentation approaches develop from fully convolutional networks
[9, 50], with various innovations. Incorporating contextual informa-
tion [10, 11, 31, 66, 77, 81, 82], and encoding pair-wise relationships
[4, 5, 28–30, 36, 46, 52, 55, 83] are the two major research lines.

Non-parametric segmentation. Prior to deep learning’s emer-
gence, non-parametric models [44, 67, 70] usually use hand-craft
features with statistical models or graphical models to segment im-
ages with pixel-wise labels. Deep metric learning methods [22, 57]
for instance segmentation emphasize the simplicity and fast compu-
tation. More recently, inspired by non-parametric models [75, 76]
for image recognition, SegSort[29], upon which our work is built,
captures pixel-to-segment relationships via pixel-wise embeddings,
proposing the first deep non-parametric semantic segmentation in
both supervised and unsupervised settings.

3 METHOD
We adapt the Segment Sorting approach [29] to panoptic segmen-
tation by sorting segments according to both of its semantic and
instance labels. With the learned feature representations, we clas-
sify segments into categories with a softmax classifier and merge
them into instances by our proposed clustering algorithm. We also
facilitate the merging process with a seeding branch that predicts
the center of each instance.

Our end-to-end framework consists of a major SegSort branch
and a seeding branch, both of which share one backbone network
that generates multi-scale pixel-wise features. The SegSort branch
outputs pixel-wise panoptic embeddings, which encode both se-
mantic and instance information and are thus used to discover
instance-centric context. The over-segmentations induced by the
embeddings are then merged into instances and segments are clas-
sified by a softmax classifier. The seeding branch predicts the center
of instances, which guide the merging process to reduce false posi-
tives. The overall framework is illustrated in Figure 2.



This section is organized as follows. We first briefly review the
Segment Sorting framework for semantic segmentation in Sec. 3.1.
We then describe how to extend it for panoptic segmentation in
Sec. 3.2. In Sec. 3.3, we further develop a dynamic partitioning
mechanism to alleviate the problem of varying scales of instances.
Finally, we briefly describe the seeding branch in Sec. 3.4 that helps
decide the ownership of boundaries.

3.1 Segment Sorting
We briefly review the Segment Sorting (SegSort) approach pro-
posed by [29]. SegSort is an end-to-end optimization framework
for non-parametric semantic segmentation. It produces pixel-wise
semantic embeddings and their corresponding over-segmentation,
each segment of which is then, during inference, assigned a seman-
tic category via K-Nearest Neighbor search.

The basic idea of SegSort is assuming independent normal distri-
butions (or von Mises-Fisher distributions for normalized embed-
dings) for individual segments, and seeking a maximum likelihood
estimation of the feature mapping, so that the feature induced parti-
tioning in the image and clustering across images providemaximum
discrimination among segments. SegSort can be summarized as two
components: spherical k-means clustering [3] and a maximum like-
lihood loss formulation with soft nighborhood assignments [24].

The spherical k-means clustering [3] alternates the expectation
(E) and maximization (M) steps to partition the unit-length pixel-
wise embeddings 𝑣𝑣𝑣 of an image into 𝐾 regions (𝑅𝑅𝑅1, . . . ,𝑅𝑅𝑅𝐾 ). The
M-step calculates the mean embedding direction of each region,

or the prototype 𝜇𝜇𝜇𝑘 =

∑
𝑖∈𝑅𝑅𝑅𝑘 𝑣𝑣𝑣𝑖

| |∑𝑖∈𝑅𝑅𝑅𝑘 𝑣𝑣𝑣𝑖 | |
. The E-step assigns each pixel

embedding 𝑣𝑣𝑣𝑖 to a region 𝑅𝑅𝑅𝑘 with nearest corresponding prototype
𝜇𝜇𝜇𝑘 , or 𝑧𝑖 = argmax𝑘 𝜇𝜇𝜇⊤𝑘 𝑣𝑣𝑣𝑖 , where 𝑧𝑖 is the segment index that the
pixel 𝑖 is assigned. Note that the dot product on the right hand side
is equivalent to cosine similarity as both 𝑣𝑣𝑣 and 𝜇𝜇𝜇 are of unit length.
By alternating E- and M-steps, we over-segment an image.

After over-segmentation, one can derive a maximum likelihood
loss with soft neighborhood assignments [24] to train the deep
neural networks end-to-end. Interested readers are referred to the
SegSort paper [29] for detailed derivation. The principle is to con-
nect each pixel with one of its same-class segments, excluding its
own segment, and to push away all the other segments in different
classes. We define the corresponding probabilities given semantic
segmentation ground truth labels as follows.

𝑝 (𝑧𝑖 = 𝑐+ | 𝑣𝑣𝑣𝑖 ,Θ) =
exp(𝜅𝜇𝜇𝜇⊤

𝑐+𝑣𝑣𝑣𝑖 )∑
𝑙≠𝑐 exp(𝜅𝜇𝜇𝜇⊤𝑙 𝑣𝑣𝑣𝑖 )

; 𝑝 (𝑧𝑖 = 𝑐 | 𝑣𝑣𝑣𝑖 ,Θ) = 0, (1)

where 𝜅 is the concentration (around 𝜇) hyper-parameter in the von
Mises-Fisher distributions, 𝑐 denotes the segment index to which
the pixel 𝑖 is assigned, and 𝑐+ denotes the segment index of any
other same-class segment across all images in a batch. The final
SegSort loss is therefore the negative log-likelihood of a pixel 𝑖
selecting a same-class prototype as its neighbor:

𝐿𝑖SegSort = − log
∑
𝑠∈𝐶+

𝑖

𝑝 ′
𝜙
(𝑧𝑖 = 𝑠 | 𝑣𝑣𝑣𝑖 ,Θ) = − log

∑
𝑠∈𝐶+

𝑖
exp(𝜅𝜇𝜇𝜇⊤𝑠 𝑣𝑣𝑣𝑖 )∑

𝑙≠𝑐 exp(𝜅𝜇𝜇𝜇⊤𝑙 𝑣𝑣𝑣𝑖 )
,

(2)
where 𝐶+

𝑖
denotes the set of 𝑐+ segment indices w.r.t. the pixel 𝑖 ,

which is selected by the semantic segmentation ground truth labels.

Minimizing this loss is equivalent to maximizing the expected num-
ber of pixels correctly classified by voting of their nearest neighbor
prototypes.

3.2 Panoptic Segment Sorting
Since the SegSort loss does not require a fixed number of classes as
opposed to the conventional cross-entropy softmax loss, a way to
extend it for instance discrimination is by changing the definition
of ground truth labels and its corresponding selections of neighbor
prototypes. In other words, we instead consider 𝑐+ as the segment
index of any other ‘same-instance’ segment. For stuff categories
without instances, we consider all the segments in that class have
the same instance label. With this modification, the SegSort loss in
Eqn. 2 can be used to train panoptic embeddings.

Such trained embeddings, therefore, group each instance against
all the other instances, regardless of their semantic categories. Still,
since this loss pushes all the instances as far away as possible, visu-
ally similar instances are forced to stay closer on the hypersphere.
We thus hypothesize two kinds of additional information are en-
coded: (1) The embeddings encode the semantic labels inherently
as instances of the same class appear similar. To extract such in-
formation, we then stack two 1 × 1 convolutional layers on top
of segment prototypes, followed by a softmax classifier to predict
the semantic class of each segment. Note that no conflict between
semantic and instance segmentations is introduced in this setting as
they are built on the same over-segmentation. (2) The embeddings
also encode object-centric context. This is endowed by the design
of supervised semantic and instance segmentation with an unified
representations. The feature of pedestrians walking across a road
(on a sidewalk) encodes surrounding cars (buildings).

Given the panoptic embeddings and the resultant over-segmentations,
the challenge is to group segments into instances correctly during
inference. We need two criteria: 1) how to merge segments, and 2)
when to stop the merging. To align with the formulation of the Seg-
Sort loss, we adopt a nearest neighbor clustering criterion [68] to
greedily merge two segments 𝑅𝑅𝑅𝑚,𝑅𝑅𝑅𝑛 with nearest prototypes, and
stop the merging if the distance between two prototypes 𝜇𝜇𝜇𝑚, 𝜇𝜇𝜇𝑛 is
greater than a threshold, or their dot product is less than a threshold
𝑇𝑃 . The merging criteria can be summarized as:

𝑅𝑅𝑅 = {𝑅𝑅𝑅𝑚,𝑅𝑅𝑅𝑛} if
(
N(𝜇𝑚) = 𝑛 or N(𝜇𝑛) =𝑚

)
and 𝜇𝜇𝜇⊤𝑚𝜇𝜇𝜇𝑛 ≥ 𝑇𝑃 ,

(3)
where {·, ·} denotes merging segments, N(·) denotes the index of
the nearest neighbor prototype. We sort all the pairs of distances
(dot products) of the prototypes in an image and consider merging
greedily from the closest pair. We also update the new prototype
after merging.

3.3 Dynamic Partitioning for Hybrid Scale
Exemplars

The vanilla SegSort partitions an image into a fixed number of
regions regardlessly. For semantic segmentation, this setting is
reasonable as the number and sizes of homogeneous regions do
not vary a lot from an image to another. However in instance
segmentation, scales of objects can change drastically from 100 to
100K pixels. Oftentimes cluttered small instances will fall into one
single segment, or even worse be included in another big instance.



Figure 3: Our proposedmetric Context Error (CE) evaluates the context similarity between two instances bymeasuring their semantic distributions of neighboring
regions. From left to right: whole image, instance of interest, semantic distribution of themiddle right extended region.We calculate the symmetric KL-divergence
between semantic distributions from corresponding 8 extended regions as the context error. Our assumption is that visual context can be characterized by co-
occurrence and spatial relationships among object semantics.

To alleviate this scale problem, we propose a hybrid scale setting
for training and dynamic partitioning for inference accordingly.
The illustrations can be found in Appendix.

During training, we consider regular embeddings 𝑣𝑣𝑣 and their
upscaled embeddings 𝑣𝑣𝑣 (𝑢) by bilinear interpolation. The idea is
to use the upscaled embeddings for small instances so that the
gradient flows are finer. After the spherical k-mean clustering, we
calculate segment prototypes using embeddings in different scales
according to the instance sizes. Note that there is still only one
prototype for each segment in the SegSort loss, be it either regular
or upscaled.

During inference, the sizes of instances are unknown and have
to be inferred. We notice that if a segment contains multiple small
instances or multiple parts from a big instance, the corresponding
pixel embeddings are usually noisy, resulting in a low concentra-
tion. Therefore, we define an approximated concentration �̃�𝑘 of a

segment 𝑅𝑅𝑅𝑘 as �̃�𝑘 =
| |∑𝑖∈𝑅𝑅𝑅𝑘 𝑣𝑣𝑣𝑖 | |

|𝑅𝑅𝑅𝑘 | ∈ [0, 1], where |𝑅𝑅𝑅𝑘 | denotes the
number of pixels in the segment. If this value for a segment falls
below a certain threshold𝑇𝑆 , we again partition this segment using
the same spherical k-means (here 𝑘 = 4 usually).

3.4 Seeding Branch
We notice the boundaries between objects sometimes form their
own segments, causing false positive instances. To remedy this issue,
we build a second branch for predicting instance seeds, which are
used for guiding the merging process, described in Sec. 3.2. We
define seeds as the centers of instances and mark the segments that
cover seeds as seed segments. For building this seeding branch, we

follow closely the instance proposal branch in [26, 78] and use the
centers of the predicted bounding boxes as the seeds.

Once we predict the seeds and the corresponding seed segments,
we perform a seeding variant of merging. The only modification
of the merging of {𝑅𝑅𝑅𝑚,𝑅𝑅𝑅𝑛} (in Eqn. 3) is that the segments to
merge𝑅𝑅𝑅𝑚&𝑅𝑅𝑅𝑛 are restricted to one seed segment and one non-seed
segment; the merged segments are then marked as seed segments.
Note that the merging only happens between same class segments.
After this modification, all the boundary segments are then forced
to be merged into one of the seed segments. The visualization of
the merging processes can be found in the supplementary.

4 EXPERIMENTS
In this section, we demonstrate the efficacy of our framework
through extensive experiments and analysis. We first describe the
experimental setup in Sec. 4.1. We present the context specific in-
stance retrieval results in Sec. 4.2. Finally in Sec. 4.3, we present the
panoptic segmentation results. Hyper-parameters, ablation study,
and more visual results such as panoptic predictions, context re-
trieval, and t-SNE [51] feature analysis, can be found in the Appen-
dix.

4.1 Experimental Setup
Datasets.We carry out experimentsmainly on two datasets: Cityscapes
and PASCAL VOC 2012.

Cityscapes [18] is a dataset for semantic urban street scene un-
derstanding. 5, 000 high quality pixel-level finely annotated images
are divided into training, validation, and testing sets with 2, 975 /
500 / 1, 525 images, respectively. It defines 19 semantic categories



containing flat, human, vehicle, construction, object, nature, etc. ,
of which 8 categories have instance labels.

PASCAL VOC 2012 [21] segmentation dataset contains 20 ob-
ject categories and one background class. The augmented dataset
contains 10, 582 (train) / 1, 449 (val) / 1, 456 (test) images. All the
semantic classes, except for backgrounds, have instance labels.

Network architecture. We use the Feature Pyramid Networks
(FPN) [43], with ResNet-50 [27] backbone pretrained on ImageNet,
to provide the multi-scale pixel-wise features. For each of the seed-
ing and panoptic embedding branch, we follow [78] by building
three layers of deformable convolutional layers [20] (with shared
weights across different scales) on top of each scale of FPN features.
We then concatenate the multi-scale features, followed by a final
fusion 1×1 convolutional layer. On top of the panoptic embeddings,
we stack two 1 × 1 convolutional layers for the segment softmax
classifier.

We consider UPSNet [78] as our baseline method on visual con-
text retrieval. UPSNet achieves state-of-the-art performance on
panoptic segmentation on Cityscapes dataset. It is in fact a good
baseline method as it embraces two-branch models for tackling
semantic and instance segmentation, respectively.

4.2 Context Specific Instance Retrieval
In this section, we experimentally verify our panoptic embeddings
encode the object-centric context automatically.

Discovery of novel context. We retrieve the nearest neighbors
of query instances on the Cityscapes validation set using their aver-
aged embeddings. We notice that the retrieved instances are usually
in similar context as the query. We showcase five interesting ex-
amples in the Appendix, i.e., pedestrians crossing an intersection
(also in Figure 1) or walking next to cars, riders riding bikes to-
gether or next to cars, and cluttered parked motorbikes. Note that
these contexts are not given in the ground truth labels, yet our PSS
can discover them unsupervisedly. We believe these examples are
relevant in street scene understanding, especially for self-driving
vehicles.
Quantitative evaluation. We wonder if such phenomena can be
measured quantitatively. The challenge lies in the complicated sce-
narios and the lack of a complete label set. For example, crosswalks,
which are labeled as roads, are visually similar as yet functionally
different from roads. Furthermore, riding motorbikes next to cars
is dangerous but difficult to describe precisely for annotating tasks.

We notice that the semantic category distribution of a larger
patch captures some of such cases. For example, if there are multiple
pedestrians nearby with cars around them, the chance of them
walking on a crosswalk is higher. Based on these observations,
we propose to evaluate the context similarity between query and
the retrieval by comparing their semantic categories in 8 extended
regions (Fig. 3).

To be specific, we denote the 8 neighbor regions (with the same
size as the instance) as 𝐵 𝑗 for 𝑗 = 1, . . . , 8. We calculate the semantic
distribution in each region by the occupancy ratio of each class
and denote it as 𝑃𝐵 𝑗

. That is, for each class, given a semantic label
mask 𝑆𝑃 , then 𝑃𝑐𝐵 𝑗

= 1
|𝐵 𝑗 |

∑
𝐵 𝑗 [𝑆𝑃=𝑐 ] for each category 𝑐 , where

method person rider car truck bus train mbike bike mean CE
UPSNet [78] 1.15 1.21 0.88 1.20 1.08 1.33 1.23 1.21 1.16
PSS 0.96 1.01 0.65 1.12 1.04 1.27 1.11 1.05 1.02 (-13.7%)

Table 1: Our method is better at capturing visual context than our two-
branch baseline, UPSNet [78]. We report results with Context Errors (CE) on
the Cityscapes [18] validation set. We observe PSS performs better in every
category and reduces 13.7% relative CE. Our PSS can retrieve object instances
in more similar context.

|𝐵 𝑗 | denotes the area of region 𝐵 𝑗 . We then compare the semantic
context distribution of the query 𝑃 (𝑞)

𝐵 𝑗
against its 𝑖-th retrieval 𝑃 (𝑟𝑖 )

𝐵 𝑗

by calculating the symmetric KL divergence between the two, or

CE =
1
8𝐾

8∑
𝑗=1

𝐾∑
𝑖=1

(
𝐷KL (𝑃

(𝑞)
𝐵 𝑗
, 𝑃

(𝑟𝑖 )
𝐵 𝑗

) + 𝐷KL (𝑃 (𝑟𝑖 )𝐵 𝑗
, 𝑃

(𝑞)
𝐵 𝑗

)
)
, (4)

where CE is our proposed metric, Context Error, and𝐾 is the number
of retrievals per query instance. If the reference probability is 0, the
KL divergence will be invalid; in this case, we use a small probability
0.1 instead. We set 𝐾 to 20 nearest neighbors.

We compute Context Error (CE) for each instance category, i.e., ,
we restrict both query and retrieval to be a certain instance category.
The final CE is the average errors of all instance categories. We
compare our PSS against state-of-the-art UPSNet [78] and summa-
rize the results in Tab. 1. We observe PSS performs better in every
category and reduces 13.7% relative context errors.

Visual Comparison. Next, we present the visual comparison in
Fig 4 between our PSS and UPSNet using three query instances
from the same validation image and display 3 retrieved instances
for each network in the training set. We observe that our retrieved
instances are usually in a similar context and are sometimes even
from the same training image. It indicates that PSS encodes not
only the appearances of an instance but also its nearby environment.

Visual Context Cluster AnalysisWe conduct visual context clus-
ter analysis and visualize the results in Fig. 5. We first collect all the
pedestrian prototypes in the Cityscapes training set. We plot their
surrounding ground truth mask at their t-SNE feature locations
and the aggregated density map. We observe interesting clusters
such as pedestrians next to a car (center) and pedestrians alone
on sidewalks (top left). We also notice some rare contexts on the
middle left by examining the density map: a pedestrian is behind a
clutter of a motorbike and a bike, which could lead to collision.

4.3 Panoptic Segmentation
Main results on Cityscapes. We summarize the main results
on the Cityscapes validation set and compare with the state-of-
the-art in Table 2. Our PSS achieves competitive performance in
PQ (Panoptic Quality, explained in Appendix) and outperforms
all the other methods in PQSt. Notably, our framework performs
particularly well in semantic segmentation related benchmarks.
Main results on PASCAL VOC. We summarize the main results
on the PASCAL VOC validation set and compare with the state-of-
the-art in Table 3. We show that PSS outperforms [39] by 2% PQ
even with a weaker backbone (ResNet-50 vs 101).



Figure 4: PSS is better at encoding visual context in the learned representations. We compare our method with baseline for context specific instance retrieval. We
show 3 query examples (left) and their top retrieval results by our PSS (middle) and UPSNet [78] (right), respectively. We observe that retrieved instances by PSS
are usually in similar context or sometimes even from the same training image.

method backbone PQ PQTh PQSt

[39] ResNet-101 47.3 39.6 52.9
DeeperLab [79] Xception-71 56.5 - -
AUNet [41] ResNet-50 56.4 52.7 59.0
SSAP [23] ResNet-50 56.6 49.2 -
Panoptic FPN [33] ResNet-50 57.7 51.6 62.2
UPSNet [78] ResNet-50 59.3 54.6 62.7
UPSNet* [78] ResNet-50 59.1 54.2 62.6
PSS ResNet-50 58.7 51.7 63.7

Table 2: PSS achieves competitive performance on panoptic segmentation
over the Cityscapes validation set. Our proposed framework PSS achieves
comparable performance in PQ and outperforms all the other methods in
PQSt. * denotes retraining the model using released code; other results are
copied from the published papers and ‘-’ denotes missing metrics.

method backbone PQ
[39] ResNet-101 62.7
PSS ResNet-50 64.8

Table 3: PSS achieves competitive performance on panoptic segmentation
over Pascal VOC 2012 validation set. Our PSS outperforms baseline [39] by
large margin.

5 SUMMARY
We propose Panoptic Segment Sorting (PSS), a pixel-to-segment
contrastive learning framework for contextual image parsing. Our
method unifies semantic segmentation and instance segmentation
in the pixel-wise panoptic embedding that also encodes and discov-
ers visual context automatically.

We propose a context error metric that measures the distribu-
tion similarity in surround semantics between the query and the
retrieval. Our experimental results demonstrate that PSS not only
performs segmentation competitively with the state-of-the-art, but

more importantly, its retrievals capture visual context much better,
validating our pixel-wise representation learning approach for the
unsupervised discovery and learning of visual context.
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Figure 5: Clusterings of pedestrian prototypes in the latent feature space are corresponded to their visual contexts (best viewed with zoom-in). We first collect all
the pedestrian prototypes in the Cityscapes training set. We plot their surrounding ground truth mask at their t-SNE feature locations and the aggregated density
map (bottom left). We observe interesting clusters such as pedestrians next to a car (center) and pedestrians alone on sidewalks (top left). We also notice some
rare contexts on the middle left by examining the density map: a pedestrian is behind a clutter of a motorbike and a bike, which could possibly lead to collision.
We show that pedestrians in the similar context are grouped in the learned feature space.
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