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SurReal: Complex-Valued Learning as Principled
Transformations on a Scaling and Rotation Manifold

Rudrasis Chakraborty , Yifei Xing , and Stella X. Yu

Abstract— Complex-valued data are ubiquitous in signal and
image processing applications, and complex-valued representa-
tions in deep learning have appealing theoretical properties.
While these aspects have long been recognized, complex-valued
deep learning continues to lag far behind its real-valued counter-
part. We propose a principled geometric approach to complex-
valued deep learning. Complex-valued data could often be subject
to arbitrary complex-valued scaling; as a result, real and imagi-
nary components could covary. Instead of treating complex values
as two independent channels of real values, we recognize their
underlying geometry: we model the space of complex numbers
as a product manifold of nonzero scaling and planar rotations.
Arbitrary complex-valued scaling naturally becomes a group of
transitive actions on this manifold. We propose to extend the
property instead of the form of real-valued functions to the com-
plex domain. We define convolution as the weighted Fréchet mean
on the manifold that is equivariant to the group of scaling/rotation
actions and define distance transform on the manifold that is
invariant to the action group. The manifold perspective also
allows us to define nonlinear activation functions, such as tangent
ReLU and G-transport, as well as residual connections on the
manifold-valued data. We dub our model SurReal, as our exper-
iments on MSTAR and RadioML deliver high performance with
only a fractional size of real- and complex-valued baseline models.

Index Terms— Complex value, equivariance, Fréchet mean,
invariance, Riemannian manifold.

I. INTRODUCTION

WHILE deep learning has been widely successful in
computer vision and machine learning [3], [25], [32]–

[34], most techniques are only applicable to data that lie
in a vector space. How to handle manifold-valued data and
incorporate non-Euclidean geometry into deep learning has
become an active topic of research [6], [12]–[14], [17], [21].

We are interested in extending deep learning to complex-
valued data, e.g., synthetic aperture radar (SAR) images in
remote sensing, magnetic resonance (MR) images in med-
ical imaging, or radio frequency (RF) signals in electrical
engineering. For such naturally complex-valued data, both
the size (or magnitude) and the phase of a complex-valued
measurement contain useful information. For example, in SAR
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images, the magnitude encodes the amount of energy, whereas
the phase variation indicates the object material and shape
boundaries.

Complex-valued data could also arise from the more infor-
mative complex-valued representation of naturally real-valued
data. The most notable examples are the Fourier spectrum
and spectrum-based computer vision techniques ranging from
steerable filters [23] to spectral graph embedding [35], [54].

The most common complex-valued deep learning approach
is to simply apply real-valued deep learning methodology to
the two-channel representation of complex-valued data z =
x + i · y (where i denotes the imaginary unit): the real
component x and the imaginary component y are regarded
as the independent channels of the input.

However, the independence assumption between the real and
imaginary components does not hold in general. For instance,
in MR and SAR images, the pixel intensity value could be sub-
ject to arbitrary scaling by complex number s = m e jθ , where
all the pixel values are simultaneously scaled in magnitude by
m and shifted in phase by θ . That is, any measurement z is
simply a representative of a whole class of possible equivalent
measurements {z s : s = m e jθ : m > 0,∀θ}. Instead of being
independent of each other, the real and imaginary components
(x, y) of z covary in this equivalent class.

The covariance of the two components of complex-valued
data has not been exploited in complex-valued deep learning.
The common approach to learn a classifier invariant to scaling
is to augment the training data with complex-valued scaling
[19], [32], [52]. Such extrinsic data manipulation increases
the amount of the training data and is rather ineffective: It
takes a long time to train the model, yet the invariance is not
guaranteed.

Our goal is to develop the invariance to complex-valued
scaling as an intrinsic property of the neural network itself.
We treat each complex-valued data sample as a point in a
non-Euclidean space that respects the intrinsic geometry of
complex numbers. We propose new convolution and fully
connected (FC) layer functions that can achieve equivariance
and invariance to complex-valued scaling.

There has been a long line of works that define convolution
in a non-Euclidean space by treating each data sample as a
function in that space [12], [17], [18], [21], [31], [53].

The challenge for defining such an equivariant convolution
operator in the non-Euclidean space is the lack of a proper
vector space structure. In the Euclidean space, we can move
from one point to another using an element from the group of
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Fig. 1. Sample architecture of our SurReal model. First, the input is a complex-valued image; each pixel is color-coded with an HSV colormap according to
its complex value, with the color intensity indicating the magnitude, the color hue indicating the phase, and the full constant saturation. Second, the first two
layers are our proposed complex-valued convolution in terms of the weighted Fréchet mean (wFM) filtering on the manifold derived from the polar form of
complex numbers. This convolution outputs complex-valued responses, and it is equivariant to complex-valued scaling. Each wFM layer could have multiple
channels, each channel shown here as a complex-valued image. Pixelwise nonlinear activation functions, such as our proposed tReLU and G-transport, can
be subsequently applied. Third, the third layer is a distance transformation layer, where the manifold distance between the feature map and its wFM is
computed. This distance is invariant to complex-valued scaling. Fourth, once the representation becomes real-valued after the distance transformation layer,
we could use any real-valued CNN layer functions for classification. Shown here is the real-valued convolution (CONV) layer followed by the FC layer
toward the final softmax classification. With the built-in invariance to complex-valued scaling, our SurReal model can outperform real-valued baseline models
on complex-valued data with a fraction of the baseline model size.

translations; the standard convolution is, thus, equivariant to
the action of the group of translations. However, in the non-
Euclidean space, e.g., a hypersphere, translation equivariance
is no longer meaningful: Translation is not the group to move
from one point to another on a hypersphere, but rotation is.

The concept of equivariance of an operator on a space
is, thus, intimately related to the transitivity of a group of
actions on that space. We say that a group G acts transitively
on space if there exists a g ∈ G to go from one point to
another on the space. The group of translations acts transitively
on the Euclidean space, whereas the group of rotations acts
transitively on a hypersphere. The group that transitively acts
on the non-Euclidean space of the complex plane is nonzero
scaling and planar rotations in the complex plane.

The manifold view of convolution as an operator with
equivariance to transitive actions on that space applies to both
the domain and the range of data, e.g., for an image, its pixel
coordinates define the domain, and its pixel intensities define
the range. Here, we focus on the range space of data in order
to extend deep learning to complex-valued images and signals.

Our key insight is to represent a complex number in its polar
form and define a Riemannian manifold on which complex
scaling corresponds to the general transitive action group.
When a data sample lies on a Riemannian manifold, there
are previously established results for deep learning.

1) Convolution defined by the weighted Fréchet mean
(wFM) [22] is equivariant to the group that naturally
acts on that manifold [13].

2) Since wFM is nonlinear and acts like a contraction
mapping [36] analogous to ReLU or sigmoid, nonlinear
activation functions, such as ReLU, may not be needed.

We propose three types of complex-valued layer functions
from the Riemannian geometric point of view.

1) wFM: A new convolution operator on the manifold for
complex-valued data. It is equivariant to complex-valued
scaling. The weights of wFM are to be learned.

2) Tangent ReLU: A new nonlinear activation function that
applies ReLU to the projections in the tangent space of
the complex-valued manifold. We also propose another
option called G-transport that transports a point on

the complex manifold by an action in the scaling and
rotation group.

3) Distance Transform: A new FC layer operator that
computes the manifold distance between a feature map
and its wFM. It is invariant to complex-valued scaling.
The weights of wFM are to be learned.

The distance transform layer takes a complex-valued input to
the real-valued domain, where any real-valued convolutional
neural network (CNN) functions, such as standard convolu-
tions and FC layers, can be subsequently used.

Fig. 1 shows a sample CNN architecture composed using
our complex-valued layer functions. A complex-valued image
first passes through two wFM complex-valued convolutional
layers and then undergoes the distance transform. The resulting
real-valued distances are subsequently fed into a real-valued
CNN classifier with one convolution layer and one FC layer.
Each convolutional layer is illustrated with a single channel
response among a stack of many, with color images encoding
complex-valued responses and grayscale images encoding
real-valued responses.

Our complex-valued CNN has a group invariant property
similar to the standard CNN on real-valued data. Existing
methods extend the real-valued counterpart to the complex
domain based on the form of functions, such as convo-
lution or batch normalization [10], [49], [51], not on the
property of functions, such as equivariance or linearity. Our
complex-valued CNN is composed of layer functions with
the desired equivariance and invariance properties that are
essential for a real-valued CNN classifier in the Euclidean
space; it is, thus, a theoretically justified analog of the
real-valued CNN.

We compare our method with several baselines on two
publicly available complex-valued data sets: MSTAR and
RadioML. Our model consistently outperforms the real-valued
CNN baseline, with fewer than 1% on MSTAR and 3% on
RadioML of the baseline model parameters.

We, thus, name our approach SurReal (pun intended): a
surprisingly lean complex-valued model that beats the real-
valued CNN model. Our work has three major contributions.
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1) We propose novel complex-valued layer functions with
proven equivariance and invariance properties.

2) We extend our model to complex-valued residual CNNs.
3) We validate our method on classification experiments.

Our SurReal CNNs outperform real- and complex-
valued baselines at a fraction of their model sizes.

These results demonstrate significant benefits of proposing
CNN layer functions in terms of desirable intrinsic properties
on the complex plane as opposed to applying the standard
CNN to the 2-D Euclidean embedding of complex numbers.

II. RELATED WORKS

Complex numbers are powerful representations and con-
cepts in mathematics, with intimate connections to geometry,
topology, and differentiation [37]. They have a wide range of
applications in physics and engineering.

Complex-valued data representations are widely used as a
modeling choice to encode richer information than real-valued
representations, especially for directional or cyclic data. Amin
and Murase [1] learn a mapping from a finite range of real
values to the unit circle in the complex plane. Cadieu and
Olshausen [11] train a complex-valued sparse coding model
to capture both edge structure and motion structure. Yu [54],
[55] combines the confidence and size of a measurement in
a single complex value and learns a global embedding from
pairwise local measurements. Maire et al. [35] simultaneously
encode both grouping and figure-ground ordering relationships
between neighboring pixels and learn complex-valued pairwise
pixel relationships from pixelwise figure-ground annotations.
Reichert and Serre [43] use complex-valued neuronal units to
model biologically plausible deep learning networks. Bruna
and Mallat [7] and Bruna et al. [9] adopt wavelet transforms at
earlier layers. Arjovsky et al. [2] adopt unitary weight matrices
in hidden layers for better learning performance.

Traditional complex-valued data analysis utilizes higher
order statistics, such as variance fractal dimension trajectory
[30] and spectral analysis [44], to make adequate predictions.

Early neural network approaches have already noted that
complex values have many nice mathematical properties that
real-value data do not have, e.g., the complex identity theorem.
Transformations from the input to the output can be more
effectively learned with complex-valued networks instead of
real-valued networks. Various complex-valued activation func-
tions have been explored, although with little demonstration
of their success in real data settings [4], [24], [29], [39].

Recent neural network approaches continue to build upon
the theoretical advantages of complex-valued data to improve
the convergence, stability, and generalization of neural net-
works [27], [38] and facilitate the noise-robust memory
retrieval mechanisms in capsule networks [16]. Real-valued
layer functions have also been extended to the complex domain
according to the form of the functions, such as convolution,
ReLU, and batch normalization [10], [49]–[51]. Complex-
valued deep learning has also been extended to quaternion
neural networks, as quaternions generalize the concept of
complex values from 2-D to 3-D [42].

Recent graph convolution neural networks open up new
computational models in the complex domain [8], [46]. Since

convolution in the spatial domain is equivalent to multipli-
cation in the spectral domain, a natural extension of convo-
lution to data defined on an arbitrary graph is to construct
a convolutional filter in terms of multiplicative weights on
the spectrum of the graph Laplacian [8]. The spectrum of the
graph Laplacian is real-valued if the graph is undirected and
complex-valued if it is directed [48].

Our SurReal complex-valued CNN is unique in utilizing the
geometric property of the complex numbers and approaching
complex-valued learning as a special task of deep learning on
the Riemannian manifolds.

Existing methods, such as in [1], [35], [49], and [52],
treat a complex value as a vector in the Euclidean space of
R2. This choice, while straightforward, essentially destroys
the covariant relationship between real and imaginary parts
of a complex number. Naturally, complex-valued data, such
as SAR, MRI, and RF, could be subject to complex-valued
scaling without changing the underlying observation.

To deal specifically with complex numbers, we first separate
and acknowledge the extrinsic scaling effect by asking the
convolution operator to be equivariant to complex-valued
scaling. For a CNN classifier, we design the distance transform
layer to be invariant to complex-valued scaling.

Our SurReal CNN classifier can focus entirely on the
discriminative information between classes, without the need
to build up additional scale invariance by repeatedly training
on data augmented with complex-valued scaling. Our SurReal
model is, thus, a surprisingly lean complex-valued model that
beats the real-valued CNN model on complex-valued data.
An earlier preliminary version of this work was presented in
[15].

III. SCALING–ROTATION MANIFOLD FOR THE GEOMETRY

OF COMPLEX NUMBERS

A crucial property of complex-valued data is complex-
valued scaling ambiguity: The MRI or SAR images of the
same scene could be related by the multiplication of a single
complex number, depending on how the data are acquired.
Complex-valued scaling can be captured by the scaling action
on the magnitude and the rotation action on the phase.

Instead of treating the complex plane as the usual 2-D
Euclidean space, we identify the nonzero complex plane as
the product manifold of positive magnitudes and planar rota-
tions. We show that scaling and rotation actions preserve the
manifold distance defined on the nonzero complex manifold.

A. Space of Complex Numbers

Let R and C denote the field of real numbers and complex
numbers, respectively. We have

z = x + i y ∈ C, ∀x, y ∈ R. (1)

According to this 2-D real-valued representation (x, y) of z,
C is a Riemannian manifold [5]. The distance induced by the
canonical Riemannian metric is

d(z1, z2) =
√

(x2 − x1)2 + (y2 − y1)2 (2)

the common Euclidean distance in the 2-D complex plane.
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B. Polar Form of Complex Numbers

Any nonzero complex number can be uniquely represented
in the polar form, in terms of its magnitude and phase.

Definition 1: ∀z ∈ C and z �= 0, its polar form is

z = |z| exp(i �z) (3)

z ∈ C̃ = C \ {0 + i 0} (4)

magnitude: |z| =
√

x2 + y2 (5)

phase: �z = arctan(y, x) (6)

where exp is the exponential function and arctan is the two-
argument arc-tangent function that gives the angle in the
complex plane between the positive x axis and the line from
the origin to the point (x, y).

C. Scaling–Rotation Product Manifold for C̃

Based on the polar form, we identify the nonzero complex
plane C̃ as the product space of nonzero scaling and 2-D
rotations

C̃⇐⇒ R+ × SO(2) (7)

where R+ is the manifold of positive reals and SO(2) is the
manifold of planar rotations—a rotation Lie group.

We define a bijective mapping F that can go back and forth
from the complex plane C̃ to the manifold space R+ ×SO(2)

z = |z| exp(i �z)
F−→←−

F−1
(|z|, R(�z)) (8)

R(�z) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (9)

Both spaces are parameterized by magnitude and phase; the
phase is turned into a complex number with exp(·) for C̃ and
into a 2-D rotation matrix with R(·) for R+ × SO(2).

D. Manifold Distance for C̃

The exponential and logarithmic maps are respectively
exp and log for R+, matrix exponential expm, and matrix
logarithm logm for SO(2).

Definition 2: The matrix exponential and logarithm of
matrix X are defined, respectively, as

expm(X) =
∞∑

n=0

Xn

n!
X = logm(Y ) if and only if Y = expm(X).

The distance on this product manifold in (2) becomes

d(z1, z2) =
√

log2 |z2|
|z1| + 
 logm(R(�z2) R(�z1)−1)
2. (10)

E. Scaling–Rotation Is Transitive on C̃

The complex plane C̃ as identified with R+ × SO(2) is
a Riemannian homogeneous space [26]. We define transitive
actions that move a point around on the manifold [20].

Definition 3: Given a (Riemannian) manifold M and a
group G with identity element e, we say that G acts on M
(from the left) if there exists a mapping L : G ×M →M
given by (g, X) �→ g.X that satisfies two conditions.

1) Identity: L(e, X) = e.X = X .
2) Compatibility: (gh).X = g.(h.X) ∀g, h ∈ G.

An action is called transitive if and only if, given X, Y ∈M,
there exists an element g ∈ G such that Y = g.X .
It is straightforward to verify that scaling and rotation in
R+ × SO(2) satisfy the identity and compatibility conditions
on C̃. It is also a transitive group action: for any complex
numbers z1, z2 ∈ C̃, there always exists a relative scaling (of
the magnitude) and rotation (of the phase) that maps z1 to z2.

Proposition 1: The scaling–rotation Lie group R+×SO(2)
transitively acts on C̃, and the action g to take z1 to z2 is

g =
( |z2|
|z1| , R(�z2)R(�z1)

−1
)
∈ R+ × SO(2) . (11)

F. Scaling–Rotation Is Isometric on C̃

We now show that scaling and rotation actions preserve our
manifold distance.

Proposition 2: The scaling and rotation Lie group is iso-
metric on the complex plane C̃: ∀z1, z2 ∈ C̃, g ∈ R+×SO(2)

d(g.z1, g.z2) = d(z1, z2) (12)

where d is the manifold distance defined in (10).
Proof: We use the definition of d and the property that

the 2-D rotation group SO(2) is Abelian: ∀A, B ∈ SO(2),
AB = B A. Let g = (r, A) ∈ R+ × SO(2). We have

d(g.z1, g.z2)

=
√

log2 r |z2|
r |z1| + 
 logm(AR(�z2)(AR(�z1))−1)
2

=
√

log2 |z2|
|z1| + 
 logm(R(�z2)A(R(�z1)A)−1)
2

=
√

log2 |z2|
|z1| + 
 logm(R(�z2) R(�z1)−1)
2 = d(z1, z2)

completing the proof. �

IV. CNN LAYER FUNCTIONS ON COMPLEX MANIFOLD

We propose complex-valued CNN layer functions based on
the scaling–rotation manifold view of complex numbers. Each
layer function transforms the representation with a certain
property (e.g., equivariance or invariance) on the manifold.

We define first a convolution operator on the manifold
that is equivariant to complex-valued scaling. We then define
nonlinear activation functions and FC layer functions that are
invariant to complex-valued scaling. A CNN composed of
such layer functions would then be intrinsically invariant to
complex-valued scaling.
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Fig. 2. Our complex-valued convolution in terms of wFM on the R+×SO(2)
manifold is equivariant to complex-valued scaling. Consider four numbers
in the complex plane, marked by four colored points on a small magenta
trapezoid. Their equally weighted wFM (marked by the green circle) sits
inside the trapezoid at the geometric mean of their magnitudes and the
mean of their phases. When the four complex numbers are multiplied by
1.5 exp(i (100π/180)), the points are scaled by 1.5 and rotated by 100◦ ,
moving to the larger trapezoid. The new wFM is simply the old wFM
transported by the same movement.

Fig. 3. Our tReLU extends ReLU from the real line to the complex plane
C̃, by applying ReLU in the tangent space of R+ × SO(2). It rectifies the
magnitude by 1 and phase by 0, creating four corresponding regions before
(left) and after (right) the mapping. Green region: points retain both their
magnitudes and phases. Cyan region: points retain their phases with their
magnitudes rectified to 1. Red region: points retain their magnitudes with their
phases rectified to 0. Brown region: points are rectified in both the magnitude
and the phase, all to the same point 1+ i · 0.

A. Complex-Valued Convolutional Layer Function

The standard convolution, denoted by ∗ and n weights {wk}
over n neighboring points {xk}, is simply the weighted average
of real numbers in the Euclidean space

{wk} ∗ {xk} =
n∑

k=1

wk xk . (13)

We extend this concept to points on a manifold.
1) Fréchet Mean on the Manifold: The weighted average of

n points on a Riemannian manifold is called the wFM [22].
We define the complex convolution, denoted by ∗̃ , as wFM
on the scaling–rotation manifold for complex values (center
circles in Fig. 2)

{wk} ∗̃ {zk} = wFM({wk}, {zk}) (14)

wFM({wk}, {zk}) : = arg min
m∈C̃

n∑
k=1

wkd2(zk, m) (15)

n∑
k=1

wk = 1, wk ≥ 0 (16)

where d is the manifold distance in (10).

Fig. 4. Our distance transform is invariant to complex-valued scaling. We plot
Fig. 2 in the tangent space of R+×SO(2), with magnitude on a log scale for
the y-axis and phase for the x-axis. The distance d on the manifold is directly
measured by the Euclidean distance in this space. When the four complex
numbers are multiplied by 1.5 exp(i (100π/180)), the points and their wFM
are simply translated. The distances between the points and their wFM,
thus, remain the same. Note that while this direct phase θ representation is
intuitive, our rotation matrix R(θ) can more easily handle phase representation
discontinuity at, e.g., ±π , where θ(−π,+π ] for a unique determination of θ .

We contrast our complex-valued wFM convolution ∗̃ with
the standard real-valued convolution ∗.
• While the output of ∗̃ is complex-valued, the weights
{wk} are real-valued, just like the weights for ∗.

• While the weights of ∗ can be arbitrary, the weights of ∗̃
are all nonnegative and summed up to 1. This convexity
constraint ensures that the wFM of n points on a manifold
stays on the manifold.

• While the output of ∗ is simply the weighted average,
the output of ∗̃ is the minimizer to a weighted least-
squares problem, i.e., the data mean that minimizes the
weighted variance. There is no closed-form solution to
wFM; however, there is a provably convergent n-step
iterative solution [45].

• If d is the manifold distance in (2) for the Euclidean
space that is also Riemannian, then wFM has exactly the
weighted average as its closed-form solution. That is, our
wFM convolution on the Euclidean manifold is reduced
to the standard convolution, although with the additional
convexity constraint on the weights.

2) Convolutional wFM Layer: As for the standard convo-
lution, our weights {wk} for wFM are parameters learnable
through stochastic gradient descent (SGD), with the additional
convexity constraint on {wk}.

Each set of weights {wk} defines a single wFM channel in
our convolutional layer, and each layer has multiple channels.
We follow the CNN convolution convention for images, where
the convolutional kernel spans a local spatial neighborhood
but all the channels. If there are 10 input channels of 50× 50
pixels, to produce 20 output channels with 5×5 spatial kernels,
we need to learn 20 sets of 5× 5× 10 weights.

3) Equivariance of wFM to R+ × SO(2): We have shown
that the scaling–rotation Lie group transitively acts on C̃ and
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Fig. 5. Our complex-valued CNN with residual connections allows manifold
valued representations to be combined across different depths. Top: sample
CNN with complex-valued convolution (wFM), distance transform (DIST),
real-valued convolution (CNN), and FC layers. Bottom: to create a residual
structure (Res), we add skip connections between two adjacent convolutional
layers. We first spatially align their feature maps via convolution (wFM
for complex-valued and CONV for real-valued) and then combine them via
channelwise concatenation for complex-valued data and addition for the real-
valued data. The only difference between real- and complex-valued residual
blocks is how the feature maps are combined: Addition is a vector space
operator that does not apply to two points on a non-Euclidean manifold.

is isometric (see Proposition 2). We use this result to prove
that our wFM is equivariant to complex-valued scaling.

Proposition 3: The complex-valued convolution ∗̃ in (14)
is equivariant to the action of R+ ×SO(2): ∀g ∈ R+×SO(2)

{wk} ∗̃ {g.zk} = g.({wk} ∗̃ {zk}). (17)

Proof: Let g ∈ R+×SO(2) and o = {wk} ∗̃ {zk}. ∀m ∈ C̃
n∑

k=1

wkd2(g.zk, g.o) =
n∑

k=1

wkd2(zk, o) ≤
n∑

k=1

wkd2(zk, m)

since g preserves the distance and o is the minimizer over
{zk}. Therefore, g.o is the minimizer over {g.zk}. �

Fig. 2 illustrates how wFM is equivariant to rotation and
scaling. For each trapezoid, the center circle marks the wFM
of the four corner points. If the trapezoid is transported using
a particular scaling and rotation action, then the center wFM
is also transported by the same action.

B. Nonlinear Activation Functions

The wFM convolution is a contractive mapping, an effect
of a nonlinear activation function. Nevertheless, for stronger

nonlinearity and acceleration in optimization during learning,
we propose two activation functions from the manifold per-
spective: tangent ReLU (tReLU) and G-transport.

1) Tangent ReLU: The tangent space of a manifold is a vec-
tor space that contains the possible directions for tangentially
passing through a point on the manifold. It could be regarded
as a local Euclidean approximation of the manifold. A pair of
logarithmic and exponential maps establish the correspondence
between the manifold and the tangent space.

We extend ReLU to the complex plane C̃ by applying ReLU
in the tangent space of R+ × SO(2) manifold. Our tReLU is
composed of three steps.

1) Apply logarithmic maps to go from a point in C̃ to a
point in its tangent space. The mapping is log for r ∈ R+
and logm for R(θ) ∈ SO(2), which produces a skew
symmetric matrix. We choose the principal log map for
SO(2) in the range of θ ∈ (−π, π]

logm(R(θ)) = θ ·
[

0 −1
1 0

]
. (18)

2) Apply ReLU in the tangent space of C̃. ReLU is well
defined for a real-valued scalar, such as log(r) for R+

ReLU(x) = max(x, 0), e.g., x = log(r). (19)

We extend ReLU to logm(R(θ)) for SO(2) since it is
just the real-valued θ scaled by a constant matrix

ReLU(logm(R(θ))) = max(θ, 0) ·
[

0 −1
1 0

]
. (20)

3) Apply exponential maps to come back to C̃ from the
tangent space. We can simplify the three-step tReLU as

r
tReLU�→ exp(ReLU(log(r))) = max(r, 1) (21)

R(θ)
tReLU�→ expm(ReLU(logm(R(θ)))) = R(max(θ, 0)).

(22)

Fig. 3 shows that our manifold perspective of C̃ leads to a
nontrivial extension of ReLU from the real line to the complex
plane, partitioning C̃ into four regions, separated by r = 1 and
θ = 0. Those with magnitudes smaller than 1 are rectified to
1, and those with negative phases are rectified to 0.

2) G-Transport: A nonlinear activation function is a general
mapping that transforms the range of responses. We consider
a general alternative that simply transports all the values in a
feature channel via an action in the group G = R+ × SO(2).
We only need to learn one global scaling and rotation per
feature channel, which corresponds to learning one complex-
valued multiplier per channel at a certain depth layer.

C. Fully Connected Layer Functions

For classification tasks, having equivariance of convolution
and range compression of nonlinear activation functions is
not enough; we need the final representation of a CNN to
be invariant to variations within each class.

In a standard CNN classifier, the entire network is invariant
to the action of the group of translations, achieved by the FC
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layer. Likewise, we develop an FC layer function on C̃ that is
invariant to the action of R+ × SO(2).

Since the manifold distance d is invariant to actions in G =
R+ × SO(2), we propose the distance between each point of
a set and their wFM, which is equivariant to G, as a new FC
function on C̃.

1) Distance Transform FC Layer: Let the input be s pixels
of c channels each. We perform a global integration over all
these s · c complex values {tk}. Given s · c weights {wk} for
these individual numbers, we first calculate their wFM m and
then compute the distance uk from tk to the mean m

m = {wk} ∗̃ {tk} (23)

uk = d(tk, m). (24)

The output is real-valued and of the same size as the input.
The weights {wk} are the parameters to be learned, and there
could be multiple sets of such weights at this layer.

Proposition 4: The distance to the wFM, defined in (23)
and (24), is invariant to the action of G = R+ × SO(2).

Proof: Per Propositions 2 and 3, ∀g ∈ G, we have

d(g.tk, {wk} ∗̃ {g.tk})
= d(g.tk, g.({wi}) ∗̃ {tk})) equivariance of wFM

= d(tk, {wk} ∗̃ {tk}) invariance of distance

completing the proof. �
Fig. 4 replots Fig. 2 in the (log(r), θ) space, which corre-

sponds to the tangent space of R+×SO(2) where the manifold
distance can be directly visualized as the Euclidean distance.
When the four corners of the trapezoid are scaled and rotated,
the trapezoid is simply translated along (log(r), θ) axes. The
distance from points to their wFM remains the same.

Since the output of the distance transform layer is real-
valued, we can subsequently use any existing layer functions
of a real-valued CNN classifier. Fig. 1 shows a sample archi-
tecture of our complex-valued CNN, where two successive
wFM convolutional layers are followed by a distance transform
FC layer, a standard convolutional layer, and an FC layer for
final softmax classification.

D. Complex-Valued Residual Layer Function

A standard CNN with residual layers, such as ResNet [25],
outperforms the one without. Residual layers are useful for
preventing exploding/vanishing gradients in deep networks,
by utilizing skip connections to jump over some layers. The
skip connections between layers add the outputs from previous
layers to the outputs of stacked layers.

While addition is natural for combining layers in the field
of real numbers, it does not make sense in the field of complex
numbers: We can add two vectors in the Euclidean space, but
we cannot add two points on a non-Euclidean manifold.

Here, we propose a complex-valued residual layer function
by retaining the skip connection concept without the addition
to combine the outputs from different layers. Let a feature
layer f(s, c) be specified by the number of pixels s and the
number of channels c. Consider two feature layers f1(s1, c1)
and f2(s2, c2), s1 < s2, with one layer through skip con-
nections. In order to combine them, we first use the wFM

Fig. 6. Our SurReal models for MSTAR are much leaner than baselines. Each
model size is plotted as a horizontal bar on a log scale, labeled with the model
name and the number of parameters on the right. ResNet50 is the real-valued
baseline and the largest with 23.5M parameters. DCN is the complex-valued
baseline, with 154k parameters at 0.7% of ResNet50. Our SurReal residual
network has 109k parameters at 0.5% (71)% of ResNet50 (DCN). Our basic
SurReal CNN has 67k parameters at 0.3% (44%) of ResNet50 (DCN). With
the tensor ring implementation for convolutions, our SurReal CNN could be
further reduced to 21k parameters at 0.1% (14%) of ResNet50 (DCN).

convolution to bring the spatial dimension of f2 from s2 to s1
and then concatenate the two sets of spatially aligned features

align spatially: f2(s2, c2)
∗̃→ f̄2(s1, c2) (25)

concatenate: [f1(s1, c1) | f̄2(s1, c2)] → f(s1, c1 + c2). (26)

Once combined, we can treat them as the input and apply any
wFM convolution as desired.

Fig. 5 shows that we can simply replace two complex-valued
convolution layers with such a residual block connecting
and combining their outputs and build a residual complex-
valued convolution network. The only difference with the real-
valued residual block is that the combination is channelwise
concatenation for a non-Euclidean manifold instead of an
addition for a vector space.

We can optionally further reduce the number of parameters
for convolution using the tensor ring decomposition [56]. A c-
dimensional convolutional filter W of size n1 × · · · × nc can
be decomposed into c smaller rank b tensors, each of the form
Tk with size b × nk × b such that ∀k1, . . . , kc

W (k1, . . . , kc) = trace(T1(:, k1, :)× · · · × Tc(:, kc, :)) (27)

where × denotes the matrix multiplication. Such a tensor fac-
torization needs b2 ∑c

k=1 nk parameters for all the tensors {Tk}
instead of

∏c
k=1 nk parameters for the original W . Tensor ring

decomposition can achieve arbitrary approximation precision
[40, p. 2299, Th. 2.2].

V. EXPERIMENTS

We compare our SurReal complex-valued classifier against
two baselines: 1) the first baseline is a real-valued CNN
classifier, such as ResNet50, which ignores the geometry
of complex numbers and treats each complex value as two
independent real numbers and 2) the second baseline is the
deep complex networks (DCNs), which extends real-valued
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Fig. 7. Our SurReal CNN significantly outperforms real- and complex-valued
baselines on MSTAR target recognition when less data are used for training.
We split the data into training and test sets at varying proportions and plot the
test accuracy. When there is enough training data, e.g., at 30% training and
70% testing, all three models perform similarly with 98% accuracy. When
there is less training data, e.g., at 5% training and 95% testing, SurReal is
much better with a test accuracy of 90% over DCN’s 60% and ResNet50’s
45%, demonstrating the effectiveness of our complex-valued model.

TABLE I

MSTAR DATA SET SIZE: NUMBER OF IMAGES PER CLASS

CNN layer functions to the complex domain by the form
of the functions, such as complex-valued convolution, batch-
normalization, nonlinear activation, and weight initialization
[49]. The specific DCN models used in [49] are very large,
on the order of one million parameters. To help directly
compare complex-valued layer functions, we adopt the same
SurReal Residual architecture for the DCN baseline but replac-
ing all the convolution layers (complex-valued wFM and
real-valued convolution) and nonlinear activation functions
with DCN’s proposed counterparts.

We experiment on two complex-valued data sets: SAR
image data set MSTAR [28] and synthetic RF signal data set
RadioML [41]. All the models are trained on a GeForce RTX
2080 GPU for 120 epochs, using Adam optimizer and cross-
entropy loss.

A. MSTAR Classification

1) MSTAR Data Set: There are a total of 15 716 complex-
valued X-band SAR images, distributed unevenly over
11 classes: The first ten classes contain different target vehi-
cles, and the last one class contains background clutter (see
Table I for the total number of images per class). We take the
100×100 center crop of each image and convert the complex
value of each pixel into the polar form.

2) Real-Valued CNN Baseline: ResNet50 [25] is widely
successful on real-valued image classification, and it is also
used as a baseline in [47].

TABLE II

SURREAL CNN IN DETAILED LAYER SPECIFICATION

3) Two SurReal CNN Architectures: Table II lists detailed
layer specification of our basic model. Table III adds residual
connections. Both models have two complex-valued convolu-
tions (with nonlinear activation), one distance transform layer,
two real-valued convolutions (with batch normalization and
ReLU), max pooling, and two FC layers. While we have listed
G-transport in the two tables, we have also tried tReLU as the
complex-valued nonlinear activation function; their difference
is insignificant in initial experiments on the MSTAR data set,
and we focus on G-transport for its simplicity.

4) Model Size Comparison: While ResNet50 and DCN have
23 million and 155k parameters, respectively, our SurReal
CNN has 67k parameters, and SurReal residual CNN has
109k parameters. We can further reduce the parameter count
by implementing convolutions with tensor ring decomposition
[40], [56]. Fig. 6 plots these model sizes on a log scale. The
saving is substantial: our SurReal CNN is less than 0.1% of the
real-valued baseline and 44% of the complex-valued baseline.

5) Task 1: Ten-Class Target Recognition: For the ten target
classes, we split all the data into five varying proportions
of 1%, 5%, 10%, 20%, and 30% for training and the rest
for testing. Fig. 7 shows that our SurReal significantly outper-
forms DCN and ResNet50, especially when a small percentage
of training data is used. At 5% training and 95% testing,
the accuracy is 90% for SurReal, 60% for DCN, and 45%
for ResNet50.
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TABLE III

SURREAL RESIDUAL CNN IN DETAILED LAYER SPECIFICATION

TABLE IV

MODEL ACCURACY COMPARISON ON MSTAR-L AND MSTAR-S

6) Task 2: 11-Class Classification: We also include the
remaining clutter class that contains miscellaneous background
images. We create two random subsets, large (L) and small
(S), and the small set of 6295 images is contained entirely in
the large set of 12 610 images. Fig. 8 shows the number of
instances across 11 classes and in training/testing splits.

Table IV shows that all the models perform at high accuracy
of 99% for the large data set. The performance drops as the
overall data size is reduced by half in the small data set,
but the drop is the least at −0.8% for SurReal-Res, followed
by −1.4% for SurReal, −1.7% for ResNet50, and the most
at −6.6% for DCN. Our results against the two baselines
suggest that it is both the residual connections and more

Fig. 8. MSTAR large (L) and small (S) subsets have highly imbalanced
classes. C2 is the largest class, C0, C4, C5, C9, and C10 come next at about
20% of the size of C2, and C1, C3, C6, C7, and C8 are at about 8% of the
size of C2.

Fig. 9. Confusion matrix for our SurReal CNN (left) and SurReal-Res CNN
(right) on MSTAR-S. First, the data set is small and highly imbalanced across
classes (see Fig. 8 Right). The model achieves better accuracy for classes with
more instances: The accuracy is 100% for C2 and 94% for C1 and C3. Overall,
the accuracy gap is small, considering that the size of C1 and C3 is only 8%
of the size of C2. Second, the residual connections help further clear up the
confusion between classes. The matrix becomes more strongly diagonal.

importantly how we handle complex-valued data that deliver
more generalizing performance from smaller training data.

Fig. 9 shows the confusion matrix between classes on
MSTAR-S. In general, the more the training instances in the
class, the least the confusion with other classes at the test time.
However, despite the significant class imbalance, the perfor-
mance gap is small between the minority and majority classes.
Residual connections help clear up more confusion.

Fig. 10 shows the sample channel responses from our
SurReal CNN on MSTAR-S images. With two complex-
valued wFM convolutions, followed by distance transform
and real-valued convolution, the representation for each input
SAR image quickly becomes more distinctive across classes,
facilitating accurate discrimination.

B. RadioML Classification

1) RadioML Data Set: They are synthetically generated
radio signals with modulation operating over both voice and
text data. Noise is added further for channel effects. Each
signal has 128 time samples and is tagged with a signal-
to-noise ratio (SNR), in the range of [−20, 18] with an
increment step of 2. There are 11 modulation modes, of which
BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and
PAM4 are digital modulations and WB-FM, AM-SSB, and
AM-DSB are analog modulations. There are 20 000 instances
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Fig. 10. Sample channel responses of our SurReal CNN on MSTAR-S images. First, there are 11 rows, with Row k containing an instance for class k.
Column 1 shows the input image. Columns 2–4 contain ten channel responses in the first three convolutional layers: the first two are complex-valued wFM
convolution and the last is the real-valued convolution. Second, all the complex values are displayed in a fully saturated color using the cyclic HSV colormap,
with the magnitude as the intensity and the phase as the hue, whereas the real values are displayed in gray using the grayscale colormap. As the input image
goes through the convolutional layers in the SurReal CNN, the distinction between instances in individual classes becomes clearer.

Fig. 11. RadioML sample instances. Each instance is a 128 time-step
complex-valued signal at SNR of 10. We plot each signal as a line of 128 con-
nected colored dots over time (x-axis): the height of the dot indicates the
magnitude on a log scale (y-axis), and the color of the dot indicates the
phase with the HSV colormap. The first 11 plots show one instance per
class with the class name labeled on the top. The last plot visualizes the
complex number {ei θ , θ ∈ [−π, π)} as our colored dots, illustrating how
the color varies with the phase θ . The shape of the RF signal reflects both the
message it is carrying and the modulation mode it is subject to. The classifier
must ignore the distinction in the message but focus on the distinction in the
modulation.

per modulation. See sample instances in Fig. 11. The data are
split into 50/50 between training and testing.

2) Real-Valued CNN Baseline: We use O’Shea’s model [41]
and feed the one-channel complex-valued RF signal as a (real
and imaginary) two-channel signal.

3) Model Size Comparison: We follow the architecture of
DCN and SurReal for images and adapt the spatial dimensions
to fit the 1× 128 RF signals. Fig. 12 plots these model sizes

Fig. 12. Our SurReal model for RadioML is much leaner than baselines.
Each model size is plotted as a horizontal bar on a log scale, labeled with
the model name and the number of parameters on the right. O’Shea’s model
is the real-valued baseline and the largest with 2.8M parameters. DCN is the
complex-valued baseline, with 35k parameters at 1% of O’Shea. Our SurReal
CNN has 20k parameters at 0.7% (58%) of O’Shea (DCN).

on a log scale. Our SurReal CNN is 0.7% of the real-valued
baseline and 58% of the complex-valued baseline.

4) Accuracy Over SNR: Fig. 13 compares the test accu-
racy at various SNR levels. Our SurReal underperforms the
baselines at lower SNRs and outperforms the real-valued
O’Shea baseline at higher SNRs. For example, at SNR of 10,
it achieves 76.1%, surpassing O’Shea’s 72.7% with 0.7% of
its model size and on par with DCN’s 76.3% at 58% of its
size.

VI. SUMMARY AND CONCLUSION

Deep learning is widely adopted in machine learning and
computer vision. Most of the existing deep learning techniques
are developed for data in a vector space. However, practical
data often have correlations between channels and are better
modeled as points a manifold.

While the Nash embedding theorem [5] assures us that it
is always feasible to embed the data on a manifold into a
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Fig. 13. Test accuracy comparison on RadioML with a varying SNR. All
the models perform poorly at a very low SNR. Our SurReal underperforms
the two baselines for SNR in [−15,−5]. The complex-valued baseline DCN
is on par with the real-valued baseline O’Shea at a negative SNR but better at
a positive SNR. Likewise, our SurReal outperforms the real-valued baseline
at a positive SNR at only 0.7% (58%) size of O’Shea (DCN).

higher dimensional vector space, it would also result in an
increase in the model complexity and training time. Recent
geometric deep learning approaches develop tools for spaces
with a certain geometry, such as graphs and surfaces.

We deal with deep learning on complex-valued data, and
we approach it from a geometric perspective. The common
approach is to represent complex-valued data as two-channel
real-valued data, and then, all the real-valued deep learning
tools can be used. However, this representation ignores the
underlying geometry that defines the complex-valued data:
complex-valued data containing the same information could
be subject to arbitrary complex-valued scaling.

We propose to model the space of complex numbers as
a product manifold of nonzero scaling and planar rotations.
Arbitrary complex-valued scaling naturally becomes a group
of transitive actions on this manifold. We can subsequently
define convolution on the manifold that is equivariant to this
action group and define distance transform that is invariant to
this action group. The manifold perspective also allows us to
define new nonlinear activation functions, such as tReLU and
G-transport, as well as residual connections on the manifold-
valued data.

A complex-valued CNN classifier composed of such layer
functions has built-in invariance to complex-valued scaling
so that the model only needs to focus on the discrimina-
tion between classes. Our experimental results validate our
principled approach, and we dub our model SurReal based
on its high performance achieved at a super-lean model size
compared with real-valued or complex-valued baselines.
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