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Target Audience: Image reconstruction and deep learning researchers and developers. 
Introduction: Motivated by the great success of recognition tasks in computer vision, deep learning has recently flooded 
the MRI reconstruction space. In particular, deep learning in tandem with model-based iterative optimization has shown 
great promise at solving imaging-based inverse problems beyond the capabilities of conventional parallel imaging and 
compressed sensing [1-5]. To develop a new deep learning reconstruction, practitioners must build training and testing code 
from scratch, including models, data loaders, training loops, visualizers, hyperparameter search, loggers, and more. We 
present DeepInPy, a Python software package that streamlines the above processes, freeing the user to focus on the 
innovative components while still easily following best practices for training. 
Availability: DeepInPy is currently in alpha stage and is freely available under the MIT license (link in box below). 
Functionality: DeepInPy combines PyTorch [6], PyTorch Lightning [7], and Test Tube [8] to support rapid prototyping 
of deep inverse problems. Among its features, DeepInPy incorporates the following functionality: 

- Modular reconstruction block design, 
- Multi-GPU training across multiple machines, 
- TensorBoard training visualization, 
- Hyperparameter logging and search. 

At its core, DeepInPy provides an abstract interface for a Recon object, which transforms a data variable 𝐲 to a 
reconstruction variable 𝐱# with forward model 𝐀 and reconstruction parameters 𝜽 (Fig. 1). Recon objects are composed of 
a sequence of modular blocks, including System blocks (e.g. multi-channel MRI), Model blocks (e.g. ResNet [9], U-Net 
[10]), and Optimization blocks (e.g. Conjugate Gradient). Using this interface, new reconstructions can be built that 
incorporate multiple types of blocks, including data consistency, loops (unrolls), and neural networks. DeepInPy can 
leverage packages such as SigPy [11] to create the (non-Cartesian) forward models and other signal processing functions.  
Demonstration: As a proof of concept, we implement the MoDL [2] reconstruction built with a ResNet backbone. The 
Stanford fully sampled knees dataset downloaded from http://mridata.org was used and retrospectively under-sampled with 
variable density Poisson disc sampling masks, and sensitivity maps were computed using ESPIRiT [12]. Fig. 2 shows the 
TensorBoard training visualization and hyperparameter configuration, which also lists the learnable network parameters. 
Fig 3. Shows the reconstruction result on an image from the validation set during training. 
Summary: DeepInPy is a Python software package for developing deep learning-based inverse problems in Python. 
DeepInPy can be used to quickly compare and develop new deep learning reconstructions while inheriting training best 
practices without the need to redevelop boilerplate training code.  
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Fig 1. Composition of multiple 
blocks comprising a Recon. 

Fig 2. TensorBoard visualization of MoDL training loss curves and 
hyperparameters of the reconstruction that are automatically logged. 

Fig 3. Visualization of MoDL 
reconstruction during training. 

http://github.com/jtamir/deepinpy 


