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Abstract

The James-Stein (JS) shrinkage estimator is a biased esti-
mator that captures the mean of Gaussian random vectors.
While it has a desirable statistical property of dominance
over the maximum likelihood estimator (MLE) in terms of
mean squared error (MSE), not much progress has been
made on extending the estimator onto manifold-valued data.

We propose C-SURE, a novel Stein’s unbiased risk esti-
mate (SURE) of the JS estimator on the manifold of complex-
valued data with a theoretically proven optimum over MLE.
Adapting the architecture of the complex-valued SurReal
classifier, we further incorporate C-SURE into a prototype
convolutional neural network (CNN) classifier.

We compare C-SURE with SurReal and a real-valued
baseline on complex-valued MSTAR and RadioML datasets.
C-SURE is more accurate and robust than SurReal, and
the shrinkage estimator is always better than MLE for the
same prototype classifier. Like SurReal, C-SURE is much
smaller, outperforming the real-valued baseline on MSTAR
(RadioML) with less than 1% (3%) of the baseline size.

1. Introduction

Deep learning has been widely adopted in computer vi-
sion, often assuming data that follow vector-space proper-
ties. However, there are plenty of natural non-Euclidean
manifold-valued data. Complex-valued data such as medical
images, radio signals, and nuclear covariances can all be
modeled as Riemannian manifolds. Even for real-valued
signals, their manifold-valued representations could be more
informative of underlying signals, such as Fourier transforms
and spectrum-based techniques [14, 20, 30].

The earliest relevant research for manifold-valued deep
learning can be traced back to [26], which regards images
as manifolds and applies differential geometry for structural
analysis. More recent works have explored preserving the
inherent geometry of graphs [15, 24], or achieving group
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equivariance and invariance [3, 8]. However, these works do
not offer an extension to naturally manifold-valued data.

The intrinsic geometric structures of non-Euclidean man-
ifold data are addressed in [4, 11, 7]. In particular, with
convolution on the manifold defined as weighted Fréchet
mean (wFM) filtering [4, 5], significant performance gain
can be achieved on manifold-valued data along with drastic
reduction in the model parameter count.

We focus on the manifold of complex-valued data such as
synthetic aperture radar (SAR) images, magnetic resonance
(MR) images, and radio frequency (RF) signals. Per the
polar form of complex numbers, the complex plane can be
treated as a product space of scaling and planar rotations.
This representation allows [6] to develop an efficient CNN
classifier based on wFM filtering on the specific manifold.

The wFM is only one way to compute the mean of sam-
ples on a manifold. Recently, [29] suggests an alternative
by defining a James-Stein (JS) estimator that outperforms
the Fréchet mean in terms of MSE over the field of semi-
positive definite matrices (SPD). Here we extend the idea to
data lying on the field of complex numbers and prove the
dominance of the JS estimator over the Fréchet mean.

The JS estimator arises from simultaneously estimating
the mean of a multivariate homoscedastic normal distribu-
tion. Let X denote a random vector whose p components
are independent and normally distributed with mean θi and
variance σ2, i = 1, . . . , p. When p > 2, it can be shown
that the JS estimator θJS dominates the maximum likelihood
estimator (MLE) θMLE [17]:

θMLE = X (1)

θJS =

(
1− (p− 2)σ2

‖X‖2

)
X. (2)

When (p− 2)σ2 < ‖X‖2, the JS estimator simply takes the
natural estimator X (i.e., θMLE) and shrinks it towards the
origin 0. The JS estimator can be viewed as an empirical
Bayes method, where θ itself is a random variable with prior
distribution and needs to be estimated [10].

The JS estimator can be viewed as a special case of a hi-
erarchical Bayesian model [2], where the unknown mean θi
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Figure 1: Workflow of our model-based C-SURE CNN classifier. Our model is based on the SurReal complex-valued CNN [6],
which consists of wFM convolution layers (wFM), distance transformation layers (DIST), standard convolution layers (CONV),
and finally fully connected layers (FC) for softmax classification. We incorporate C-SURE into the distance transformation
layer: During training, the statistical mean of the wFM features per class is estimated using C-SURE, and the minimum
distances between the wFM features and the set of class means become the real-valued output; during testing, only the
distances between the wFM features and the saved class means need to be calculated. The real-valued distances go through
standard CONV and FC layers for the final classification into semantic categories.

follows a normal prior distribution with mean µ and variance
τ2. Given data variance σ2, for any prior setting (µ, τ), the
maximum a posterior (MAP) estimation of θ is a weighted
sum of the data and the prior:

θ̂(µ, τ ;σ) =
τ2

τ2 + σ2
X +

σ2

τ2 + σ2
µ. (3)

The best JS estimator can be solved by choosing (µ, τ) that
minimizes the Stein’s unbiased risk estimate (SURE) [27]:

µ̂SURE, τ̂SURE = arg min
µ,τ

SURE(µ, τ) (4)

SURE(µ, τ) = −pσ2 + ‖θ̂ −X‖2 + 2σ2

p∑
i=1

∂θ̂

∂Xi
(5)

The importance of SURE is that it does not depend on the
unknown θ, and yet it is an unbiased estimate of the mean-
squared error (MSE) between θ̂ and θ. Minimizing SURE
can thus act as a surrogate for minimizing the MSE and the
optimal estimation setting can be obtained without θ.

It has been a challenge to generalize the JS shrinkage
estimator to non-Euclidean spaces. The idea of shrinking is
natural only on certain manifolds; there is no formula for the
shrinkage estimator on manifolds in general. For instance, a
shrinkage estimator for covariance matrices is designed in
[19, 9] and then generalized to the Riemannian manifold of
symmetric positive definite (SPD) matrices [29].

Our goal is not only to extend the shrinkage estimator to
the manifold of complex numbers, but also to use it in learn-
ing the classification of signals or images, an under-explored
application of the JS estimator among various machine learn-
ing settings [21, 28, 12].

We propose C-SURE, a novel SURE of the JS estimator
on the manifold of complex-valued data with a theoretically
proven optimum over MLE. We incorporate it into learning

a convolutional neural network (CNN) classifier (Fig.1). In-
stead of learning a purely discriminative classifier, we learn
a nearest prototype-based classifier based on the feature dis-
tribution mean of each class.

Compared to popular real-valued CNN classifiers and the
SurReal CNN classifier [6] based on the Fréchet mean on the
complex-valued manifold, our C-SURE prototype classifiers
achieve better performance with faster convergence on two
complex-valued datasets: MSTAR and RadioML. Our model
is also much smaller, outperforming the real-valued CNN on
MSTAR with less than 1% of the model size.

2. Shrinkage Estimator of Complex Numbers
We view the field of complex numbers C as a product

group of two smooth Riemannian manifolds, or more
specifically Lie groups. On each of these two manifolds, we
define Gaussian distributions and construct the JS shrinkage
estimator of the Fréchet Mean (FM) on the manifold. We
show that our shrinkage estimator on C yields a uniformly
smaller risk than the MLE estimator, i.e., FM.

Manifold View of Complex Plane C. We represent C as a
product space of two Riemannian manifolds [6]. Utilizing
the polar form of a complex number c = reiθ, we have:

C =
{
reiθ

}
' R+ × S1 ' P1 × SO(2) (6)

where the manifold of 1× 1 semi-positive definite matrices
P1 is topologically the space of non-negative numbers R+,
and the manifold of 2× 2 rotation matrices SO(2) is topo-
logically a circle S1. With this decomposition, designing
the JS shrinkage estimator on C is reduced to designing the
estimator on P1 and SO(2) separately.

The shrinkage estimator on P1 has been dealt with in
[29], where they propose a novel shrinkage estimator on the



FM of SPD matrices, with proven dominance over the MLE
of the FM in terms of the MSE risk.

In order to develop the shrinkage estimator on SO(2),
we choose a Riemannian metric and define our FM. Using
the Lie algebra of SO(2), we can apply the procedure in
[29] and derive our shrinkage estimator on SO(2).

Fréchet Mean on a Riemannian manifold. Let M be a
topological manifold equipped with a Riemannian metric,
and let d : M×M → R denote the associated distance.
Given a collection of n points {Xi, i = 1, . . . , n} on the
manifold, their Fréchet Mean [13] is defined as:

X̄ = arg min
X∈M

n∑
i=1

d2(X,Xi). (7)

In general, X̄ may not be unique, but can be made unique
under certain constraints.

Log-Euclidean Metric on SO(2). We endow SO(2) with
the Log-Euclidean (LE) metric, for it is computationally
efficient with closed-form solutions. We extend the Log-
Euclidean metric in [1] and define the induced geodesic
distance dLE : SO(2)× SO(2)→ R as:

dLE(X1, X2) = ‖ log(X1)− log(X2)‖F (8)

Xi =

[
cos θi −sin θi
sin θi cos θi

]
∈ SO(2) (9)

log(Xi) = (θi+2πk)

[
0 −1
1 0

]
, k = ±1,±2, . . . . (10)

Here log denotes the matrix logarithm. The logarithm of a
rotation matrix is not unique; we fix k = 0 here and obtain an
isomorphism between so(2) and the interval (−π, π]. This
particular logarithm is called principal.

We establish a mapping X̃ from point X on the manifold
M=SO(2) to a number in the real domain R that indicates
the size of rotation directly. Since the Lie algebra so(2) of
SO(2) is the space of 2×2 skew-symmetric matrices, we
define X̃ through the mapping Φ : so(2)→ R.

X̃ = Φ(log(X)) =
√

2 θ (11)

log(X) =

[
0 −θ
θ 0

]
∈ so(2). (12)

The distance between points X1 and X2 on SO(2) is simply:

dLE(X1, X2)=min{|X̃1−X̃2|, 2
√

2π−|X̃1−X̃2|}, (13)

ensuring the uniqueness of the FM on SO(2).

Gaussian Distributions on SO(2). Gaussian distributions
on the manifold of positive definite matrices become Log-
Normal distributions [25]. We follow the same procedure
and extend it to other matrix Lie groups such as SO(2).

Definition 1. We say X follows a Log-Normal distribution
with mean M and covariance matrix Σ ∈ Rm×m, or X ∼
LN(M,Σ) if

X̃ ∼ N(M̃,Σ) (14)

We can further define the mixture of Gaussians in order
to capture multi-modal distributions in real-world data.

Definition 2. We say that X follows a mixture of K Log-
Normal distributions each with mean Mk ∈ G and covari-
ance matrix Σk ∈ Rm×m, or X ∼ MLN(w,M ,Σ) if

X̃ ∼
K∑
k=1

wkN(M̃k,Σk) (15)

K∑
k=1

wk = 1, 0 ≤ wk ≤ 1,∀k. (16)

We refer to each N(M̃k,Σk) as the k-th component den-
sity in the Gaussian mixture model.

Calculating these distributions requires the composition
of logarithmic and exponential maps. On SO(2), we have

exp (logX + log Y ) = XY (17)

since SO(2) has a trivial Lie algebra with zero Lie brackets.

C-SURE Shrinkage Estimator on SO(2)p. Let X denote
a p-dimensional complex-valued random variable; for the
i-th dimension, the value Xi is modeled as a point on the
manifold SO(2). We are going to estimate the p-dimensional
mean vector M from a collection of these manifold-valued
observations, using the JS estimator derived from a hierar-
chical Bayesian approach.

For X ∈ SO(2)p, we assume that Xi is independently
distributed according to the Log-Normal with individual
mean Mi and equal variance vI , and the means {Mi, i =
1,. . . ,p} are independently and identically distributed ac-
cording to a Log-Normal mixture:

Xi|Mi
ind∼ LN (Mi, vI) , i = 1, . . . , p (18)

Mi
i.i.d∼ MLN(w, µ,D). (19)

We assume that v is known and w is fixed, whereas µ and
D = Diag(λ1I, · · · , λKI) are unknown and can be opti-
mized by minimizing the SURE risk.

Sincew is fixed, we can first calculate the JS estimator for
each of the k component densities independently, and then
combine them with their respective weights in w to obtain
the JS estimator of the Log-Normal mixture.

Specifically, using the derivations for the Gaussian distri-
bution on SO(2), we extend the MAP estimate in Eqn(3) to



SO(2) for the k-th component densityMi,k ∼ LN (µk, Dk):

M̂µ,D
i,k (w) = exp

(
λk

λk+v
logX

LE

i (w)+
v

λk+v
logµk

)
(20)

where X
LE

i (w) denotes the mean of Xi over a total of N
sample observations, according to the Log-Euclidean metric
and given the mixture weights w.

We can then extend the MSE to our manifold by defining
the empirical loss function l as:

l
(
M̂µ,D
k ,Mk

)
=

p∑
i=1

d2LE

(
M̂µ,D
i,k ,Mi,k

)
(21)

and the corresponding risk R as E[l]:

R
(
M̂µ,D
k ,Mk

)
= E

[
l
(
M̂µ,D
k ,Mk

)]
=

p∑
i=1

v

(λk + v)
2

(
v ‖logµk − logMi,k‖2 +

pλ2k
N

)
.

(22)

The SURE estimate in Eqn(5), SURE(µk, λk), becomes:
p∑
i=1

v

(λk+v)
2

(
v
∥∥∥logX

LE

i −logµk

∥∥∥2+
p
(
λ2k−v2

)
N

)
.

(23)

Our SURE estimate of the k-th component mean and vari-
ance on the manifold of complex values is thus:

µ̂SURE
k , λ̂SURE

k = arg min
µk,λk

SURE(µk, λk) (24)

= arg min
µk,λk

p∑
i=1

v

(λk + v)
2(

v
∥∥∥logX

LE

i − logµk

∥∥∥2 +
p
(
λ2k − v2

)
N

)
. (25)

We propose our C-SURE shrinkage estimator for Mi as a
weighted sum of its components:

M̂SURE
i (w) =

K∑
k=1

exp

(
wk

(
λ̂SURE
k

λ̂SURE
k + v

logX
LE

i +
v

λ̂SURE
k + v

log µ̂SURE
k

))
.

(26)

Optimality of C-SURE Shrinkage over MLE. We
show that

(
µ̂ SURE
k , λ̂ SURE

k

)
minimizes the actual risk

R
(
M̂µ,D
k ,Mk

)
. We follow the approach in [29]: For each

component density, we have Mi ∼ LN (µ,D) where D =

λI , SURE(µ, λ) is a good approximation of l
(
M̂µ,D,M

)
.

Theorem 1. Assume that

(A) v2 <∞
(B) lim supp→∞

1
p

∑
i ‖logMi‖2 <∞

(C) lim supp→∞
1
p

∑
i ‖logMi‖2+δ <∞ for some δ > 0

.

Then the following holds in probability as p→∞:

sup
λ>0

‖ log µ‖<maxi

∥∥∥logXLE
i

∥∥∥
∣∣∣SURE(µ, λ)−l

(
M̂µ,D,M

)∣∣∣→ 0.

(27)

We can now show that for each component density, our
proposed shrinkage estimator is asymptotically optimal,
compared with MLE of the FM of Log-Normal distribution
on SO(2) in terms of risk.

Theorem 2. If (A), (B), (C) in Theorem 1 hold, then,

lim
p→∞

[
R
(
M̂ SURE,M

)
−R

(
M̂µ,D,M

)]
≤ 0 (28)

A proof of the theorems above for SPD can be found in
[29]. Since the key is the trivial Lie algebra, which holds for
both SPD and SO(2), we omit the similar proof.

Weight Update. After we obtain the class-wise means
M̂SURE (w) using Eqn(26) for a fixed w, we update w by
some learning method. While there are a plethora of statisti-
cal algorithms readily available to update w, e.g., Bayesian
methods, EM algorithm etc., we find that gradient descent is
more stable and produces more optimized values.

3. Prototype Classifier with C-SURE
We incorporate our C-SURE shrinkage estimator into a

nearest prototype CNN classifier. We model each class as a
mixture of Gaussians and learn their prototypes using our
C-SURE estimator. Instead of assigning an instance to the
nearest prototype, we use their minimal distance as a feature
for discriminative classification.

C-SURE Classifier Architecture. Specifically, we build
our classifier based on the SurReal complex-valued CNN
[6], which consists of wFM convolution layers (wFM), dis-
tance transformation layers (DIST), and standard convolu-
tion layers (CONV), and finally fully connected layers (FC)
for softmax classification (Fig.1).

We incorporate C-SURE into the distance transformation
layer: During training, the statistical mean of the wFM
features per class is estimated using C-SURE, and the
minimum distances between the wFM features and the
set of class means become the real-valued output; during
testing, only the distances between the wFM features and



Algorithm 1: C-SURE Prototype Feature Layer.
Input: data Xall, variances {v}
Output: class means {Mi}, distance features {Oi},

i out of p refers to the i-th dimension of the data.
1 for each class do
2 Gather instances of this class in X

3 Calculate a running estimate of X
LE

4 if training then
5 for each mixture component k do

6

(
µ̂SURE
k , λ̂SURE

k

)
= arg min

µk,λk

p∑
i=1

v

(λk + v)
2(

v
∥∥∥logX

LE

i − logµk

∥∥∥2 +
p(λ2

k−v
2)

N

)
7 end
8 end

9 M̂SURE
i (w) =

K∑
k=1

exp

(
wk

(
λ̂SURE
k

λ̂SURE
k + v

logX
LE

i +
v

λ̂SURE
k + v

log µ̂SURE
k

))

10 Compute d
(
M̂SURE
i (w), X

LE

i

)
11 end
12 Compute Oi as the minimal distance between Xi and

all the class means
{
M̂SURE
i (w)

}
13 Update w with SGD, to reduce the classification loss

the saved class means need to be calculated. The real-valued
distances go through standard CONV and FC layers for the
final classification into semantic categories.

C-SURE Prototype Feature Layer. This layer consists
two parts, C-SURE and DIST in Fig.1. The feature from
the wFM convolutional layer becomes the input X , and it is
processed per class as well as per mixture component k. The
output is the minimal distance between each instance and
the C-SURE estimate of all the class means (Algorithm 1).

Discussions. We have proposed a novel JS shrinkage estima-
tor on the manifold of complex values and used the SURE
estimate to compute the FM on the manifold. This method
is used to calculate the class-specific distribution mean on
the manifold and implement a prototype-based classifier.

The dominance of the JS estimator over MLE is a sta-
tistical property for some fixed data. When the shrinkage
estimator is incorporated into the loop of deep learning for
classification, it is unclear whether the shrinkage estimator
has any practical advantage over the simpler MLE.

There are two major changes to the fixed data mean es-
timation setting: 1) Both the data and the estimator are
changing during learning; 2) The final task performance is
not critically dependent on how well the estimator fits the
data mean, but on how well the feature derived from the

distance to data prototypes separates classes.
Therefore, while JS dominates MLE, it is unclear whether

a prototype CNN classifier with a built-in JS estimator would
be theoretically superior to a purely discriminative classifier
such as the SurReal CNN classifier [6].

We turn to experiments on complex-valued data classifica-
tion to test our ideas and validate our approach in practice.

4. Experimental Results
We compare our C-SURE prototype classifier against

two baselines. 1) The first baseline is a real-valued CNN
classifier which ignores the geometry of complex numbers
and treats each complex value as two independent real num-
bers. 2) The second baseline is the complex-valued SurReal
discriminative classifer our model is built on.

We experiment on two complex-valued datasets: MSTAR
and RadioML. Our results demonstrate that our model-based
classifier is more accurate (Table 1), more stable and robust
(Fig. 5). Like SurReal, our model is also much smaller,
outperforming the real-valued CNN on MSTAR with less
than 1% of the model size (Fig. 2).

Table 1: Comparison of Classification Accuracies.

Dataset Real-Valued SurReal C-SURE

MSTAR-L 99.1% 99.2% 99.2%
MSTAR-S 97.4% 97.7% 98.1%
RadioML 75.8% 78.4% 81.6%

105 106 1072 × 104 5 × 104 2 × 105 5 × 105 2 × 106 5 × 106 2 × 107

ResNet50

           C-SURE

    SurReal

           C-SURE
+ TR

    SurReal
+ TR

Figure 2: MSTAR model size comparison. Each horizon-
tal bar indicates the total number of parameters on a log
scale. There are 5 models: two-channel real-valued base-
line ResNet50, the complex-valued baseline SurReal, our
complex-valued C-SURE, and the latter two models imple-
mented with the tensor ring trick [22] and marked by +TR.
Our C-SURE classifier has more parameters than the Sur-
Real model that it adapts from. Like SurReal, C-SURE is
smaller than 1% of the real-valued CNN baseline ResNet50.

All the experiments are trained on a GeForce RTX 2080
GPU for a total of 120 epochs, using Adam optimizer and
cross-entropy loss. The batch size is 100 for MSTAR and
400 for RadioML. The learning rate is 0.015 for MSTAR
and 0.03 for RadioML.



4.1. MSTAR Target Classification

MSTAR Data. The dataset contains complex-valued SAR
images of 11 classes [18]. We create two random subsets,
large (L) and small (S), from the original MSTAR dataset.
The small set is entirely contained in the large set. We
center-crop the SAR images into 100 × 100 pixels, and
convert the complex values into the polar form.
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Figure 3: MSTAR large (L) and small (S) subsets have highly
imbalanced classes. C2 is the largest class, C0, C4, C5, C9,
C10 come next at about 20% of the size of C2, and C1, C3,
C6, C7, C8 are at about 8% of the size of C2.

Real-valued CNN Baseline. We use ResNet50 [16] and
feed the complex-valued image as a (real,imaginary)
two-channel real-valued image. Fig. 2 compares the model
size among different approaches and implementations. Even
with the need to store the class prototypes, our C-SURE
classifier remains light-weight like SurReal, with less than
1% of the ResNet50 size.

Accuracy and Robustness. Table 1 shows that C-SURE
is overall more accurate than SurReal and ResNet50, and
the gain is larger for the small dataset, with least confusion
between classes (Fig. 4). This slight effect is consistent with
the idea of using prototypes for few-shot recognition.

Fig. 5 compares how the training and testing accuracy
evolves during training. C-SURE seems not only more stable
and fast converging as the training accuracy plateaus sooner,
but also more robust as it has the least performance gap
between training and testing.

4.2. RadioML Modulation Classification

RadioML Data. They are synthetically generated radio
signals with modulation operating over both voice and
text data. Noise is added further for channel effects. Each
signal is tagged with a signal-to-noise ratio (SNR), in the
range of [−20, 18] with an increment step of 2. There
are 11 types of modulations; each type has 20, 000 in-
stances. The data is split 50/50 between training and testing.

Real-valued CNN Baseline. We use the ÓShea’s model
[23] and feed the complex-valued RF time series of
length 128 as a (real,imaginary) two-channel signal. Our C-
SURE classifier is less than 3% of the size of ÓShea’s model.
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Figure 4: C-SURE has the least confusion between classes
on our MSTAR small set. Among the three classifiers, the
confusion matrix for our C-SURE has the largest values on
the diagonal and the smallest values off the diagonal.
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Figure 5: C-SURE is more robust, stable and fast converg-
ing. Shown here is the classification accuracy over training
epochs on the MSTAR small set, for ResNet50, SurReal,
and C-Sure. All three models have a significant performance
gap between training and testing. However, C-SURE has the
least gap and is more robust. C-SURE is also more stable
and fast converging, as the training accuracy plateaus sooner.
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Figure 6: C-SURE has a higher test accuracy than baselines
overall. C-SURE outperforms the real-valued baseline at
every SNR; C-SURE outperforms SurReal when SNR>−8,
and the gain is larger when SNR∈ [−8, 8].

Accuracy over SNR. Fig. 6 compares the test accuracy at
various SNR’s. When the SNR is too low or too high, all
three models become almost equally poor or good. Neverthe-
less, C-SURE is more accurate than the real-valued baseline
at every SNR, than SurReal when SNR>−8, with a larger
gain in the middle SNR range of [−8, 8].

4.3. Shrinkage or MLE in A Prototype Classifier?

Our C-SURE classifier differs from SurReal, the complex-
valued classifier baseline, on two aspects: It models class
prototypes explicitly and uses the shrinkage estimator on
the manifold of complex values. If we fix the model as a
prototype classifier and vary the amount of shrinkage, we
can tease out the contribution of the shrinkage estimator

Table 2: C-SURE with Varying Hyperparameter v

Dataset Variance v Accuracy (%)

MSTAR
(MLE) 0 98.8

1 99.2
10 97.5

RadioML
(MLE) 0 80.7

1 81.6
10 78.6

against the standard MLE in our C-SURE classifier.
The C-SURE shrinkage estimator has a hyperparameter

v specifying the data variance in the hierarchical Bayesian
model. When v = 0, there is no shrinkage adjustment from
the prior distribution, and the estimator is reduced to MLE.

Table 2 lists the test accuracies on both MSTAR and
RadioML tasks as we vary the hyperparameter v. There is
always a shrinkage estimator at v > 0 better than MLE –
the shrinkage estimator at v = 0, validating the benefit of
utilizing a shrinkage estimator in a prototype CNN classifier.

While C-SURE seems to be able to outperform SurReal,
the size of gain remains small. More controlled and care-
ful experimentation would be needed to clarify which data
classification scenarios C-SURE would be best at.

5. Summary

Most existing deep learning approaches assume data lying
in a vector space. We consider the complex-valued data,
where the range of the data is no longer in the Euclidean
space. The SurReal complex-valued classifier outperforms
the real-valued CNN baseline with a significantly reduced
model size [6], based on computing the geometric mean on
the manifold (i.e., FM) for complex-valued data.

We propose C-SURE, a novel shrinkage estimator on
the complex-valued manifold with provably smaller MSE
than FM. We further incorporate it into learning a nearest
prototype CNN classifier, by adapting SurReal’s model ar-
chitecture and with only a slight increase in the model size.

On complex-valued MSTAR and RadioML datasets, our
experimental results suggest that our C-SURE classifier
tends to be more accurate and robust than SurReal, and
the shrinkage estimator is always better than MLE for the
same prototype classifier.

More experimentation would help clarify the strengths
and weaknesses of the C-SURE classification approach.
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