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Abstract— Many species have evolved advanced non-visual
perception while artificial systems fall behind. Radar and ultra-
sound complement camera-based vision but they are often too
costly and complex to set up for very limited information gain.
In nature, sound is used effectively by bats, dolphins, whales,
and humans for navigation and communication. However, it is
unclear how to best harness sound for machine perception.

Inspired by bats’ echolocation mechanism, we design a low-
cost BatVision system that is capable of seeing the 3D spatial
layout of space ahead by just listening with two ears. Our
system emits short chirps from a speaker and records returning
echoes through microphones in an artificial human pinnae pair.
During training, we additionally use a stereo camera to capture
color images for calculating scene depths. We train a model
to predict depth maps and even grayscale images from the
sound alone. During testing, our trained BatVision provides
surprisingly good predictions of 2D visual scenes from two 1D
audio signals. Such a sound to vision system would benefit
robot navigation and machine vision, especially in low-light or
no-light conditions. Our code and data are publicly available.

I. INTRODUCTION

Our task is to train a machine learning system that can
turn binaural sound signals to visual scenes. Solving this
challenge would benefit robot navigation and machine vision,
especially in low-light or no-light conditions.

While many animals sense the spatial layout of the world
through vision, some species such as bats, dolphins, and
whales rely heavily on acoustic information. For example,

bats have advanced ears that give them a form of vision
in the dark known as echolocation: They sense the world by
continuously emitting ultrasonic pulses and processing echos
returned from the environment.

It is indeed possible to locate highly reflecting ultrasonic
targets in the 3D space by using an artificial pinnae pair
of bats, which acts as complex direction dependent spectral
filters and using head related transfer functions [1], [2].

Likewise, humans who suffer from vision loss have shown
to develop capabilities of echolocation using palatal clicks
similar to dolphins, learning to sense obstacles in the 3D
space by listening to the returning echoes [3], [4].

Inspired by bats’ echolocation, we design BatVision that
can form a visual image of the 3D world by just listening to
the environmental echo sound with two ears (Fig. 1).

Contrary to existing works [1], [2], our system uses only
two simple low-cost consumer-grade microphones to keep it
small, mobile, and easily reproducible. Our microphones are
embedded into a human pinnae pair to utilize the spectral
filters of an emulated human auditory system, which has an
additional benefit of easy debugging by human engineers.

Mounted on a model car, our BatVision also has a speaker
and a camera which is only used during training for provid-
ing visual image ground-truth. Like bats, our speaker emits
frequency modulated chirps in the audible spectrum, and our
microphones receive echos returned from the environment.
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Fig. 1. Our Batvision system learns to generate visual scenes by just listening to echos with two ears. Mounted on a model car, our system has two
microphones embedded into artificial human ears, a speaker, and a stereo camera which is only used during training for providing visual image ground-
truth. 1) The speaker emits sound chirps in an office space and the microphones receive echos returned from the environment. The camera captures stereo
image pairs, based on which depth maps can be calculated. 2) We train a model to turn binaural signals into visual scenes such as depth-maps or grayscale
images. Our results show surprisingly accurate reconstruction of the 3D spatial layout of indoor scenes from the input sound alone.



Our camera captures stereo image pairs of the scene ahead,
from which depth disparity maps can be calculated.

During training, we first collect a dataset of time-
synchronized binaural audio signals and stereo image pairs in
an indoor office environment, and then train a neural network
model to predict images such as depth maps and grayscale
images from audio data alone.

During testing, we just need the sound signals to recon-
struct depth maps or grayscale images. By just listening with
two ears, which receive sound echos at only two points in
the 3D space, our BatVision is able to generate a depth map
of the 3D space ahead that resolves features such as walls,
hallways, door openings, and roughly outlined furniture
correctly in azimuth, elevation, and distance, whereas our
reconstructed grayscale images show surprisingly plausible
floor layouts even though obstacles lack finer details.

For a navigation system, such an intelligent sound system
could provide information complementary to vision sensors,
independent of light and at very low additional costs. Our ap-
proach is conceptually simple, practically easy to implement,
and readily deployable on embedded mobile platforms.

To the best of our knowledge, our BatVision is the first
work that generates scene depth maps from binaural sound
only. Our code, model, and data are available at https:
//github.com/SaschaHornauer/Batvision.

II. RELATED WORKS

Biosonar Imaging and Echolocation. Inspired by echolo-
cation in animals, several papers [4], [2], [5], [6], [7] study
target echolocation in the 2D or 3D space using ultrasonic
frequency modulated (FM) chirps between 20−200 kHz.
Bats emit pulse trains of very short durations (typically <
5ms) and use received echoes to perceive their surroundings.

In [6], [4], microphones are placed in an artificial bat
pinnae to receive the sound signal. The natural form of the
bat pinnae acts as a frequency filter, useful for separating
spatial information in both azimuth and elevation [8], [2].
These works motivate our use of short FM chirps and
artificial human pinnaes with integrated microphones.

In [6], the task is to recognize scenes from echo-
cochleogram fingerprints and to create a topological map of
the surrounding. In [5], the goal is to autonomously drive
a mobile robot while mapping and avoiding obstacles using
azimuth and range information from ultrasonic sensors. They
classify echo spectrograms into obstacles or not, biological
objects or not, along a single scan line and without visual
reconstruction of the scene.

In [4], ultrasonic echoes are recorded, dilated, and played
back to a human subject in the audible spectrum. After initial
training, human subjects were able to pick up echolocation
abilities to estimate azimuth, distance, and to some extent,
elevation of targets. In [7], [2], 3D targets are localized based
on an array of microphones instead of binaural microphones.

Sound Source Localization. In [9], [10], [11], [12], [13],
deep neural network models are trained to localize the source
of the sound (e.g. a piano) in images or videos. Remarkable

results are obtained in a self-supervised learning framework,
demonstrating the potential of learning associations between
paired audio-visual data.

In [11], sound is localized using an acoustic camera [14], a
hybrid audio-visual sensor that provides RGB video overlaid
with acoustic sound, aligned in time and space. All the works
on sound localization receive sound signals passively.

In [15], sound is localized using emulated binaural hear-
ing, with a model of human ears and head related transfer
functions. They test azimuth from 0◦ to 360◦ at 5◦ resolution
and test elevation from −40◦ to 90◦ at 10◦ resolution.

In [16], an audio monologue of a speaker is turned
into visual gestures of the speaker’s arms and hands,
by translating audio clips into 2D trajectories of joint
coordinates. Our sound to vision decoder model is inspired
by their cross-domain translation success.

Acoustic Imaging. In non-Line-of-Sight imaging [17], a
microphone and a speaker array are used to emit and record
FM sound waves. The sound waves are chirps in the audible
spectrum from 2Hz−20 kHz, emitted to propagate to a wall,
a hidden object, and back to the microphone array. They
demonstrate successful object reconstruction at a resolution
limited by the receiving microphone array. In contrast, we
capture the complete scene of the 3D space ahead with a
small system mounted on a mobile device.

III. COLLECTION OF OUR AUDIO-VISUAL DATASET

We collect a new dataset of time-synchronized binaural
audio, RGB images, and depth maps, which can be used for
learning the associations between sound and vision.

A. Our Data Collection Sites and Splits

We traverse an office building in the hallways, open areas,
conference rooms, and office spaces. We fix our BatVision
on a trolley and slowly push it around, so that there is no
active motor noise corrupting our sound.

We collect data at various spatial locations to minimize
correlation and maximize scene diversity (Fig 2). A total of
39,500 and 7,500 instances at two different parts of the same
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Fig. 2. Data collected at different parts of the building are used for training,
validation, and testing. Training and validation data are collected in separate
areas of the same floor, whereas the test data come from another floor and
have different obstacles and decorations.
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floor are collected for training and validation respectively,
with additional 5,040 instances on a different floor for
testing. While hallways appear similar, their spatial layout,
furniture, occupancy, and decorations are different.

B. Our Hardware: Speaker, Ears, and Camera

We use a consumer-grade JBL Flip4 Bluetooth speaker to
send out linear FM waveform chirps every half second (Fig.
1). Each chirp sweeps from 20Hz−20 kHz within a duration
of 3ms. The waveform characteristics are designed using the
freely available software tool Audacity.

We adopt two low-cost consumer-grade omni-directional
USB Lavalier MAONO AU-410 microphones, separated at
approximately 23.5 cm apart. Each microphone is mounted
in a Soundlink silicone ear to effectively emulate an artificial
human auditory system. We record sound using PyAudio
for Python at 44.1 kHz and 24 bits per sample.

We use a ZED camera to capture stereo image pairs and
extract depth maps from them. Our camera, speaker, and
artificial ears are mounted on a small model car (Fig. 1).

C. Our Audio clips and Visual Images

We choose the length of each audio instance to be 72.5ms,
so that it includes echoes traveling up to 12m. This time
window selection reflects a trade-off between receiving echos
within the distance relevant for navigation and reducing later
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Fig. 3. Sample audio waveform and its amplitude spectrogram from a single
microphone. The echo appears after the chirp (first peak) at about 3ms.

echos from multiple reflection paths. Each of our audio clips
has 3200 frames, containing one chirp and returned echoes.

We synchronize all the audio instances by the time of the
recorded chirp. However, during training, we augment the
audio data by jittering the position of the window by 30%.

We consider two audio representations: 1D raw wave-
forms and 2D amplitude spectrograms. The LibROSA li-
brary for Python is used to compute spectrograms with 512
points for FFT and Hanning window size 64. Fig. 3 shows
the probing chirp at 3ms and the returned echoes afterwards.

We compute the scene depth using the API of our camera,
range clipped within 12m. We normalize the depth value to
be between 0 and 1. Pixels where the camera is unable to
produce a valid measurements are set to 0.

IV. OUR SOUND TO VISION PREDICTION MODELS

We use an encoder-decoder network architecture to turn
the audio clip into the visual image, and further improve the
quality of generated images using an adversarial discrimina-
tor to contrast them against the ground-truth (Fig. 4).

Fig. 4. Our sound to vision network architecture. The temporal convolutional
audio encoder A turns the binaural input into a latent audio feature vector,
based on which the visual generator G predicts the scene depth map. The
discriminator D compares the prediction with the ground-truth and enforces
high-frequency structure reconstruction at the patch level.

We train our model with two possible audio represen-
tations. Our experiments indicate that spectrograms yield
slightly better sound-to-vision predictions over raw wave-
forms. However, as we aim for a real-time BatVision system
on embedded platforms, we focus on raw waveforms which
are more computationally efficient.

A. Our Audio Encoder A

Encoder for Waveforms. Following SoundNet [18], we
represent the binaural input as two channels of 1D signals
and transform it into a 1024-dimensional feature vector with
8 temporal convolutions. See Fig. 5 and Table I for details.
Encoder for Spectrograms. Likewise, with successive tem-
poral convolutions and downsampling, we gradually reduce
the time-dimension of the spectrograms down to 1, producing
a 1×f×1024 feature vector, where f is the number of final
frequencies. f depends on the downsampling factors along
the y-axis of the spectrogram.
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Fig. 5. Our audio encoder for the raw waveform. We use 8 convolutional
layers to turn the two-channel representations of the audio waveform into
a 1024-dimensional feature vector.

TABLE I
LAYER CONFIGURATION OF OUR WAVEFORM AUDIO ENCODER

Layer # of Filters Filter size Stride Padding

Conv1 32 228 2 114
Conv2 64 128 3 64
Conv3 128 64 3 32
Conv4 256 32 3 16
Conv5 256 16 3 8
Conv6 512 8 3 4
Conv7 512 4 3 2
Conv8 1024 3 3 1

B. Our Visual Image Generator G

The generator decodes the latent audio feature vector and
expands it into visual scene image. For raw waveforms,
successive deconvolutions yield the best results, whereas for
spectrograms, a UNet-type encoder-decoder network [19]
yields best results. We investigate several resolutions for
reconstructed images, from 16× 16 to 128× 128.

Decode by A UNet. To transform the output of our audio
encoder to a 2D image representation suitable for a UNet, we
reshape the 1024-dimensional feature vector into a 32×32×1
tensor. For spectrograms, where the audio encoder outputs a
1 × f × 1024 vector and f 6= 1, we first apply two fully
connected linear layers before reshaping it into a 32×32×1
tensor. The output of this generator depends on the target
resolution, e.g. 128× 128× 1.

The encoder of the UNet downsamples the 32×32×1 input
through several layers of double convolutions followed by
batch normalization and ReLU, whereas the decoder of the
UNet upsamples the input through double de-convolutions
followed by batch normalization and ReLU. Skip connec-
tions are utilized wherever possible.
Decode from Direct Upsampling. Given the 1× 1× 1024
latent audio vector, we apply a series of upsampling layers
(as in the UNet decoder) to reach the target resolution. See
the layer configuration for the 128×128×1 output in Table II.

C. Our Adversarial Discriminator

We add an adversarial discriminator D for generating more
detailed and realistic predictions. We implement the discrim-

TABLE II
LAYER CONFIGURATION OF THE DIRECT UPSAMPLING GENERATOR FOR

THE 128× 128 IMAGE

Layer # of Filters Filter size Stride Padding Res.

Up1 512 4 1 0 4
Up2 512 4 2 1 8
Up3 256 4 2 1 16
Up4 128 4 2 1 32
Up5 128 4 2 1 64
Up6 64 4 2 1 128
Final 1 1 1 0 128

TABLE III
PATCHGAN DISCRIMINATOR CONFIGURATION FOR 128× 128 IMAGES.

Layer # of Filters Filter size Stride Padding

Conv1 64 4 2 1
Conv2 128 4 2 1
Conv3 256 4 2 1
Conv4 1 4 2 1

inator as a PatchGAN [20] to ensure that the predicted visual
image has similar looking patches as the set of ground-truth
images; D tries to classify whether each N ×N patch looks
real or fake as a ground truth sample, where N is roughly 1/3
of the image size. D consists of a few convolutional layers
with depth, kernel size and stride parameters dependent on
the final output image size. See the layer configuration in
Table III for size 128× 128.

V. EXPERIMENTAL RESULTS

A. Generator Only Without Discriminator

In a preliminary study that compares input modes and
fusion design choices, we predict small images at size
16× 16. We have the following observations.

• For raw waveforms, early fusion (left-right-channel con-
catenation of the input audio) outperforms late fusion
(concatenation at Conv8, see Fig. 5).

• Spectrograms yield slightly better results than raw
waveforms.

However, as we aim for real-time performance on embedded
platforms, we focus on the least computationally expensive
method using waveforms.

We compute the prediction error via an L1 regression loss:

LL1
(G) = Ex,y [||y −G(A(x))||1] (1)

where x is the audio waveforms or spectrograms, y is the
ground truth visual image (depth map or grayscale scene
image), A is the audio encoder, and G is the generator.

We use leaky ReLU with slope 0.2, batch size 16, and
Adam solver [21] with an initial learning rate of 1 × 10−4

with parameters β1 and β2 set to 0.9 and 0.999 respectively.
Table IV compares various model choices along with two

trivial reconstruction baselines which do not learn any sound
and vision associations at all:

1) The mean depth map of the training set.
2) Random uniform noise in the [0, 1) range.



Fig. 6. Sample sound-to-vision predictions by Generator G only without the adversarial discriminator D. Columns 1-2 show the grayscale scene image
and the ground-truth depth map. The rest columns show predictions from waveforms and spectrograms at size 16×16, 32×32, 64×64, and 128×128.

TABLE IV
“GENERATOR ONLY” RESULTS FOR 16× 16 IMGS. ON THE TEST SET.

Audio Encoder Fusion Shape Generator Loss

Waveform
Early 1024 UNet 0.0883

Direct 0.0838

Late 1024 UNet 0.0894

Direct 0.0845

Spectrogram Early
1024 UNet 0.0834

Direct 0.0790

1× 10× 1024
UNet 0.0773

Direct 0.0778

Mean Depth 0.1058

Random Noise 0.3654

For raw waveforms, direct upsampling and early fusion per-
form the best. For spectrograms, early fusion, downsampling
to 1×10×1024 and the UNet generator perform best. These
two best configurations are retrained for output dimensions
of 32 × 32, 64 × 64 and 128 × 128, and the loss is higher
for a larger depth map (Table V).

Fig. 6 compares reconstructions at different resolutions.
Fig. 7 shows more samples of diverse scenes at reconstruc-
tion size 128×128. The sound-to-vision predictions provide
a rough outline of the spatial layout of the 3D scene.

B. Generator with Adversarial Discriminator

We use an Generative Adversarial network (GAN) model
at the patch level to improve the visual reconstruction quality.
We use the following least-squares loss instead of a sigmoid
cross-entropy loss in order to avoid vanishing gradients [22]:

LGAN (D)=Ey

[
‖1−D(y)‖22

]
+Ex

[
‖D(G(A(x)))‖22

]
(2)

LGAN (G)=Ex

[
‖1−D(G(A(x)))‖22

]
(3)

Our full objective is thus:

min
G

max
D

1

2
LGAN (D) + LGAN (G) + λLL1(G) (4)

where λ is a weight factor. We use leaky ReLU with slope
0.2, λ = 100, batch size 16, and Adam solver with learning

Fig. 7. Good test sample reconstructions at the 128×128 output resolution.
Columns 1 and 4 show the ground truth depth map and grayscale scene
image. The remaining columns show predictions from raw waveforms.
Overall, our generated depth maps show correct mapping of close and distant
areas even for row 3, where errors are present in the ground-truth itself.

rate set to 2 × 10−4 with parameters β1 and β2 set to 0.5
and 0.999 respectively.



Fig. 8. Poor test sample reconstructions. Same conventions as Fig. 7. Up-
close and complex objects are not well represented.

TABLE V
L1 TEST LOSS FOR WAVEFORMS AND SPECTROGRAMS AT RESOLUTION

32× 32, 64× 64, AND 128× 128

Model Waveform (D. Upsampling) Spectrogram (UNet Style)
32 64 128 32 64 128

Gen. Only
Depth map 0.0852 0.0862 0.0880 0.0722 0.0726 0.0742

GAN
Depth map 0.0867 0.0955 0.0930 0.0799 0.0808 0.0878
Grayscale 0.2238 0.1967 0.2018 0.1721 0.1845 0.1841

Table V compares the test set loss over a few design
choices. As in the ”Generator Only” case, the loss is moder-
ately higher for a larger depth map. However, Fig. 7 shows
our sample reconstructions by GAN have much finer details
and clearer borders, and our grayscale reconstructions in
the rightmost column have well placed floors even though
objects are roughly outlined and abstracted.

C. Limitations of Our Approach

How sound resonates, propagates and reflects in a room
has a huge impact on sound-to-vision predictions.

• Some materials have dampening properties, leading to
faint or absorbed echos.

• Facing corners, where hallways fork in different di-
rections, poses a big challenge, because sound waves
scatter off in different directions.

• At short ranges (e.g. <1m), multi-path echoes could
be received at the same time with similar amplitudes,
creating a superposition that is difficult to resolve.

• In areas with dense obstacles such as conference rooms

with many office chairs, our sound-to-vision model
often fails to predict any meaningful content (Fig. 8).

VI. CONCLUSIONS

Our BatVision system with a trained sound-to-vision
model can reconstruct depth maps from binaural sound
recorded by only two microphones to a remarkable accuracy.
It can predict detailed indoor scene depth and obstacles
such as walls and furniture. Sometimes, it even outperforms
our ground-truth depth map obtained from a stereo vision
algorithm which struggles to estimate disparity reliably.

Generating the grayscale scene image is more difficult; the
amount of detail and information required is not expected
to be present in sound echos. However, our trained model
is able to generate plausible wall placements and free floor
areas. When objects are not recognizable from the sound, the
network fills in with an approximation of obstacles.

Such seemingly incredible sound-to-vision results reflect
natural statistical correlations between the sound and the
image of indoor scenes, captured by our model trained on
diverse scenes and likely utilized in a similar fashion by
humans and animals.

REFERENCES

[1] F. Schillebeeckx, F. De Mey, D. Vanderelst, and H. Peremans,
“Biomimetic sonar: Binaural 3d localization using artificial bat pin-
nae,” I. J. Robotic Res., vol. 30, pp. 975–987, 07 2011.

[2] I. Matsuo, J. Tani, and M. Yano, “A model of echolocation of
multiple targets in 3d space from a single emission,” The Journal
of the Acoustical Society of America, vol. 110, no. 1, pp. 607–624,
2001. [Online]. Available: https://doi.org/10.1121/1.1377294

[3] R. Kuc and V. Kuc, “Modeling human echolocation of near-range
targets with an audible sonar,” The Journal of the Acoustical Society
of America, vol. 139, pp. 581–587, 02 2016.

[4] J. Sohl-Dickstein, S. Teng, B. Gaub, C. C. Rodgers, C. Li, M. R. De-
Weese, and N. S. Harper, “A device for human ultrasonic echoloca-
tion,” IEEE transactions on bio-medical engineering, vol. 62, 01 2015.

[5] I. Eliakim, Z. Cohen, G. Ksa, and Y. Yovel, “A fully autonomous
terrestrial bat-like acoustic robot,” PLOS Computational Biology,
vol. 14, p. e1006406, 09 2018.

[6] J. Steckel and H. Peremans, “Batslam: Simultaneous localization and
mapping using biomimetic sonar,” PloS one, vol. 8, p. e54076, 01
2013.

[7] B. Fontaine, H. Peremans, and J. Steckel, “3d sparse imaging in
biosonar scene analysis,” 04 2009.

[8] J. M. Wotton and J. A. Simmons, “Spectral cues and perception
of the vertical position of targets by the big brown bat, eptesicus
fuscus,” The Journal of the Acoustical Society of America,
vol. 107, no. 2, pp. 1034–1041, 2000. [Online]. Available:
https://doi.org/10.1121/1.428283

[9] Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event
localization in the wild,” Proc. CVPR Workshop: Sight and Sound,
06 2019.

[10] A. Senocak, T. Oh, J. Kim, M. Yang, and I. S. Kweon, “Learning to
localize sound source in visual scenes,” CoRR, vol. abs/1803.03849,
2018. [Online]. Available: http://arxiv.org/abs/1803.03849

[11] A. F. Prez, V. Sanguineti, P. Morerio, and V. Murino, “Audio-visual
model distillation using acoustic images,” 04 2019.

[12] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim,
W. T. Freeman, and M. Rubinstein, “Looking to listen at the
cocktail party: A speaker-independent audio-visual model for speech
separation,” ACM Trans. Graph., vol. 37, no. 4, pp. 112:1–112:11,
July 2018. [Online]. Available: http://doi.acm.org/10.1145/3197517.
3201357

[13] A. Owens and A. A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” arXiv preprint arXiv:1804.03641,
2018.

https://doi.org/10.1121/1.1377294
https://doi.org/10.1121/1.428283
http://arxiv.org/abs/1803.03849
http://doi.acm.org/10.1145/3197517.3201357
http://doi.acm.org/10.1145/3197517.3201357


[14] A. Zunino, M. Crocco, S. Martelli, A. Trucco, A. Del Bue, and
V. Murino, “Seeing the sound: A new multimodal imaging device for
computer vision,” 2015 IEEE International Conference on Computer
Vision Workshop (ICCVW), 12 2015.

[15] F. Keyrouz and K. Diepold, “An enhanced binaural 3d sound local-
ization algorithm,” in 2006 IEEE International Symposium on Signal
Processing and Information Technology, Aug 2006, pp. 662–665.

[16] S. Ginosar, A. Bar, G. Kohavi, C. Chan, A. Owens, and J. Malik,
“Learning individual styles of conversational gesture,” in Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2019.

[17] D. B. Lindell, G. Wetzstein, and V. Koltun, “Acoustic non-line-of-sight
imaging,” Proc. CVPR, 2019.

[18] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound
representations from unlabeled video,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 892–900. [Online]. Available: http://papers.nips.cc/paper/
6146-soundnet-learning-sound-representations-from-unlabeled-video.
pdf

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, N. Navab,
J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer
International Publishing, 2015, pp. 234–241.

[20] P. Isola, J.-Y. Zhu, T. Zhou, and A. Efros, “Image-to-image translation
with conditional adversarial networks,” 07 2017, pp. 5967–5976.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[22] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smol-
ley, “Least squares generative adversarial networks,” in 2017 IEEE
International Conference on Computer Vision (ICCV), Oct 2017, pp.
2813–2821.

http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf
http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf
http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf

	Related Works
	Collection of Our Audio-Visual Dataset
	Our Data Collection Sites and Splits

	Our Sound to Vision Prediction Models
	Our Visual Image Generator G
	Our Adversarial Discriminator

	Experimental Results
	Generator Only Without Discriminator
	Generator with Adversarial Discriminator
	Limitations of Our Approach

	Conclusions
	References



