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Abstract

Real world data often have a long-tailed and open-ended
distribution. A practical recognition system must classify
among majority and minority classes, generalize from a few
known instances, and acknowledge novelty upon a never
seen instance. We define Open Long-Tailed Recognition
(OLTR) as learning from such naturally distributed data
and optimizing the classification accuracy over a balanced
test set which include head, tail, and open classes.

OLTR must handle imbalanced classification, few-shot
learning, and open-set recognition in one integrated al-
gorithm, whereas existing classification approaches focus
only on one aspect and deliver poorly over the entire class
spectrum. The key challenges are how to share visual
knowledge between head and tail classes and how to reduce
confusion between tail and open classes.

We develop an integrated OLTR algorithm that maps
an image to a feature space such that visual concepts can
easily relate to each other based on a learned metric that re-
spects the closed-world classification while acknowledging
the novelty of the open world. Our so-called dynamic meta-
embedding combines a direct image feature and an associ-
ated memory feature, with the feature norm indicating the
familiarity to known classes. On three large-scale OLTR
datasets we curate from object-centric ImageNet, scene-
centric Places, and face-centric MS1M data, our method
consistently outperforms the state-of-the-art. Our code,
datasets, and models enable future OLTR research and are
publicly available at https://liuziwei7.github.
io/projects/LongTail.html.

1. Introduction
Our visual world is inherently long-tailed and open-

ended: The frequency distribution of visual categories in
our daily life is long-tailed [42], with a few common classes
and many more rare classes, and we constantly encounter
new visual concepts as we navigate in an open world.
∗Equal contribution.
†Work done in part at Tencent AI Lab.
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Figure 1: Our task of open long-tailed recognition must
learn from long-tail distributed training data in an open
world and deal with imbalanced classification, few-shot
learning, and open-set recognition over the entire spectrum.

While the natural data distribution contains head, tail,
and open classes (Fig. 1), existing classification approaches
focus mostly on the head [8, 30], the tail [55, 27], often in a
closed setting [59, 34]. Traditional deep learning models are
good at capturing the big data of head classes [26, 20]; more
recently, few-shot learning methods have been developed
for the small data of tail classes [52, 18].

We formally study Open Long-Tailed Recognition
(OLTR) arising in natural data settings. A practical
system shall be able to classify among a few common
and many rare categories, to generalize the concept of a
single category from only a few known instances, and to
acknowledge novelty upon an instance of a never seen
category. We define OLTR as learning from long-tail and
open-end distributed data and evaluating the classification
accuracy over a balanced test set which include head, tail,
and open classes in a continuous spectrum (Fig. 1).

OLTR must handle not only imbalanced classification
and few-shot learning in the closed world, but also open-set
recognition with one integrated algorithm (Tab. 1). Existing
classification approaches tend to focus on one aspect and
deliver poorly over the entire class spectrum.

The key challenges for OLTR are tail recognition robust-
ness and open-set sensitivity: As the number of training
instances drops from thousands in the head class to the few
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Task Setting Imbalanced Train/Base Set #Instances in Tail Class Balanced Test Set Open Class Evaluation: Accuracy Over ?
Imbalanced Classification X 20∼50 × × all classes
Few-Shot Learning × 1∼20 X × novel classes
Open-Set Recognition × N/A X X all classes
Open Long-Tailed Recognition X 1∼20 X X all classes

Table 1: Comparison between our proposed OLTR task and related existing tasks.

in the tail class, the recognition accuracy should maintain
as high as possible; on the other hand, as the number of
instances drops to zero in the open set, the recognition
accuracy relies on the sensitivity to distinguish unknown
open classes from known tail classes.

An integrated OLTR algorithm should tackle the two
seemingly contradictory aspects of recognition robustness
and recognition sensitivity on a continuous category spec-
trum. To increase the recognition robustness, it must share
visual knowledge between head and tail classes; to increase
recognition sensitivity, it must reduce the confusion be-
tween tail and open classes.

We develop an OLTR algorithm that maps an image
to a feature space such that visual concepts can easily
relate to each other based on a learned metric that respects
the closed-world classification while acknowledging the
novelty of the open world.

Our so-called dynamic meta-embedding handles tail
recognition robustness by combining two components: a
direct feature computed from the input image, and an
induced feature associated with the visual memory. 1) Our
direct feature is a standard embedding that gets updated
from the training data by stochastic gradient descent over
the classification loss. The direct feature lacks sufficient
supervision for the rare tail class. 2) Our memory feature is
inspired by meta learning methods with memories [55, 12,
2] to augment the direct feature from the image. A visual
memory holds discriminative centroids of the direct feature.
We learn to retrieve a summary of memory activations from
the direct feature, combined into a meta-embedding that is
enriched particularly for the tail class.

Our dynamic meta-embedding handles open recognition
sensitivity by dynamically calibrating the meta-embedding
with respect to the visual memory. The embedding is
scaled inversely by its distance to the nearest centroid: The
farther away from the memory, the closer to the origin,
and the more likely an open set instance. We also adopt
modulated attention [56] to encourage the head and tail
classes to use different sets of spatial features. As our meta-
embedding relates head and tail classes, our modulated
attention maintains discrimination between them.

We make the following major contributions. 1) We
formally define the OLTR task, which learns from natural
long-tail and open-end distributed data and optimizes the
overall accuracy over a balanced test set. It provides a
comprehensive and unbiased evaluation of visual recogni-

tion algorithms in practical settings. 2) We develop an
integrated OLTR algorithm with dynamic meta-embedding.
It handles tail recognition robustness by relating visual
concepts among head and tail embeddings, and it handles
open recognition sensitivity by dynamically calibrating
the embedding norm with respect to the visual memory.
3) We curate three large OLTR datasets according to a
long-tail distribution from existing representative datasets:
object-centric ImageNet, scene-centric MIT Places, and
face-centric MS1M datasets. We set up benchmarks for
proper OLTR performance evaluation. 4) Our extensive
experimentation on these OLTR datasets demonstrates that
our method consistently outperforms the state-of-the-art.

Our code, datasets, and models are publicly available
at https://liuziwei7.github.io/projects/
LongTail.html. Our work fills the void in practical
benchmarks for imbalanced classification, few-shot learn-
ing, and open-set recognition, enabling future research that
is directly transferable to real-world applications.

2. Related Works
While OLTR has not been defined in the literature, there

are three closely related tasks which are often studied in
isolation: imbalanced classification, few-shot learning, and
open-set recognition. Tab. 1 summarizes their differences.
Imbalanced Classification. Arising from long-tail dis-
tributions of natural data, it has been extensively studied
[45, 66, 4, 32, 67, 38, 31, 53, 7]. Classical methods
include under-sampling head classes, over-sampling tail
classes, and data instance re-weighting. We refer the readers
to [19] for a detailed review. Some recent methods include
metric learning [24, 37], hard negative mining [11, 29],
and meta learning [17, 59]. The lifted structure loss [37]
introduces margins between many training instances. The
range loss [64] enforces data in the same class to be close
and those in different classes to be far apart. The focal
loss [29] induces an online version of hard negative mining.
MetaModelNet [59] learns a meta regression net from head
classes and uses it to construct the classifier for tail classes.

Our dynamic meta-embedding combines the strengths of
both metric learning and meta learning. On one hand, our
direct feature is updated to ensure centroids for different
classes are far from each other; On the other hand, our
memory feature is generated on-the-fly in a meta learning
fashion to effectively transfer knowledge to tail classes.

https://liuziwei7.github.io/projects/LongTail.html
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Figure 2: Method overview. There are two main modules: dynamic meta-embedding and modulated attention. The
embedding relates visual concepts between head and tail classes, while the attention discriminates between them. The
reachability separates tail and open classes.

Few-Shot Learning. It is often formulated as meta
learning [50, 6, 41, 46, 14, 61]. Matching Network [55]
learns a transferable feature matching metric to go beyond
given classes. Prototypical Network [52] maintains a set of
separable class templates. Feature hallucination [18] and
augmentation [57] are also shown effective. Since these
methods focus on novel classes, they often suffer a mod-
erate performance drop for head classes. There are a few
exceptions. The few-shot learning without forgetting [15]
and incremental few-shot learning [43] attempt to remedy
this issue by leveraging the duality between features and
classifiers’ weights [40, 39]. However, the training set used
in all of these methods are balanced.

In comparison, our OLTR learns from a more natural
long-tailed training set. Nevertheless, our work is closely
related to meta learning with fast weight and associative
memory [22, 49, 55, 12, 2, 36] to enable rapid adaptation.
Compared to these prior arts, our memory feature has two
advantages: 1) It transfers knowledge to both head and tail
classes adaptively via a learned concept selector; 2) It is
fully integrated into the network without episodic training,
and is thus especially suitable for large-scale applications.

Open-Set Recognition. Open-set recognition [48, 3], or
out-of-distribution detection [10, 28], aims to re-calibrate
the sample confidence in the presence of open classes. One
of the representative techniques is OpenMax [3], which
fits a Weibull distribution to the classifier’s output logits.
However, when there are both open and tail classes, the
distribution fitting could confuse the two.

Instead of calibrating the output logits, our OLTR ap-
proach incorporates the confidence estimation into feature
learning and dynamically re-scale the meta-embedding
w.r.t. to the learned visual memory.

3. Our OLTR Model
We propose to map an image to a feature space such that

visual concepts can easily relate to each other based on a
learned metric that respects the closed-world classification
while acknowledging the novelty of the open world. Our
model has two main modules (Fig.2): dynamic meta-
embedding and modulated attention. The former relates and
transfers knowledge between head and tail classes and the
latter maintains discrimination between them.

3.1. Dynamic Meta-Embedding

Our dynamic meta-embedding combines a direct image
feature and an associated memory feature, with the feature
norm indicating the familiarity to known classes.

Consider a convolutional neural network (CNN) with a
softmax output layer for classification. The second-to-the-
last layer can be viewed as the feature and the last layer
a linear classifier (cf. φ(·) in Fig. 2). The feature and the
classifier are jointly trained from big data in an end-to-end
fashion. Let vdirect denote the direct feature extracted from
an input image. The final classification accuracy largely
depends on the quality of this direct feature.

While a feed-forward CNN classifier works well with
big training data [8, 26], it lacks sufficient supervised
updates from small data in our tail classes. We propose
to enrich direct feature vdirect with a memory feature
vmemory that relates visual concepts in a memory module.
This mechanism is similar to the memory popular in meta
learning [46, 36]. We denote the resulting feature meta
embedding vmeta, and it is fed to the last layer for clas-
sification. Both our memory feature vmemory and meta-
embedding vmeta depend on direct feature vdirect.

Unlike the direct feature, the memory feature captures
visual concepts from training classes, retrieved from a
memory with a much shallower model.



Learning Visual Memory M . We follow [23] on class
structure analysis and adopt discriminative centroids as the
basic building block. Let M denote the visual memory of
all the training data, M = {ci}Ki=1 where K is the number
of training classes. Compared to alternatives [60, 52],
this memory is appealing for our OLTR task: It is almost
effortlessly and jointly learned alongside the direct features
{vdirectn }, and it considers both intra-class compactness and
inter-class discriminativeness.

We compute centroids in two steps. 1) Neighborhood
Sampling: We sample both intra-class and inter-class ex-
amples to compose a mini-batch during training. These
examples are grouped by their class labels and the centroid
ci of each group is updated by the direct feature of this mini-
batch. 2) Propagation: We alternatively update the direct
feature vdirect and the centroids to minimize the distance
between each direct feature and the centroid of its group
and maximize the distance to other centroids.
Composing Memory Feature vmemory . For an input
image, vmemory shall enhance its direct feature when there
is not enough training data (as in the tail class) to learn
it well. The memory feature relates the centroids in the
memory, transferring knowledge to the tail class:

vmemory = oTM :=

K∑
i=1

oici, (1)

where o ∈ RK is the coefficients hallucinated from the di-
rect feature. We use a lightweight neural network to obtain
the coefficients from the direct feature, o = Thal(v

direct).
Obtaining Dynamic Meta-Embedding. vmeta combines
the direct feature and the memory feature, and is fed to the
classifier for the final class prediction (Fig. 3):

vmeta = (1/γ) · (vdirect + e⊗ vmemory), (2)

where ⊗ denotes element-wise multiplication. γ > 0 is
seemingly a redundant scalar for the closed-world clas-
sification tasks. However, in the OLTR setting, it plays
an important role in differentiating the examples of the
training classes from those of the open-set. γ measures the
reachability [47] of an input’s direct feature vdirect to the
memory M — the minimum distance between the direct
feature and the discriminative centroids:

γ := reachability(vdirect,M) = min
i
‖vdirect − ci‖2. (3)

When γ is small, the input likely belongs to a training
class from which the centroids are derived, and a large
reachability weight 1/γ is assigned to the resulting meta-
embedding vmeta. Otherwise, the embedding is scaled
down to an almost all-zero vector at the extreme. Such a
property is useful for encoding open classes.

(a) Embedding of Plain ResNet Model

Tail Class ‘African Grey’

Head Class ‘Buckeye’

(b) Embedding of Dynamic Meta-Embedding

Tail Class ‘African Grey’

Head Class ‘Buckeye’

Figure 3: t-SNE feature visualization of (a) plain ResNet
model (b) our dynamic meta-embedding. Ours is more
compact for both head and tail classes.

We now describe the concept selector e in Eq. (2). The
direct feature is often good enough for the data-rich head
classes, whereas the memory feature is more important for
the data-poor tail classes. To adaptively select them in a
soft manner, we learn a lightweight network Tsel(·) with a
tanh(·) activation function:

e = tanh(Tsel(v
direct)). (4)

3.2. Modulated Attention

While dynamic meta-embedding facilitates feature shar-
ing between head and tail classes, it is also vital to discrim-
inate between them. The direct feature vdirect, e.g., the
activation at the second-to-the-last layer in ResNet [20], is
able to fulfill this requirement to some extent. However, we
find it beneficial to further enhance it with spatial attention,
since discriminative cues of head and tail classes seem to be
distributed at different locations in the image.

Specifically, we propose modulated attention to encour-
age samples of different classes to use different contexts.
Firstly, we compute a self-attention map SA(f) from the
input feature map by self-correlation [56]. It is used
as contextual information and added back (through skip
connections) to the original feature map. The modulated
attention MA(f) is then designed as conditional spatial
attention applied to the self-attention map: MA(f) ⊗
SA(f), which allows examples to select different spatial
contexts (Fig. 4). The final attention feature map becomes:

fatt = f +MA(f)⊗ SA(f), (5)

where f is a feature map in CNN, SA(·) is the self-
attention operation, and MA(·) is a conditional attention
function [54] with a softmax normalization. Sec. 4.1 shows
empirically that our attention design achieves superior
performance than the common practice of applying spatial
attention to the input feature map. This modulated attention
(Fig. 4b) could be plugged into any feature layer of a CNN.
Here, we modify the last feature map only.

3.3. Learning

Cosine Classifier. We adopt the cosine classifier [39, 15]
to produce the final classification results. Specifically, we
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Figure 4: Modulated attention is spatial attention applied
on self-attention maps (“attention on attention”). It encour-
ages different classes to use different contexts, which helps
maintain the discrimination between head and tail classes.

normalize the meta-embeddings {vmeta
n }, where n stands

for the n-th input as well as the weight vectors {wi}Ki=1 of
the classifier φ(·) (no bias term):

vmeta
n =

‖vmeta
n ‖2

1 + ‖vmeta
n ‖2

· vmeta
n

‖vmeta
n ‖

,

wk =
wk

‖wk‖
.

(6)

The normalization strategy for the meta-embedding is a
non-linear squashing function [44] which ensures that vec-
tors of small magnitude are shrunk to almost zeros while
vectors of big magnitude are normalized to the length
slightly below 1. This function helps amplify the effect of
the reachability γ (cf. Eq. (2)).
Loss Function. Since all our modules are differentiable,
our model can be trained end-to-end by alternatively updat-
ing the centroids {ci}Ki=1 and the dynamic meta-embedding
vmeta
n . The final loss function L is a combination of the

cross-entropy classification loss LCE and the large-margin
loss between the embeddings and the centroids LLM :

L =

N∑
n=1

LCE(v
meta
n , yn)+λ ·LLM (vmeta

n , {ci}Ki=1), (7)

where λ is set to 0.1 in our experiments via observing the
accuracy curve on validation set.

4. Experiments
Datasets. We curate three open long-tailed benchmarks,
ImageNet-LT (object-centric), Places-LT (scene-centric),
and MS1M-LT (face-centric), respectively.

1. ImageNet-LT: We construct a long-tailed version of the
original ImageNet-2012 [8] by sampling a subset follow-
ing the Pareto distribution with the power value α=6.
Overall, it has 115.8K images from 1000 categories,
with maximally 1280 images per class and minimally

5 images per class. The additional classes of images in
ImageNet-2010 are used as the open set. We make the
test set balanced.

2. Places-LT: A long-tailed version of Places-2 [65] is
constructed in a similar way. It contains 184.5K images
from 365 categories, with the maximum of 4980 images
per class and the minimum of 5 images per class. The
gap between the head and tail classes are even larger
than ImageNet-LT. We use the test images from Places-
Extra69 as the additional open-set.

3. MS1M-LT: To create a long-tailed version of the MS1M-
ArcFace dataset [16, 9], we sample images for each iden-
tity with a probability proportional to the image numbers
of each identity. It results in 887.5K images and 74.5K
identities, with a long-tailed distribution. To inspect the
generalization ability of our approach, the performance
is evaluated on the MegaFace benchmark [25], which
has no identity overlap with MS1M-ArcFace.

Network Architectures. Following [18, 57, 15], we em-
ploy the scratch ResNet-10 [20] as our backbone network
for ImageNet-LT. To make a fair comparison with [59],
the pre-trained ResNet-152 [20] is used as the backbone
network for Places-LT. For MS1M-LT, the popular pre-
trained ResNet-50 [20] is the backbone network.
Evaluation Metrics. We evaluate the performance of each
method under both the closed-set (test set contains no
unknown classes) and open-set (test set contains unknown
classes) settings to highlight their differences. Under each
setting, besides the overall top-1 classification accuracy [15]
over all classes, we also calculate the accuracy of three
disjoint subsets: many-shot classes (classes each with
over training 100 samples), medium-shot classes (classes
each with 20∼100 training samples) and few-shot classes
(classes under 20 training samples). This helps us un-
derstand the detailed characteristics of each method. For
the open-set setting, the F-measure is also reported for a
balanced treatment of precision and recall following [3].
For determining open classes, the softmax probability
threshold is initially set as 0.1, while a more detailed
analysis is provided in Sec. 4.3.
Competing Methods. We choose for comparison state-
of-the-art methods from different fields dealing with the
open long-tailed data, including: (1) metric learning: Lifted
Loss [37], (2) hard negative mining: Focal Loss [29],
(3) feature regularization: Range Loss [64], (4) few-shot
learning: FSLwF [15], (5) long-tailed modeling: Meta-
ModelNet [59], and (6) open-set detection: Open Max [3].
We apply these methods on the same backbone networks
as ours for a fair comparison. We also enable them with
class-aware mini-batch sampling [51] for effective learning.
Since Model Regression [58] and MetaModelNet [59] are
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Figure 5: Results of ablation study. Dynamic meta-embedding contributes most
on medium-shot and few-shot classes while modulated attention helps maintain the
discrimination of many-shot classes. (The performance is reported with open-set top-1
classification accuracy on ImageNet-LT.)

Method Error (%)
Softmax Pred. [21] 43.6
Ours 29.9
ODIN [28]† 24.6
Ours† 18.0

Table 2: Open class detec-
tion error (%) comparison.
It is performed on the stan-
dard open-set benchmark, CI-
FAR100 + TinyImageNet (re-
sized). “†” denotes the setting
where open samples are used to
tune algorithmic parameters.

the most related to our work, we directly contrast our results
to the numbers reported in their paper.

4.1. Ablation Study

We firstly investigate the merit of each module in our
framework. The performance is reported with open-set top-
1 classification accuracy on ImageNet-LT.
Effectiveness of the Dynamic Meta-Embedding. Recall
that the dynamic meta-embedding consists of three main
components: memory feature, concept selector, and con-
fidence calibrator. From Fig. 5 (b), we observe that the
combination of the memory feature and concept selector
leads to large improvements on all three shots. It is
because the obtained memory feature transfers useful visual
concepts among classes. Another observation is that the
confidence calibrator is the most effective on few-shot
classes. The reachability estimation inside the confidence
calibrator helps distinguish tail classes from open classes.
Effectiveness of the Modulated Attention. We observe
from Fig. 5 (a) that, compared to medium-shot classes, the
modulated attention contributes more to the discrimination
between many-shot and few-shot classes. Fig. 5 (c) further
validates that the modulated attention is more effective
than directly applying spatial attention on feature maps. It
implies that adaptive contexts selection is easier to learn
than the conventional feature selection.
Effectiveness of the Reachability Calibration. To further
demonstrate the merit of reachability calibration for open-
world setting, we conduct additional experiments following
the standard settings in [21, 28] (CIFAR100 + TinyIma-
geNet(resized)). The results are listed in Table 2, where
our approach shows favorable performance over standard
open-set methods [21, 28].

4.2. Result Comparisons

We extensively evaluate the performance of various
representative methods on our benchmarks.
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Figure 6: The absolute F1 score of our method over the
plain model. Ours has across-the-board performance gains
w.r.t. many/medium/few-shot and open classes.

ImageNet-LT. Table 3 (a) shows the performance com-
parison of different methods. We have the following
observations. Firstly, both Lifted Loss [37] and Focal
Loss [29] greatly boost the performance of few-shot classes
by enforcing feature regularization. However, they also
sacrifice the performance on many-shot classes since there
are no built-in mechanism of adaptively handling samples
of different shots. Secondly, OpenMax [3] improves the
results under the open-set setting. However, the accuracy
degrades when it is evaluated with F-measure, which
considers both precision and recall in open-set. When
the open classes are compounded with the tail classes,
it becomes challenging to perform the distribution fitting
that [3] requires. Lastly, though the few-shot learning
without forgetting approach [15] retains the many-shot class
accuracy, it has difficulty dealing with the imbalanced base
classes which are lacked in the current few-shot paradigm.
As demonstrated in Fig. 6, our approach provides a compre-
hensive treatment to all the many/medium/few-shot classes
as well as the open classes, achieving substantial improve-
ments on all aspects.

Places-LT. Similar observations can be made on the Places-
LT benchmark as shown in Table 3 (b). With a much
stronger baseline (i.e. pre-trained ResNet-152), our ap-
proach still consistently outperforms other alternatives un-



Backbone Net closed-set setting open-set setting
ResNet-10 > 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20
Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure
Plain Model [20] 40.9 10.7 0.4 20.9 40.1 10.4 0.4 0.295
Lifted Loss [37] 35.8 30.4 17.9 30.8 34.8 29.3 17.4 0.374
Focal Loss [29] 36.4 29.9 16 30.5 35.7 29.3 15.6 0.371
Range Loss [64] 35.8 30.3 17.6 30.7 34.7 29.4 17.2 0.373

+ OpenMax [3] - - - - 35.8 30.3 17.6 0.368
FSLwF [15] 40.9 22.1 15 28.4 40.8 21.7 14.5 0.347
Ours 43.2 35.1 18.5 35.6 41.9 33.9 17.4 0.474

(a) Top-1 classification accuracy on ImageNet-LT.
Backbone Net closed-set setting open-set setting
ResNet-152 > 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20
Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure
Plain Model [20] 45.9 22.4 0.36 27.2 45.9 22.4 0.36 0.366
Lifted Loss [37] 41.1 35.4 24 35.2 41 35.2 23.8 0.459
Focal Loss [29] 41.1 34.8 22.4 34.6 41 34.8 22.3 0.453
Range Loss [64] 41.1 35.4 23.2 35.1 41 35.3 23.1 0.457

+ OpenMax [3] - - - - 41.1 35.4 23.2 0.458
FSLwF [15] 43.9 29.9 29.5 34.9 38.1 19.5 14.8 0.375
Ours 44.7 37 25.3 35.9 44.6 36.8 25.2 0.464

(b) Top-1 classification accuracy on Places-LT.

Table 3: Benchmarking results on (a) ImageNet-LT and (b) Places-LT. Our approach provides a comprehensive treatment
to all the many/medium/few-shot classes as well as the open classes, achieving substantial advantages on all aspects.

Backbone Net MegaFace Identification Rate
ResNet-50 > 5 < 5 & > 2 < 2 & > 1 = 0 Sub-Groups
Methods Many-shot Few-shot One-shot Zero-shot Full Test Male Female
Plain Model [20] 80.64 71.98 84.60 77.72 73.88 78.30 78.70
Range Loss [64] 78.60 71.36 83.14 77.40 72.17 - -
Ours 80.82 72.44 87.60 79.50 74.51 79.04 79.08

Method Acc.
Plain Model [20] 48.0
Cost-Sensitive [24] 52.4
Model Reg. [58] 54.7
MetaModelNet [59] 57.3
Ours 58.7

Table 4: Benchmarking results on MegaFace (left) and SUN-LT (right). Our approach achieves the best performance on
natural-world datasets when compared to other state-of-the-art methods. Furthermore, our approach achieves across-board
improvements on both ‘male’ and ‘female’ sub-groups.

der both the closed-set and open-set settings. The advantage
is even more profound under the F-measure.

MS1M-LT. We train on the MS1M-LT dataset and report
results on the MegaFace identification track, which is a
standard benchmark in the face recognition field. Since the
face identities in the training set and the test set are disjoint,
we adopt an indirect way to partition the testing set into
the subsets of different shots. We approximate the pseudo
shots of each test sample by counting the number of training
samples that are similar to it by at least a threshold (feature
similarity greater than 0.7). Apart from many-shot, few-
shot, one-shot subsets, we also obtain a zero-shot subset,
for which we cannot find any sufficiently similar samples in
the training set. It can be observed that our approach has
the most advantage on one-shot identities (3.0% gains) and
zero-shot identities (1.8% gains) as shown in Table 4 (left).

SUN-LT. To directly compare with [58] and [59], we also
test on the SUN-LT benchmark they provided. The final
results are listed in Table 4 (right). Instead of learning a

series of classifier transformations, our approach transfers
visual knowledge among features and achieves a 1.4%
improvement over the prior best. Note that our approach
also incurs much less computational cost since MetaModel-
Net [59] requires a recursive training procedure.

Indication for Fairness. Here we report the sensitive
attribute performance on MS1M-LT. The last two columns
in Table 4 show that our approach achieves across-board
improvements on both ‘male’ and ‘female’ sub-groups,
which has an implication for effective fairness learning.

4.3. Further Analysis

Finally we visualize and analyze some influencing as-
pects in our framework as well as typical failure cases.

What memory feature has Infused. Here we inspect
the visual concepts that memory feature has infused by
visualizing its top activating neurons as shown in Fig. 7.
Specifically, for each input image, we identify its top-3
transferred neurons in memory feature. And each neuron is
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Figure 7: Examples of the top-3 infused visual concepts from memory feature. Except for the bottom right failure case
(marked in red), all the other three input images are misclassified by the plain model and correctly classified by our model.
For example, to classify the top left image which belongs to a tail class ‘cock’, our approach has learned to transfer visual
concepts that represents “bird head”, “round shape” and “dotted texture” respectively.

Figure 8: The influence of (a) dataset longtail-ness, (b)
open-set probability threshold, and (c) the number of
open classes. As the dataset becomes more imbalanced,
our approach only undergoes a moderate performance drop.
Our approach also demonstrates great robustness to the
contamination of open classes.

visualized by a collection of highest activated patches [62]
over the whole training set. For example, to classify
the top left image which belongs to a tail class ‘cock’,
our approach has learned to transfer visual concepts that
represents “bird head”, “round shape” and “dotted texture”
respectively. After feature infusion, the dynamic meta-
embedding becomes more informative and discriminative.

Influence of Dataset Longtail-ness. The longtail-ness of
the dataset (e.g. the degree of imbalance of the class dis-
tribution) could have an impact on the model performance.
For faster investigating, here the weights of the backbone
network are freezed during training. From Fig. 8 (a), we
observe that as the dataset becomes more imbalanced (i.e.
power value α decreases), our approach only undergoes
a moderate performance drop. Dynamic meta-embedding
enables effective knowledge transfer among data-abundant
and data-scarce classes.

Influence of Open-Set Prob. Threshold. The performance
change w.r.t. the open-set probability threshold is demon-
strated in Fig. 8 (b). Compared to the plain model [20] and
range loss [64], the performance of our approach changes

steadily as the open-set threshold rises. The reachability
estimator in our framework helps calibrate the sample
confidence, thus enhancing robustness to open classes.

Influence of the Number of Open Classes. Finally we
investigate performance change w.r.t. the number of open
classes. Fig. 8 (c) indicates that our approach demonstrates
great robustness to the contamination of open classes.

Failure Cases. Since our approach encourages the feature
infusion among classes, it slightly sacrifices the fine-grained
discrimination for the promotion of under-representative
classes. One typical failure case of our approach is the con-
fusion between many-shot and medium-shot classes. For
example, the bottom right image in Fig. 7 is misclassified
into ‘airplane’ because some cross-category traits like “nose
shape” and “eye shape” are infused. We plan to explore
feature disentanglement [5] to alleviate this trade-off issue.

5. Conclusions

We introduce the OLTR task that learns from natural
long-tail open-end distributed data and optimizes the overall
accuracy over a balanced test set. We propose an integrated
OLTR algorithm, dynamic meta-embedding, in order to
share visual knowledge between head and tail classes and to
reduce confusion between tail and open classes. We validate
our method on three curated large-scale OLTR benchmarks
(ImageNet-LT, Places-LT and MS1M-LT). Our publicly
available code and data would enable future research that
is directly transferable to real-world applications.
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Appendices
In this supplementary material, we provide details omit-

ted in the main text including:
• Section A: intuitive explanation of our approach (Sec. 1

“Introduction” of the main paper.)
• Section B: relation to fairness analysis (Sec. 2 “Related

Work” of the main paper.)
• Section C: more methodology details (Sec. 3 “Approach”

of the main paper.)
• Section D: detailed experimental setup (Sec. 4 “Experi-

ments” of the main paper.)
• Section E: additional visualization of our approach (Sec.

4.3 “Further Analysis” of the main paper.)

A. Intuitive Explanation of Our Approach
In this section, we give an intuitive explanation of our ap-

proach that tackles the problem open long-tail recognition.
From the perspective of knowledge gained from observation
(i.e. training set), head classes, tail classes and open classes
form a continuous spectrum as illustrated in Fig. 9.

Head Classes Tail Classes

top-down 
attention

visual 
memory

direct 
visual evidence

feature from 
associative memory

Open Classes

bottom-up 
attention

familiarity

Figure 9: Intuition explanation of our approach.

Direct + Memory Feature Modulated Attention Reachability Module
Transfer knowledge Maintain discrimination Deal with open classes

between head/tail classes between head/tail classes

Table 5: The effects of each component in our approach.

Firstly, we obtain a visual memory by aggregating the
knowledge from both head and tail classes. Then the
visual concepts stored in the memory are infused back as
associated memory feature to enhance the original direct
feature. It can be understood as using induced knowledge
(i.e. memory feature) to assist the direct observation (i.e.
direct feature). We further learn a concept selector to
control the amount and type of memory feature to be
infused. Since head classes already have abundant direct
observation, only a small amount of memory feature is
infused for them. On the contrary, tail classes suffer
from scarce observation, the associated visual concepts
in memory feature are extremely beneficial. Finally, we
calibrate the confidence of open classes by calculating their

reachability to the obtained visual memory. In this way, we
provide a comprehensive treatment to the full spectrum of
head, tail and open classes, improving the performance on
all categories. To summarize, the effects of each component
in our approach are listed in Table 5.

B. Relation to Fairness Analysis
The open long-tail recognition proposed in our work also

has an intrinsic relationship to fairness analysis [13, 63, 33,
35, 1]. Their key differences are listed in Table 6. On
the problem setting side, both open long-tail recognition
and fairness analysis aim to tackle the imbalance existed in
real-world data. Open long-tail recognition focuses on the
longtail-ness in both known and unknown categories while
fairness analysis deals with the bias in sensitive attributes
such as male/female and white/black.

On the methodology side, both open long-tail recogni-
tion and fairness analysis aim to learn transferable represen-
tations. Open long-tail recognition optimizes for the overall
accuracy of all categories while fairness analysis optimizes
for several attribute-wise criteria. The preliminary results
in Table 4 demonstrates that our proposed dynamic meta-
embedding is also a promising solution to fairness analysis.

Problem Imbalanced Asp. Optimization Obj.
fairness analysis sensitive attributes attribute-wise criteria
open long-tail recog. categories acc. on all categories

Table 6: Key differences between fairness analysis and open
long-tail recognition. “asp.” stands for aspects while “obj.”
stands for objectives.

C. More Methodology Details

Notation Summary. We summarize the notations used in
the paper in Table 7.

Notation Meaning
x input image
y category label
f the original feature map
fatt feature map after modulated attention
F (·) feature extractor
φ(·) classifier
ci discriminative centroid
G local graph
M visual memory
vdirect direct feature
vmemory memory feature
o hallucinated coefficients from visual memory
e concept selector
γ confidence calibrator
vmeta dynamic meta-embedding

Table 7: Summary of notations.
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Figure 10: The dataset statistics of ImageNet-LT.

Obtaining Discriminative Centroids. The step-by-step
procedure for obtaining discriminative centroids {ci}Ki=1 is
further illustrated in Fig. 11.

(a) construct local graph by 
neighborhood sampling

(b) obtain centroids by 
affinity propagation

class 1 samples (head class)
class 2 samples (tail class)
class 3 samples

class 1 centroid
class 2 centroid
class 3 centroid

attracting edge
repelling edge

𝑣𝑠𝑙𝑜𝑤

𝑐𝑖

Figure 11: The discriminative centroids constitute our
visual memory, which are obtained with two iterative steps,
neighborhood sampling and affinity propagation.

Detailed Loss Functions. Here we elaborate the two
loss functions LCE and LLM described in Eqn. 7 in the
main paper. Specifically, LCE is the cross-entropy loss
between dynamic meta-embedding vmeta

n and the ground
truth category label yn:

LCE(v
meta
n , yn) = yn log(φ(v

meta
n ))

+ (1− yn) log(1− φ(vmeta
n )),

(8)

where φ(·) is the cosine classifier described in Eqn. 6 in the
main paper. Next we introduce the large margin loss LLM

between the embedding vmeta
n and the centroids {ci}Ki=1:

LLM (vmeta
n , {ci}Ki=1) = max(0,

∑
i=yn

‖vmeta
n − ci‖

−
∑
i 6=yn

‖vmeta
n − ci‖+m),

(9)

where m is the margin and we set it as 5.0 in our exper-
iments. With this formulation, we minimize the distance
between each embedding and the centroid of its group and
meanwhile maximize the distance between the embedding
and the centroids it does not belong to.

D. Experimental Setup

D.1. Open Long-Tail Dataset Preparation

ImageNet-LT. The training data set was generated using
a Pareto distribution [42] with a power value α=6 and
1,280∼5 images per class from the 1000 classes of Ima-
geNet dataset. Images were randomly selected based on the
distribution values of each class. The classes were sorted
following the benchmark proposed by Bharath & Girshick
[18], where the 1000 classes were randomly split into 389
base classes and 611 novel classes. The first 389 largest
classes in ImageNet-LT are the same as the base classes
in the benchmark, and the rest 611 classes are the same as
the novel classes. We randomly selected 20 training images
per class from the origin training set as validation set. The
original validation set of ImageNet was used as testing set in
this paper. The dataset specifications are shown in Fig. 10.
Places-LT. The training data set was generated similarly to
ImageNet-LT using a Pareto distribution with a power value
α=6 and 4,980∼5 images per class from the 365 classes of
Places-365-standard data set. We used the distribution order
of Places-365-challenge data set (which is imbalanced) to
sort the training data classes. We also randomly selected 20
images per class from the original training set as validation
set. The original validation set of Places-365 was used
as testing set in this paper. The dataset specifications are
shown in Fig. 12.
MS1M-LT. This dataset was generated from a large-scale
face recognition dataset, named MS1M-ArcFace. The
original dataset contains about 5.8M images with 85K
identities. To create a long-tail version, we sampled images
for each identity with a probability proportional to the
image numbers of each identity. It results in 887.5K images
and 74.5K identities, with a long-tail distribution.

For the evaluation set, MegaFace is one of the largest
face recognition benchmarks. It contains 3,530 images from
FaceScrub dataset as a probe set and 1M images as a gallery
set. The identification task is to find top-1 nearest image
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Figure 12: The dataset statistics of Places-LT.
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Figure 13: The dataset statistics of MS1M-LT.

from the 1M gallery for each sample in the probe set. Then
the identification rate is the mean of hit rates. Since the
identities in training set and testing set are non-overlapped,
we adopt an indirect way to partition the testing set into
subsets with different shots. We approximate the pseudo
occurrences of each test sample by counting the number
of the similar (similarity greater than 0.7) training samples.
The similarity is calculated as the feature distance produced
by a state-of-the-art face recognition system [9]. Apart from
many-shot, few-shot and one-shot subset, we also define a
zero-shot subset, for which we cannot find similar samples
in the training set. The dataset specifications are shown in
Fig. 13.
SUN-LT. We used the same training and testing data set
as provided by [59], where there were 1,132∼1 images per
class in the training set and 40 images per class in the testing
set. We randomly selected 5 images from un-used training
data as our validation set.

D.2. Data Pre-processing

All the images were firstly resized to 256× 256. During
training, the images were randomly cropped to 224 × 224,
then augmented with random horizontal flip at probability

p = 0.5 and random color jitter on brightness, contrast, and
saturation with jitter factor of 0.4. During validation and
testing, images were center cropped to 224 × 224 without
further augmentation.

D.3. Training Details

ImageNet-LT. The feature extractor model used in the
experiments on ImageNet-LT was a ResNet-10 model
initialized from scratch (i.e., random initialization). All
different classifiers were also initialized from scratch. Some
major hyper-parameters can be found in Table 8.

Places-LT & SUN-LT. We used a two-stage training proto-
col following [15] when conducting experiments on both
Places-LT and SUN-LT. (1) In the first stage, we used
the ImageNet pre-trained ResNet-152 feature model with
a dot-product classifier to fine-tune on the training data of
Places-LT and SUN-LT. (2) In the second stage, we used the
Places-LT/SUN-LT pre-trained model as our feature model
and freezed the convolutional weights. Finally we fine-
tuned the classifiers initialized from scratch to produce the
experimental results. Some major hyper-parameters can be
found in Table 8.
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Figure 14: Examples of the infused visual concepts from memory feature in Places-LT.
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Figure 15: Examples of the infused visual concepts from memory feature in MS1M-LT.

MS1M-LT. We used the ImageNet pre-trained ResNet-50
with a linear classifier and cross-entropy loss to train the
face recognition model. Some major hyper-parameters can
be found in Table 8.

Dataset Initial LR. Epoch LR. Schedule
ImageNet-LT 0.1 30 drop 10% every 10 epochs
Places-LT 0.01 30 drop 10% every 10 epochs
MS1M-LT 0.01 30 drop 10% every 10 epochs

Table 8: The major hyper-parameters used in our experi-
ments. “LR.” stands for learning rate.

D.4. Evaluation Protocols

Top-1 Classification Accuracy. For ImageNet-LT, Places-
LT, and SUN-LT, since the testing sets are balanced, the top-
1 classification accuracy are calculated as the mean accu-
racy over all close-set categories with the contamination of
open classes. All open classes are regared as one unknown
class. Predictions of data are obtained as the classes with
the highest softmax probabilities.
F-measure. Following [3], the F-measure (F ) is calculated
as 2 times the product of precision (p) and recall (r) divided
by the sum of p and r:

F = 2 · p · r
p+ r

. (10)

p is calculated as true positive (Tp, defined as correct

predictions on the closed testing set) over the sum of Tp
and false positive (Fp, defined as incorrect predictions on
closed testing set):

p =
Tp

Tp + Fp
. (11)

r is calculated as Tp over the sum of Tp and false negative
(Fn, defined as number of images from the open set that are
predicted as known categories):

r =
Tp

Tp + Fn
. (12)

E. More Visualization

Memory Feature in Places-LT. We visualize the memory
feature in Places-LT similarly to ImageNet-LT as described
in Sec. 4.3 in the main paper. Examples of the infused
visual concepts from memory feature in Places-LT are pre-
sented in Fig. 14. We observe that memory feature encodes
discriminative visual traits for the underlying scene.
Memory Feature in MS-1M. Following [32], we visualize
the memory feature in MS1M-LT by contrasting the least
activated average image and the most activated average
image of the top firing neuron. From Fig. 15, we observe
that memory feature in MS1M-LT infuses several identity-
related attributes (e.g. “high cheekbones”, “dark skin color”
and “narrow eyes”) for precise recognition.


