
SegSort: Segmentation by Discriminative Sorting of Segments

Jyh-Jing Hwang1,2 Stella X. Yu1 Jianbo Shi2

Maxwell D. Collins3 Tien-Ju Yang4 Xiao Zhang3 Liang-Chieh Chen3

1UC Berkeley / ICSI 2University of Pennsylvania 3Google Research 4MIT
{jyh,stellayu}@berkeley.edu {jyh,jshi}@seas.upenn.edu

{maxwellcollins,tjy,andypassion,lcchen}@google.com

Abstract

Almost all existing deep learning approaches for seman-
tic segmentation tackle this task as a pixel-wise classifica-
tion problem. Yet humans understand a scene not in terms
of pixels, but by decomposing it into perceptual groups and
structures that are the basic building blocks of recogni-
tion. This motivates us to propose an end-to-end pixel-
wise metric learning approach that mimics this process. In
our approach, the optimal visual representation determines
the right segmentation within individual images and asso-
ciates segments with the same semantic classes across im-
ages. The core visual learning problem is therefore to max-
imize the similarity within segments and minimize the sim-
ilarity between segments. Given a model trained this way,
inference is performed consistently by extracting pixel-wise
embeddings and clustering, with the semantic label deter-
mined by the majority vote of its nearest neighbors from
an annotated set. As a result, we present the SegSort, as
a first attempt using deep learning for unsupervised se-
mantic segmentation, achieving 76% performance of its su-
pervised counterpart. When supervision is available, Seg-
Sort shows consistent improvements over conventional ap-
proaches based on pixel-wise softmax training. Addition-
ally, our approach produces more precise boundaries and
consistent region predictions. The proposed SegSort further
produces an interpretable result, as each choice of label can
be easily understood from the retrieved nearest segments.

1. Introduction
Semantic segmentation is usually approached by extend-

ing image-wise classification [41, 38] to pixel-wise classi-
fication, deployed in a fully convolutional fashion [47]. In
contrast, we study the semantic segmentation task in terms
of perceiving an image in groups of pixels and associating
objects from a large set of images. Particularly, we take the
perceptual organization view [66, 6] that pixels group by vi-
sual similarity and objects form by visual familiarity; con-

Figure 1. Top: Our proposed approach partitions an image in the
embedding space into aligned segments (framed in red) and as-
sign the majority labels from retrieved segments (framed in green
or pink). Bottom: Our approach presents the first deep learning
based unsupervised semantic segmentation (right). If supervised,
our approach produces more consistent region predictions and pre-
cise boundaries in the supervised setting (middle) compared to its
parametric counterpart (left).

sequently a representation is developed to best relate pixels
and segments to each other in the visual world. Our method,
such motivated, not only achieves better supervised seman-
tic segmentation but also presents the first attempt using
deep learning for unsupervised semantic segmentation.

We formulate this intuition as an end-to-end metric
learning problem. Each pixel in an image is mapped via
a CNN to a point in some visual embedding space, and
nearby points in that space indicate pixels belonging to the
same segments. From all the segments collected across im-
ages, clusters in the embedding space form semantic con-
cepts. In other words, we sort segments with respect to
their visual and semantic attributes. The optimal visual rep-
resentation delivers the right segmentation within individ-
ual images and associates segments with the same semantic
classes across images, yielding a non-parametric model as
its complexity scales with number of segments (exemplars).

We derive our method based on maximum likelihood
estimation of a single equation, resulting in a two-stage
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Expectation-Maximization (EM) framework. The first stage
performs a spherical (von Mises-Fisher) K-Means cluster-
ing [4] for image segmentation. The second stage adapts
the E-step for a pixel-to-segment loss to optimize the met-
ric learning CNN.

As a result, we present the SegSort (Segment Sorting)
as a first attempt to apply deep learning for semantic seg-
mentation from the unsupervised perspective. Specifically,
we create pseudo segmentation masks aligned with visual
cues using a contour detector [2, 32, 73] and train the pixel-
wise embedding network to separate all the segments. The
unsupervised SegSort achieves 76% performance of its su-
pervised counterpart. We further show that various visual
groups are automatically discovered in our framework.

When supervision is available (i.e., supervised seman-
tic segmentation), we segment each image with the spher-
ical K-Means clustering and train the network following
the same optimization, but incorporated with Neighborhood
Components Analysis criterion [22, 71] for semantic labels.

To summarize our major contributions:
1. We present the first end-to-end trained non-parametric

approach for supervised semantic segmentation, with
performance exceeding its parametric counterparts that
are trained with pixel-wise softmax loss.

2. We propose the first unsupervised deep learning ap-
proach for semantic segmentation, which achieves
76% performance of its supervised counterpart.

3. Our segmentation results can be easily understood
from retrieved nearest segments and readily inter-
pretable.

4. Our approach produces more precise boundaries and
more consistent region segmentations compared with
parametric pixel-wise prediction approaches.

5. We demonstrate the effectiveness of our method on
two challenging datasets, PASCAL VOC 2012 [16]
and Cityscapes [14].

2. Related Works
Segmentation and Clustering. Segmentation involves ex-
tracting representations from local patches and clustering
them based on different criteria, e.g., fitting mixture mod-
els [74, 5], mode-finding [13, 4], or graph partitioning
[18, 62, 49, 64, 78]. The mode-finding algorithms, e.g.,
mean shift [13] or K-Means [26, 4], are mostly related. Tra-
ditionally, pixels are encoded in a joint spatial-range domain
by a single vector with their spatial coordinates and visual
features concatenated. Applying mean shift or K-Means
filtering can thus converge for each pixel. Spectral graph
theory [12], and in particular the Normalized Cut [62] crite-
rion provides a way to further integrate global image infor-
mation for better segmentation. More recently, superpixel
approaches [1] emerge to be a popular pre-processing step

that helps reduce the computation, or can be used to refine
the semantic segmentation predictions [20]. However, the
challenge of perceptual organization is to process informa-
tion from different levels together to form consensus seg-
mentation. Hence, our proposed approach aims to integrate
image segmentation and clustering into end-to-end embed-
ding learning for semantic segmentation.
Semantic Segmentation. Current state-of-the-art seman-
tic segmentation models are based on Fully Convolutional
Networks [41, 61, 47], tackling the problem via pixel-
wise classification. Given limited local context, it may
be ambiguous to correctly classify a single pixel, and thus
it is common to resort to multi-scale context information
[28, 63, 36, 39, 23, 76, 51, 34, 31]. Typical approaches
include image pyramids [17, 55, 15, 43, 10, 8] and encoder-
decoder structures [3, 56, 42, 19, 54, 77, 79, 11]. No-
tably, to better capture multi-scale context, PSPNet [80]
performs spatial pyramid pooling [24, 40, 46] at several grid
scales, while DeepLab [8, 9, 75] applies the ASPP module
(Atrous Spatial Pyramid Pooling) consisting of several par-
allel atrous convolution [30, 21, 61, 53] with different rates.
In this work, we experiment with applying our proposed
training algorithm to PSPNet and DeepLabv3+, and show
consistent improvements.

Before deep learning takes a leap, non-parametric meth-
ods for semantic segmentation are explored. In the unsu-
pervised setting, [57] proposes data-driven boundary and
image grouping, formulated with MRF to enhance semantic
boundaries; [67] extracts superpixels before nearest neigh-
bor search; [45] performs dense SIFT to find dense defor-
mation fields between images to segment and recognize a
query image. With supervision, [50] learns semantic object
exemplars for detection and segmentation.

It is worth noting Kong and Fowlkes [37] also integrate
vMF mean-shift clustering into the semantic segmentation
pipeline. However, the clustering with contrastive loss is
used for regularizing features and the whole system still re-
lies on softmax loss to produce the final segmentation.

Our work also bears a similarity to the work Scene Col-
laging [33], which presents a nonparametric scene grammar
for parsing the images into segments for which object labels
are retrieved from a large dataset of example images.
Metric Learning. Metric learning approaches [35, 22] have
achieved remarkable performance on different vision tasks,
such as image retrieval [70, 72, 71] and face recognition
[65, 69, 60]. Such tasks usually involve open world recogni-
tion, since classes during testing might be disjoint from the
ones in the training set. Metric learning minimizes intra-
class variations and maximizes inter-class variations with
pairwise losses e.g., contrastive loss [7] and triplet loss [29].
Recently, Wu et al. [72] propose a non-parametric softmax
formulation for training feature embeddings to separate ev-
ery image for unsupervised image recognition and retrieval.



Figure 2. The overall training diagram for our proposed framework, Segment Sorting (SegSort), with the vMF clustering [4]. Given a batch
of images (leftmost), we compute pixel-wise embeddings (middle left) from a metric learning segmentation network. Then we segment
each image with the vMF clustering (middle right), dubbed pixel sorting. We train the network via the maximum likelihood estimation
derived from a mixture of vMF distributions, dubbed segment sorting. In between, we also illustrate how to process pixel-wise features on
a hyper-sphere for pixel and segment sorting. A segment (rightmost) is color-framed with its corresponding vMF clustering color if in the
displayed images. Unframed segments from different images are associated in the embedding space. The inference is done with the same
procedure but using the k-nearest neighbor search to associate segments in the training set.

The non-parametric softmax is further incorporated with
Neighborhood Components Analysis [22] to improve gen-
eralization for supervised image recognition [71]. An im-
portant technical point on metric learning is normalization
[68, 60] so that features lie on a hypersphere, which is why
the vMF distribution is of particular interest.

3. Method

Our end-to-end learning framework consists of three
sequential components: 1) A CNN, e.g., DeepLab [11],
FCN [47], or PSPNet [80], that generates pixel-wise em-
beddings from an image. 2) A clustering method that par-
titions the pixel-wise embeddings into a fine segmentation,
dubbed pixel sorting. 3) A metric learning formulation for
separating and grouping the segments into semantic clus-
ters, dubbed segment sorting.

We start with an assumption that the pixel-wise normal-
ized embeddings from the CNN within a segment follow a
von Mises-Fisher (vMF) distribution. We thus formulate the
pixel sorting with spherical K-Means clustering and the seg-
ment sorting with corresponding maximum likelihood esti-
mation. During inference, the segment sorting is replaced
with k-nearest neighbor search. We then apply to each
query segment the majority label of retrieved segments.

We now give a high level mathematical explanation of
the entire optimization process. Let V = {vvvi} = {φ(xi)}
be the set of pixel embeddings where vvvi is produced by a
CNN φ centered at pixel xi. Let Z = {zi} be the image
segmentation with k segments, or zi = s indicates if a pixel
i belongs to a segment s. Let Θ = {θzi} be the set of pa-
rameters that capture the representative feature of a segment
through a predefined distribution f (mixture of vMF here).

Our main optimization objective can be concluded as:

min
φ,Z,Θ

− logP (V,Z | Θ) = min
φ,Z,Θ

−
∑
i

log
1

k
fzi(vvvi | θzi).

(1)
In pixel sorting, we use a standard EM framework to find
the optimal Z and Θ, with φ fixed. In segment sorting, we
adapt the previous E step for loss calculation through a set
of images to optimize φ, with Z and Θ fixed. Performing
pixel sorting and segment sorting can thus be viewed as a
two-stage EM framework.

This section is organized as follows. We first describe the
pixel sorting in Sec. 3.1, which includes a brief review of
spherical K-Means clustering and creation of aligned seg-
ments. We then derive two forms of the segment sorting
loss for segment sorting in Sec. 3.2. Finally, we describe
the inference procedure in Sec. 3.3. The overall training di-
agram is illustrated in Fig. 2 and the summarized algorithm
can be found in the supplementary.

3.1. Pixel Sorting

We briefly review the vMF distribution and its cor-
responding spherical K-Means clustering algorithm [4],
which is used to segment an image as pixel sorting.

We assume the pixel-wise d-dimensional embeddings
vvv ∈ Sd−1 (CNN’s last layer features after normalization)
within a segment follow a vMF distribution. vMF distribu-
tions are of particular interest as it is one of the simplest
distributions with properties analogous to those of the mul-
tivariate Gaussian for directional data. Its probability den-
sity function is given by

f(vvv | µµµ, κ) = Cd(κ) exp(κµµµ>vvv), (2)



whereCd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
is the normalizing constant

where Ir(·) represents the modified Bessel function of the
first kind and order r. µµµ =

∑
i vvvi/||

∑
i vvvi|| is the mean

direction and κ ≥ 0 is the concentration parameter. Larger
κ indicates stronger concentration about µ. In our particular
case, we assume a constant κ for all vMF distributions to
circumvent the expensive calculation of Cd(κ).

The embeddings of an image with k segments can thus
be considered as a mixture of k vMF distributions with a
uniform prior, or

f(vvv | Θ) =

k∑
s=1

1

k
fs(vvv | µµµs, κ), (3)

where Θ = {µµµ1, · · · ,µµµk, κ}. Let zi be the hidden variable
that indicates a pixel embedding vvvi belongs to a particular
segment s, or zi = s. Let V = {vvv1, · · · , vvvk} be the set
of pixel embeddings and Z = {z1, · · · , zk} be the set of
corresponding hidden variables. The log-likelihood of the
observed data is thus given by

logP (V,Z | Θ) =
∑
i

log
1

k
fzi(vvvi | µµµzi , κ). (4)

Since Z is unknown, the EM framework is used to esti-
mate this otherwise intractable maximum likelihood, result-
ing in the spherical K-Means algorithm with an assumption
of κ 7→ ∞. This assumption holds if all the embeddings
within a region are the same (homogeneous), which will be
our training objective described in Sec. 3.2.

The E-step that maximizes the likelihood of Eqn. 4 is to
assign zi = s with a posterior probability [52]:

p(zi = s|vvvi,Θ) =
fs(vvvi | Θ)∑k
l=1 fl(vvvl|Θ)

. (5)

In the setting of K-Means, we use hard assignments to
update zi, or zi = argmaxs p(zi = s | vvvi,Θ) =
argmaxsµµµ

>
s vvvi. We further denote the set of pixels within a

segment c as Rc; hence p(zi = c | vvvi,Θ) = 1 if i ∈ Rc or
0 otherwise after hard assignments.

The M-step that maximizes the expectation of Eqn. 4 can
be derived [4] as

µ̂µµc =

∑
i vvvip(zi = c | vvvi,Θ)

||
∑
i vvvip(zi = c | vvvi,Θ)||

=

∑
i∈Rc

vvvi

||
∑
i∈Rc

vvvi||
, (6)

which is the mean direction of pixel embeddings within
segment c. The spherical K-Means clustering is thus done
through alternating updates of Z (E-step) and Θ (M-step).

One problem of K-Means clustering is the dynamic num-
ber of EM steps, which would cause uncertain memory con-
sumption during training. However, we find in practice a
small fixed number of EM steps, i.e., 10 iterations, can al-
ready produce good segmentations.

Figure 3. During supervised training, we partition the proposed
segments (left) given the ground truth mask (middle). The yielded
segments (right) are thus aligned with ground truth mask. Each
aligned segment is labeled (0 or 1) according to ground truth
mask. Note that the purple and yellow segments become, respec-
tively, false positive and false negative that help regularize pre-
dicted boundaries.

If we only use embedding features for K-Means clus-
tering, each resulted cluster is often disconnected and
scattered. As our goal is to spatially segment an image, we
concatenate pixel coordinates with the embeddings so that
the K-Means clustering is guided by spatiality.

Creating Aligned Segments. Segments that are aligned
with different visual cues are critical for producing coher-
ent boundaries. However, segments produced by K-Means
clustering do not always conform to the ground truth bound-
aries. If one segment contains different semantic labels, it
clearly contradicts our assumption of homogeneous embed-
dings within a segment. Therefore, we partition a segment
given the ground truth mask in the supervised setting so that
each segment contains exactly a single semantic label as il-
lustrated in Fig. 3.

It is easy to see that the segments after partition are al-
ways aligned with semantic boundaries. Furthermore, this
partition creates small segments of false positives and false
negatives which can naturally serve as hard negative exam-
ples during loss calculation.

3.2. Segment Sorting

Following our assumption of homogeneous embeddings
per segment, the training is therefore to enforce this crite-
rion, which is done by optimizing the CNN parameters for
better feature extraction.

We first define a prototype as the most representative em-
bedding feature of a segment. Since the embeddings in a
segment follow a vMF distribution, the mean direction vec-
tor µµµc in Eqn. 6 can naturally be used as the prototype.

In Sec. 3.1, we consider the posterior probability of a
pixel embedding vvvi belonging to a segment s with fixed
CNN parameters in Eqn. 5. Now we revisit it with free CNN
parameters φ and a constant hyperparameter κ:

pφ(zi = s | vvvi,Θ) =
fs(vvvi|Θ)∑k
l=1 fl(vvvl|Θ)

=
exp(κµµµ>s vvvi)∑k
l=1 exp(κµµµ>l vvvi)

.

(7)
As both the embedding vvv and prototypeµµµ are of unit length,



the dot product vvv>µµµ = vvv>µµµ
||vvv|| ||µµµ|| becomes the cosine similar-

ity. The numerator indicates the exponential cosine similar-
ity between a pixel embedding vvvi and a particular segment
prototypeµµµs. The denominator includes the exponential co-
sine similarities w.r.t. all the segment prototypes. The value
of pφ indicates the ratio of pixel embedding vvvi close to seg-
ment s compared to all the other segments.

The training objective is thus to maximize the posterior
probability of a pixel embedding belonging to its corre-
sponding segment c obtained from the K-Means clustering.
In other words, we want to minimize the following negative
log-likelihood, or the vMF loss:

LivMF = − log pφ(c | vvvi,Θ) = − log
exp(κµµµ>c vvvi)∑k
l=1 exp(κµµµ>l vvvi)

.

(8)
The total loss is the average over all pixels. As a result,
minimizing LvMF has two effects: One is expressed by the
numerator, where it encourages each pixel embedding to be
close to its own segment prototype. The other is from the
denominator, where it encourages each embedding feature
to be far away from all other segment prototypes.

Note that this vMF loss does not require any ground truth
semantic labels. We can therefore use this loss to train the
CNN in an unsupervised setting. As the loss pushes every
segment as far away as possible, visually similar segments
are forced to stay closer on the hypersphere.

To make use of ground truth semantic information, we
consider soft neighborhood assignments in the Neighbor-
hood Components Analysis [22]. The idea of soft neighbor-
hood assignments is to encourage the probability of one ex-
ample selecting its neighbors (excluding itself) of the same
category. In our case, we want to encourage the probabil-
ity of a pixel embedding vvvi selecting any other segment in
the same category, denoted as c+, as its neighbors. We can
define such probability as follows, adapted from Eqn. 7:

p′φ(zi = c+ | vvvi,Θ) =
fc+(vvvi|Θ)∑
l 6=c fl(vvvl|Θ)

=
exp(κµµµ>c+vvvi)∑
l 6=c exp(κµµµ>l vvvi)

,

p′φ(zi = c | vvvi,Θ) = 0. (9)

We denote the set of segments {c+} w.r.t. pixel i as C+
i .

Our final loss function is therefore the negative log total
probability of pixel i selecting a neighbor prototype in the
same category:

LivMF-N =− log
∑
s∈C+

i

p′φ(zi = s | vvvi,Θ)

=− log

∑
s∈C+

i
exp(κµµµ>s vvvi)∑

l 6=c exp(κµµµ>l vvvi)
. (10)

The total loss is the average over all pixels. Minimizing this
loss is to maximize the expected number of pixels correctly

classified by associating the right neighbor prototypes. The
ground truth labels are thus used for finding the set of same-
class segments C+

i w.r.t. pixel i within a mini-batch (and
memory banks). If there is no other segment in the same
category, we fall back to the previous vMF loss. Since both
vMF and vMF-N losses serve the same purpose for group-
ing and separating segments by optimizing the CNN feature
extraction, we dub them segment sorting losses.

Understandably, an essential component of the segment
sorting loss is the existence of semantic neighbor segments
(in the numerator) and the abundance of alien segments (in
the denominator). That is, the more examples presented
at once, the better the optimization. We thus leverage two
strategies: 1) We calculate the loss w.r.t. all the segments in
the batch as opposed to traditionally image-wise loss func-
tion. 2) We use additional memory banks that cache the
segment prototypes from previous batches. In our experi-
ments, we cache up to 2 batches. These two strategies help
the fragmented segments (produced by segment partition in
Fig. 3) connect to other similar segments between different
images, or even between different batches.

3.3. Inference via K-Nearest Neighbor Retrieval

After training, we calculate and save all the segment pro-
totypes in the training set. We calculate the prototypes using
pixels with majority labels within the segments, ignoring
other unresolved noisy pixels.

During inference, we again conduct the K-Means clus-
tering and then perform k-nearest neighbor search for each
segment to retrieve the labels from segments in the training
set. The ablation study on inference runtime and memory
can be found in the supplementary.

Our overall framework is non-parametric. We use vMF
clustering to organize pixel embeddings into segment exem-
plars, whose number is proportional to number of images in
the training set. The embeddings of exemplars are trained
with a nearest neighbor criterion such that the inference can
be done consistently, resulting in a non-parametric model.

Base / Backbone / Method mIoU f-measure
DeepLabv3+ / MNV2 / Softmax 72.51 50.90
DeepLabv3+ / MNV2 / SegSort 74.94 58.83
PSPNet / ResNet-101 / Softmax 80.12 59.64
PSPNet / ResNet-101 / ASM [31] 81.43 62.35
PSPNet / ResNet-101 / SegSort 81.77 63.71
DeepLabv3+ / MNV2 / Softmax 73.25 -
DeepLabv3+ / MNV2 / SegSort 74.88 -
PSPNet / ResNet-101 / Softmax 80.63 -
PSPNet / ResNet-101 / SegSort 82.41 -

Table 1. Quantitative results on Pascal VOC 2012. The first 4 rows
with gray colored background are on validation set while the last
4 rows are on testing set. Networks trained with SegSort consis-
tently outperform their parametric counterpart (Softmax) by 1.63
to 2.43% in mIoU and by 4.07 to 7.97% in boundary f-measure.



4. Experiments
In this section, we demonstrate the efficacy of our Seg-

ment Sorting (SegSort) through experiments and visual
analyses. We first describe the experimental setup in Sec-
tion 4.1. Then we summarize all the quantitative and qual-
itative results of fully supervised semantic segmentation in
Section 4.2. Lastly, we present results of the proposed
approach for unsupervised semantic segmentation in Sec-
tion 4.3. Additional experiments including ablation studies,
t-SNE embedding visualization, and qualitative results on
Cityscapes can be found in the supplementary.

4.1. Experimental Setup

Datasets. We mainly use two datasets in the experiments,
i.e., PASCAL VOC 2012 [16] and Cityscapes [14].

PASCAL VOC 2012 [16] segmentation dataset contains
20 object categories and one background class. The original
dataset contains 1, 464 (train) / 1, 449 (val) / 1, 456 (test)
images. Following the procedure of [47, 8, 80], we augment
the training data with the annotations of [25], resulting in
10, 582 (train aug) images.

Cityscapes [14] is a dataset for semantic urban street
scene understanding. 5, 000 high quality pixel-level finely
annotated images are divided into training, validation, and
testing sets with 2, 975 / 500 / 1, 525 images, respectively.
It defines 19 categories containing flat, human, vehicle,
construction, object, nature, etc.

Segmentation Architectures. We use DeepLabv3+ [11]
and PSPNet [80] as the segmentation architectures, pow-
ered by MobileNetV2 [58] and ResNet101 [27], respec-
tively, both of which are pre-trained on ImageNet [38].

We follow closely the training procedures of the base
architectures when training the baseline model with the
standard pixel-wise softmax cross-entropy loss. The per-
formance of the final model might be slightly worse from
what is reported in the original papers mainly due to two
reasons: 1) We do not pre-train on any other segmentation
dataset, such as MS COCO [44] dataset. 2) We do not adopt
any additional training tricks, such as balance sampling or
fine-tuning specific categories.

Hyper-parameters of SegSort. For all the experiments,
we use the following hyper-parameters for training Seg-
Sort: The dimension of embeddings is 32. The number of
clustering in K-Means are set to 25 and 64 for VOC and
Cityscapes, respectively. The EM steps in K-Means are set
to 10 and 15 for VOC and Cityscapes, respectively. The
concentration constant is set to 10. During inference, we
use the same hyper-parameters for K-Means segmentation
and 21 nearest neighbors for predicting categories.

We use different learning rates and iterations for super-
vised training with SegSort. For VOC 2012, we train the
network with initial learning rate 0.002 for 100k iterations

Figure 4. Visual comparison on PASCAL VOC 2012 validation
set. We show the visual examples with DeepLabv3+ (upper 2
rows) and PSPNet (lower 2 rows). We observe prominent im-
provements on thin structures, such as human leg and chair legs.
Also, more consistent region predictions can be observed when
context is critical, such as wheels in motorcycles and big trunk of
buses.

on train aug set and with initial learning rate 0.0002 for 30k
iterations on train set. For Cityscapes, we train the network
with initial learning rate 0.005 for the same 90k iterations
as the softmax baseline.

Training on VOC 2012 requires more iterations than the
baseline procedure mainly because most images only con-
tain very few categories while the network can only com-
pare segments in 3 batches (2 batches were cached). We find
that enlarging the batch size or increasing memory banks
might reduce the training iterations. As a comparison, im-
ages from Cityscapes contain ample categories, so the train-
ing iterations remain the same.

4.2. Fully Supervised Semantic Segmentation

VOC 2012: We summarize the quantitative results of fully
supervised semantic segmentation on Pascal VOC 2012
[16] in Table 1, evaluated using mIoU and boundary evalu-
ation following [2, 34] on both validation and testing set.

We conclude that networks trained with SegSort con-
sistently outperform their parametric counterpart (Softmax)
by 1.63 to 2.43% in mIoU and by 4.07 to 7.97% in mean
boundary f-measure. (Per-class results can be found in the
supplementary.) We notice that SegSort with DeepLabv3+ /
MNV2 captures better fine structures, such as in ‘bike’ and
‘mbike’ while with PSPNet / ResNet-101 enhances more to-
wards detecting small objects, such as in ‘boat’ and ‘plant’.

We present the visual comparison in Fig. 4. We observe



Method road swalk build. wall fence pole tlight tsign veg. terrain sky person rider car truck bus train mbike bike mIoU
Softmax 97.96 83.89 92.22 57.24 59.31 58.89 68.39 77.07 92.18 63.71 94.42 81.80 63.11 94.85 73.54 84.82 67.42 69.34 77.42 76.72
SegSort 98.18 84.86 92.75 55.63 61.57 63.72 71.66 80.01 92.62 64.64 94.65 82.32 62.75 95.08 77.27 87.07 78.89 63.63 77.51 78.15

Table 2. Per-class results on Cityscapes validation set. We conclude that network trained with SegSort outperforms Softmax consistently.

Figure 5. Two examples, correct and incorrect predictions, for seg-
ment retrieval for supervised semantic segmentation on VOC 2012
validation set. Query segments (leftmost) are framed by the same
color in clustering. (Top) The query segments of rider, horse,
and horse outlines can retrieve corresponding semantically rele-
vant segments in the training set. (Bottom) For the failure case,
it can be inferred from the retrieved segments that the number tag
on the front of bikes is confused by the other number tags or front
lights on motorbikes, resulting in false predictions.

prominent improvements on thin structures, such as human
legs and chair legs. Also, more consistent region predictions
can be found when context is critical, such as wheels in
motorcycles and big trunk of buses.

One of the most important features of SegSort is the
self-explanatory predictions via nearest neighbor segment
retrieval. We therefore demonstrate two examples, correct
and incorrect predictions, in Fig. 5. As can be seen, the
query segments (on the leftmost) of rider, horse, and horse
outlines can retrieve corresponding semantically relevant
segments in the training set. For the incorrect example, it
can be inferred from the retrieved segments that the number
tag on the front of bikes was confused by the other number
tags on motorbikes, resulting in false predictions.

Cityscapes: We summarize the quantitative results of fully
supervised semantic segmentation on Cityscapes [14] in Ta-
ble 2, evaluated on the validation set. Due to limited space,
visual results are included in the supplementary.

The network trained with SegSort outperforms Softmax
consistently. Large objects, e.g., ‘bus’ and ‘truck’, are im-
proved thanks to more consistent region predictions while
small objects, e.g., ‘pole’ and ‘tlight’, are better captured.

Figure 6. Training data for unsupervised semantic segmentation.
We produce fine segmentations (right), HED-owt-ucm, from the
contours (middle) detected by HED [73], followed by the proce-
dure in gPb-owt-ucm [49].

unsup. on train aug sup. on train aug sup. on train mIoU f-measure
49.50 40.86

X 55.86 44.78
X 71.86 55.70

X X 72.47 56.52
X X 73.35 55.69

Table 3. Quantitative results related to unsupervised semantic seg-
mentation on Pascal VOC 2012 validation set. Our unsupervised
trained network (2nd row) outperforms the baseline (1st row) of di-
rectly clustering pretrained features using HED-owt-ucm [73] and
achieves 76% performance of its supervised counterpart (5th row).
Also, the network fine-tuned from unsupervised pre-trained em-
beddings (4th row) outperforms the one without (3rd row) in both
mIoU and boundary f-measure.

4.3. Unsupervised Semantic Segmentation

We train the model using our framework without any
ground truth labels at any level, pixel-wise or image-wise.

To adapt our approach for unsupervised semantic seg-
mentation, what we need is a good criterion for segmenting
an image along visual boundaries, which serves as a pseudo
ground truth mask. There is an array of methods that meet
the requirement, e.g., SLIC [1] for super-pixels or gPb-owt-
ucm [2] for hierarchical segmentation. We choose the HED
contour detector [73] pretrained on BSDS500 dataset [2],
and follow the procedure in gPb-owt-ucm [2] to produce
the hierarchical segmentation, or HED-owt-ucm (Fig. 6).

We train the PSPNet / ResNet-101 network on the same
augmented training set on VOC 2012 as in the supervised
setting with the same initial learning rate yet for only 10k
iterations. The hyper-parameters remain unchanged.

Note that the contour detector only provides visual
boundaries without any concept of semantic segments, yet
through our feature learning with segment sorting, our
method discovers segments of common features – seman-
tic segmentation without names.

For the sake of performance evaluation, we assume there
is a separate annotated image set available during inference.
For each segment under query, we assign a label by the ma-



Figure 7. Segment retrieval results for unsupervised semantic seg-
mentation on VOC 2012 vadlidation set. Query segments (left-
most) are framed by the same color in clustering. As is observed,
the embeddings learned by unsupervised SegSort attend to more
visual than semantic similarities compared to the supervised set-
ting. Hairs, faces, blue shirts, and wheels are retrieved success-
fully. The last query segment fails because the texture around knee
is more similar to animal skins.

jority vote of its nearest neighbors from that annotated set.
Table 3 shows that our unsupervised trained network

outperforms the baseline of directly clustering pretrained
features using HED-owt-ucm [73] segmentation and further
achieves 76% performance of its supervised counterpart.
Together, We also showcase one possible way to make
use of the unsupervised learned embedding. The network
fine-tuned from unsupervised pre-trained embeddings
outperforms the one without. Fig. 7 shows the embeddings
learned by unsupervised SegSort attend to more visual
than semantic similarities compared to the supervised
setting because the fine segmentation formed by contour
detectors partitions the image into visually consistent
segments. Hairs, faces, blue shirts, and wheels are retrieved
successfully. The last query segment fails because the
texture around the knee is more similar to animal skins.

Automatic Discovery of Visual Groups. We noticed in
the retrieval results that CNNs trained this way can discover
visual groups. We wonder if such visual structures actually
form different clusters (or fine categories).

We extract all foreground segments in the training set
and perform a nearest neighbor based hierarchical agglom-
erative clustering algorithm FINCH [59]. FINCH merges
two points if one is the nearest neighbor of the other (with
undirectional link). This procedure can be performed recur-

Figure 8. We perform a nearest neighbor based hierarchical ag-
glomerative clustering, FINCH [59] on foreground segment proto-
types to discover visual groups. Top two rows show random sam-
ples from two clusters at the finest level. Bottom table displays
clusters at a coarser level of 16 clusters. We show four representa-
tive segments per cluster.

sively. We start with 1501 segment prototypes and performs
FINCH to produce 252, 57, 16, 3, and 1 clusters after each
iteration. We visualize some segment groups at the finest
level and a coarser level of 16 clusters in Fig. 8.

A bigger picture of how the segments relate to each other
from t-SNE [48] can be found in the supplementary.

5. Conclusion
We proposed an end-to-end pixel-wise metric learning

approach that is motivated by perceptual organization. We
integrated the two essential components, pixel-level and
segment-level sorting, in a unified framework, derived
from von Mises-Fisher clustering. We demonstrated the
proposed approach consistently improves over the con-
ventional pixel-wise prediction approaches for supervised
semantic segmentation. We also presented the first attempt
for unsupervised semantic segmentation. Intriguingly, the
predictions produced by our approach, correct or not, can
be inherently explained by the retrieved nearest segments.
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6. Supplementary
6.1. Algorithm

We summarize the overall algorithm, trained with super-
vision, in Algorithm 1. The unsupervised algorithm uses
the oversegmentation from object detector as pixel sorting
and Equation 8 for loss calculation, which encourages pixel
embeddings in each segment to form an isolated cluster.

6.2. t-SNE Embedding Visualization

We visualize the prototype embeddings in the training set
using t-SNE [48]. We display the results from supervised
and unsupervised SegSort in Figure 9 and 10, respectively.
This is done by random sampling 5, 000 prototypes in the
training set, reducing the dimension from 32 to 2 using t-
SNE [48], and placing the corresponding patches on the 2D
canvas wherever possible.

For visualization of supervised SegSort, we observe that
most background patches form a large cluster in the cen-
ter with some small visual clusters. Each stretching arm
represents one foreground class, with gradual appearance
changes from boundaries to object centers. For examples,

Algorithm 1: Supervised SegSort algorithm.

for number of training iterations do
Sample a minibatch with m images
{xxx(1), . . . ,xxx(m)} and segmentation masks
{yyy(1), . . . , yyy(m)}.

Extract the deep feature embedding
{vvv(1), . . . , vvv(m)} for each image. Compute vvv′ by
concatenating vvv with coordinate features.

InitializeRRR (segment IDs) by uniformly
partitioning each image for k regions.
/* K-Means clustering. */
for number of K-Means iterations do

/* The M step. */
for each region j do

µµµ′j ←
∑
k∈RRRj

vvv′k/||
∑
k∈RRRj

vvv′k||
end
/* The E step. */
RRR← argmaxµµµ′>vvv′

end
Partition a segment if it contains multiple labels.
/* Compute prototypes. */
for each region j do

µµµj ←
∑
k∈RRRj

vvvk/||
∑
k∈RRRj

vvvk||
end
/* Calculate vMF-N loss. */
Calculate the loss using Equation 10 and

back-propagate the errors.
end

cars and trucks are on the rightmost islands while horses,
cows, and sheeps on the leftmost.

For visualization of unsupervised SegSort, we observe
that clusters are formed more by visual similarities. The
cues for clustering are usually color and texture. For ex-
amples, wheels are clustered on the rightmost island while
animals on the top. Grass and sky are placed on the bottom.

6.3. Study on Inference Latency and Memory

We analyze, compared to Softmax baseline, SegSort’s
inference latency and memory as they are of practical con-
cern. We conclude the runtime overhead (7%-22%) is man-
ageable and memory overhead (∼ 1.5%) is negligible.

We conduct experiments with various k-means iterations
and numbers of nearest neighbors to learn how they influ-
ence the inference performance, summarized in Table 4. All
experiments (PSPNet inference at single scale) are done us-
ing the same GTX 1080 Ti GPU. The overall GPU memory
usage overhead is only∼1.5% as no extra parameters are in-
troduced. The runtime overhead is 7%-22%. We also notice
the most runtime overhead is due to k-means instead of kNN
(with 36K prototypes), both of which are computed in GPU.
With 4 k-means iterations and 11-NN, our method (with
11% runtime overhead) already improves more than 1.5%
mIoU. We believe this latency/accuracy trade-off is reason-
able, particularly with the benefits such as interpretability.

Method k-means % time kNN % time Overall time memory mIoU
Softmax - - 170.34 4504 76.96
2 iter 1-NN 11.43 4.78 182.19 4569 77.18
4 iter 1-NN 13.97 4.60 188.61 4573 78.05
4 iter 11-NN 13.72 4.67 189.09 4574 78.50
10 iter 11-NN 20.04 4.38 207.51 4577 78.69

Table 4. Ablation study on runtime (ms) and GPU memory (MiB).

6.4. Boundary Evaluation

We explain how we conduct boundary evaluation on se-
mantic segmentation following [2, 34]. We first compute
semantic boundaries per category for the semantic predic-
tions and ground truth. We then match boundary pixels be-
tween predictions and ground truth with maximum distance
of 0.01 of image diagonal length. The per-category results
are summarized by precision, recall, and f-measure in Ta-
ble 5 and Table 6 on VOC and Cityscapes datasets.

6.5. Ablation Study

We conduct experiments for the ablation study to under-
stand how different components affect the performance of
supervised SegSort. We decide the hyper-parameters of our
main experiments using the experiences learned from the
ablation studies.

Number of clusters: We study how the number of clus-
ters affects the semantic segmentation performance (Figure
11). We train and test the DeepLabv3+ / MNV2 network



Figure 9. t-SNE visualization of prototype embeddings from supervised SegSort, framed with category color. Best viewed with zoom-in.



Figure 10. t-SNE visualization of prototype embeddings from unsupervised SegSort, framed with category color. Best viewed with
zoom-in.



Base / Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
Deeplabv3+ / Softmax 76.88 69.30 70.41 52.87 44.73 61.37 62.44 65.08 38.14 68.08 20.58 54.64 63.41 60.84 62.48 49.75 68.12 30.40 51.05 44.53 56.02
Deeplabv3+ / SegSort 81.70 72.53 75.13 62.07 69.34 72.42 66.67 76.10 45.23 70.91 40.72 69.55 65.09 72.75 74.24 53.70 80.07 43.70 70.86 61.98 66.61
PSPNet / Softmax 91.10 75.72 90.72 68.00 68.19 82.00 73.49 81.58 54.96 85.38 40.57 76.17 84.00 77.07 76.55 65.17 87.65 44.63 73.53 61.95 72.97
PSPNet / SegSort 86.46 73.81 84.86 68.65 74.18 81.51 74.48 81.43 57.92 83.24 52.58 75.71 81.29 74.64 79.17 63.95 86.80 43.57 68.01 63.45 73.05
Deeplabv3+ / Softmax 64.03 41.80 60.19 36.93 49.53 57.85 52.31 60.25 26.10 54.54 21.65 59.90 55.82 47.89 49.37 21.90 46.70 38.14 53.02 41.34 47.52
Deeplabv3+ / SegSort 70.25 47.19 61.98 42.03 58.34 61.81 54.95 64.93 33.87 54.85 30.43 63.99 59.40 54.41 56.76 26.61 48.35 46.85 54.70 57.59 53.20
PSPNet / Softmax 68.07 37.66 63.66 38.90 59.55 62.05 55.28 64.92 29.48 55.87 28.16 65.18 58.09 49.35 53.69 22.75 52.09 41.14 55.74 51.78 51.19
PSPNet / SegSort 70.97 38.66 70.07 46.51 67.99 65.11 61.48 68.46 40.73 61.71 39.15 69.96 63.22 54.04 59.59 30.64 53.69 52.46 58.04 61.14 57.29
Deeplabv3+ / Softmax 69.87 52.14 64.90 43.48 47.01 59.56 56.93 62.57 30.99 60.56 21.10 57.15 59.37 53.60 55.16 30.41 55.41 33.83 52.01 42.88 50.90
Deeplabv3+ / SegSort 75.55 57.18 67.92 50.12 63.37 66.70 60.25 70.07 38.74 61.86 34.83 66.65 62.11 62.26 64.33 35.59 60.29 45.22 61.74 59.71 58.83
PSPNet / Softmax 77.92 50.30 74.82 49.49 63.58 70.64 63.10 72.30 38.38 67.55 33.24 70.25 68.68 60.17 63.11 33.73 65.34 42.82 63.41 56.41 59.64
PSPNet / SegSort 77.95 50.75 76.76 55.45 70.95 72.39 67.36 74.38 47.83 70.88 44.88 72.73 71.13 62.69 68.00 41.43 66.34 47.61 62.63 62.27 63.71

Table 5. Per-class boundary evaluation on Pascal VOC 2012 validation set. From top to bottom: precision, recall, and f-measure, separated
by double lines.

Method road swalk build. wall fence pole tlight tsign veg. terrain sky person rider car truck bus train mbike bike mean
Softmax 85.68 77.34 85.60 55.33 49.44 90.34 82.71 77.77 92.95 66.23 95.59 87.50 89.12 92.73 54.55 76.99 72.29 67.87 85.35 78.18
SegSort 89.14 78.81 88.79 55.18 55.45 92.53 87.70 82.32 94.25 70.51 96.07 90.73 87.89 95.61 55.19 77.90 64.79 62.47 86.00 79.54
Softmax 45.81 77.13 58.38 47.94 53.65 58.65 64.86 68.67 65.04 58.90 58.66 73.31 63.08 81.21 57.69 73.35 56.95 54.96 69.71 62.52
SegSort 46.08 79.05 60.75 49.84 57.68 63.37 74.57 75.18 66.28 61.17 60.36 76.53 71.78 83.21 64.58 78.67 65.28 61.61 73.48 66.82
Softmax 59.70 77.24 69.41 51.37 51.46 71.13 72.71 72.94 76.53 62.35 72.71 79.78 73.87 86.59 56.08 75.13 63.71 60.73 76.74 68.96
SegSort 60.76 78.93 72.14 52.37 56.54 75.22 80.60 78.59 77.83 65.51 74.14 83.03 79.02 88.98 59.52 78.29 65.04 62.04 79.25 71.99

Table 6. Per-class boundary evaluation on Cityscapes validation set with PSPNet architecture. From top to bottom: precision, recall, and
f-measure, separated by double lines.

Figure 11. We show how the number of clusters affects the seg-
mentation performance. The highest performance is at 25 clus-
ters, which are slightly more than the number of categories in the
dataset.

with 4, 9, 16, 25, 36, 49, 64, and 81 clusters in the vMF clus-
tering. The highest performance is at 25 clusters, which are
slightly more than the number of categories in the dataset.

Dimension of embeddings: We study how the dimen-
sion of embeddings affects the semantic segmentation per-
formance (Figure 12). We train and test the DeepLabv3+
/ MNV2 network with 8, 16, 32, 64, and 128 embedding
dimension. We conclude that as long as the embedding di-
mension is sufficient, i.e., larger than 8, the performance
does not change drastically.

Number of nearest neighbors: We study how the num-
ber of nearest neighbors during inference affects the seg-
mentation performance (Figure 13). We train the PSPNet
/ ResNet-101 network as described in the main paper and
test it using 1 to 31 (odd numbered) nearest neighbors. We
conclude that the segmentation performance is robust to the
number of nearest neighbors as the mIoU spans only 0.4%.

Figure 12. We study how the dimension of embeddings affects the
segmentation performance. We conclude that as long as the em-
bedding dimension is sufficient, i.e., larger than 8, the performance
does not change drastically.

Figure 13. We study how the number of nearest neighbors during
inference affects the segmentation performance. We conclude that
the segmentation performance is robust to the number of nearest
neighbors as the mIoU spans only 0.4%.



6.6. Visualization and Test Results on Cityscapes

We present the visual comparison in Figure 14. We ob-
serve large objects, such as ‘bus’ and ‘truck’, are improved
thanks to more consistent region predictions while small ob-
jects, such as ‘pole’ and ‘tlight’, are also better captured.

We also include the per-category segmentation perfor-
mance on Cityscapes test set in Table 7. We observe sim-
ilar performance trends as on the validation set. We con-
clude that network trained with SegSort outperforms Soft-
max consistently.

7. Per-category results on VOC
We present the per-category results in Table 8 for inter-

ested readers. We notice that SegSort with DeepLabv3+ /
MNV2 captures better fine structures, such as in bike and
mbike while with PSPNet / ResNet-101 enhances more to-
wards detecting small objects, such as in boat and plant.

7.1. DeepLabv3+ / ResNet-101 Results on VOC

We also train our supervised SegSort using DeepLabv3+
with ResNet-101 backbone with exactly same hyper-
parameters as MNV2 backbone. We include the per-
category segmentation performance in Table 9. Even
though the hyper-parameters might not be optimal, we ob-
serve consistent performance improvements over the base-
line Softmax method.



Method road swalk build. wall fence pole tlight tsign veg. terrain sky person rider car truck bus train mbike bike mIoU
Softmax 98.33 84.21 92.14 49.67 55.81 57.62 69.01 74.17 92.70 70.86 95.08 84.21 66.58 95.28 73.52 80.59 70.54 65.54 73.73 76.30
SegSort 98.56 85.84 92.85 52.18 58.44 63.62 73.29 77.93 93.41 72.37 95.10 84.97 67.98 95.41 67.43 80.80 60.69 68.68 74.34 77.05

Table 7. Per-class results on Cityscapes test set. We conclude that network trained with SegSort outperforms Softmax consistently.

Base / Backbone / Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
DeepLabv3+ / MNV2 / Softmax 85.02 55.18 80.92 65.87 70.60 89.55 83.39 88.27 35.04 80.30 48.24 79.20 82.13 81.16 81.21 52.59 75.24 47.20 80.20 67.92 72.51
DeepLabv3+ / MNV2 / SegSort 84.80 58.54 81.08 68.92 79.15 89.75 85.24 89.64 34.88 74.60 58.62 84.34 79.07 84.94 85.92 54.65 76.76 50.74 82.95 74.57 74.94
PSPNet / ResNet-101 / Softmax 92.56 66.70 91.10 76.52 80.88 94.43 88.49 93.14 38.87 89.33 62.77 86.44 89.72 88.36 87.48 56.95 91.77 46.23 88.59 77.14 80.12
PSPNet / ResNet-101 / SegSort 92.23 52.68 91.29 80.33 83.92 95.13 90.33 95.44 44.68 90.84 67.37 91.29 91.09 89.66 88.98 67.54 88.06 53.04 87.79 79.97 81.77
DeepLabv3+ / MNV2 / Softmax 85.89 59.20 79.09 61.24 66.47 87.87 85.17 88.80 28.27 78.98 60.67 80.35 83.72 83.90 83.52 59.87 83.43 50.22 74.07 63.91 73.25
DeepLabv3+ / MNV2 / SegSort 79.49 66.32 75.38 66.17 70.71 91.51 84.82 85.54 38.69 74.91 68.99 78.17 80.49 85.08 85.63 60.92 86.47 57.96 73.26 67.39 74.88
PSPNet / ResNet-101 / Softmax 94.01 68.08 88.80 64.87 75.87 95.60 89.59 93.15 37.96 88.20 72.58 89.96 93.30 87.52 86.65 61.90 87.05 60.81 87.13 74.65 80.63
PSPNet / ResNet-101 / SegSort 96.00 67.17 93.37 74.52 77.77 95.07 89.39 93.91 41.31 87.85 73.66 90.15 91.06 85.63 87.86 71.81 90.28 65.99 86.75 75.53 82.41

Table 8. Per-class results on Pascal VOC 2012. The first 4 rows with gray colored background are on validation set while the last 4 rows
are on testing set. Networks trained with SegSort consistently outperform their parametric counterpart (Softmax) by 1.63 to 2.43%.

Base / Backbone / Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU
Deeplabv3+ / ResNet-101 / Softmax 90.93 56.70 89.46 73.35 82.13 95.03 87.30 91.88 37.79 83.56 56.32 88.31 83.32 86.11 86.61 58.17 87.65 52.87 88.43 74.19 78.24
Deeplabv3+ / ResNet-101 / SegSort 88.78 51.17 88.12 70.45 83.89 95.12 88.74 94.34 43.12 86.24 59.07 88.86 88.11 86.92 87.58 56.91 85.46 55.32 89.01 73.77 78.85

Table 9. Per-class results on Pascal VOC 2012 validation set, using Deeplabv3+ with Resnet-101 backbone.

Figure 14. Visual comparison on Cityscapes validation set. We observe large objects, such as ‘bus’ and ‘truck’, are improved thanks to
more consistent region predictions while small objects, such as ‘pole’ and ‘tlight’, are also better captured.


