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ABSTRACT:  
This work shows the first successful application of convolutional neural networks (CNN) for material characterization 
and process control in solar cell production. We present a fully data-driven machine learning approach for inline quality 
rating and quality mapping of as-cut multi-crystalline Silicon (mc-Si) wafers. We use Photoluminescence (PL) images to 
image crystallization related defects in the wafers. We show that we can learn how to quantify these defect patterns based 
on empirical data and derive a meaningful wafer representation directly from the high-resolution input images by means 
of deep CNNs. This end-to-end regression model predicts solar cell efficiencies with mean errors of 0.12% for materials 
of bricks not presented in the training set, which is 25%rel better than our classical methods based on feature engineering. 
Moreover, we visualize the expected quality distribution for each sample within a spatially resolved activation map. The 
mapping procedure gives an insight into the “black box” neural network and shows that the quality distribution is in 
accordance to the expectations of domain experts and similar to spatially resolved quality data like the image of the dark 
saturation current density (j0). More details on learning and mapping will be reported within two studies elsewhere.   
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1 INTRODUCTION 
 
 The rating of mc-Si wafers with regard to the 
expected solar cell quality directly after wafering allows 
a fast and cost efficient material control for crystal 
growers and solar cell manufacturers.  
 This paper presents results from two 
comprehensive studies on learning quality rating [1] and 
quality mapping [2] of as-cut multi-crystalline Si-wafers 
via convolutional neural networks (CNN) for regression. 
 We use Photoluminescence (PL) images [3] as input 
for a convolutional neural network to predict the current-
voltage (IV) parameters of the solar cells. PL-images are 
suitable for an inline analysis of as-cut samples since they 
reveal crystallization-related defects in mc-Si materials, 
which correlate with solar cell quality [4].   
 Nevertheless, for as-cut wafers a determination of the 
bulk lifetime of excess charge carriers is limited due to 
the high surface recombination. This impacts the rating of 
high quality material for high quality solar cell processes. 
This study investigates high performance materials [5] 

and passivated emitter and rear cells (PERC) [6] to 
address this matter.   
 In previous works [7-13], feature engineering 
methods have been applied to extract features according 
to domain knowledge. The design of domain-relevant 
features is challenging as PL-intensities and PL-contrasts 
vary in the continuous image space. The defect patterns 
superimpose in the images and interact during the process 
[14-16] for example within high-temperature or surface 
structuring processes.  
A meaningful representation of the PL-images with 
regard to solar cell quality can be learned within deep 
convolutional neural networks (Section 2). The training 
of the model requires a representative data set which is 
acquired within a huge experiment (Section 3). The proof 
of generalizability for complex models needs to be 
evaluated on “unknown” test data not presented in 
training data (Section 4). For a deeper understanding and 
acceptance of our approach in the PV community we 
visualize what has been learned in the PL-image 
(Section 5). 
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Figure 1: (Top row) Overview of the pattern recognition pipeline for material rating based on as-cut mc-Si wafers. In the 
middle row the classical approach uses features engineered by human experts and in the bottom row the end-to-end rating 
learns feature extraction and prediction in the same convolutional neural network. In addition to quality prediction, the 
regression activation map (RAM) reveals the spatial distribution of open-circuit voltage (Voc map) learned by the network    
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2 APPROACH 
 

2.1 Pattern recognition pipeline 
 An overview of the pattern recognition pipeline for 
material rating based on as-cut mc-Si wafers is shown in 
Figure 1. Wafers from different materials are measured in 
an incoming control and PL-images are analyzed. The 
PL-features are extracted and combined in a histogram 
which forms the basis of a rating model to predict the IV-
parameters of the solar cells.  
 Following to the classical feature engineering 
approach [17], the extraction of features is based on a 
combination of human defined filters. The optimization 
of the regression model for Voc prediction is based on 
empirical data. 
 Within the end-to-end rating model the feature 
representation and the regression parameters are learned 
within the same optimization step and are not based on a 
manually designed feature definition.  
 
2.1 Regression network and activation map 
 Recently, innovations in deep learning have led to 
significant breakthroughs in computer vision tasks from 
classification [18] to localization of objects and activities 
within an image [19]. Convolutional neural networks 
with dense connections have been particularly effective 
in these tasks, primarily due to its additional connections 
between layers that improve accuracy by allowing data to 
propagate more efficiently through the very deep 
network. We convert densely connected network 
architecture from an object recognition network to a 
multivariate regression network that predicts solar cell 
efficiency, open-circuit voltage, short-circuit current and 
fill factor within one model.   
 We want to analyze, what has been learned in the 
model. An activation map [19] with spatial coordinates 
can be computed for a given PL-image as input to reveal 
the learned quality distribution of our regression model. It 
can show us how the network rates dislocations and 
regions of reduced lifetime due to contaminations from 
the crystallization crucible. The map is qualitatively 
compared to j0-images of the solar cell [20] to confirm 
the meaningful interpretation of the patterns. 
 

3 EXPERIMENTAL 
 
 As deep neural networks require large training 
datasets for successful optimization, we collect a wide 
variety of experimental data.  
Figure 2 gives an overview of the experimental approach 
for the collection and evaluation of this data. The 
comprehensive data set allows a proof of generalizability 
by testing the model with completely unknown data. 
 The experimental process steps are as following: the 
wafers are sampled from different positions of various 
bricks from ten manufacturers. The data set contains mc-
Si and HPMC-Si material. The samples are laser-marked 
and PL-images are measured within an incoming-control 
with a line-scan PL-system [21]. The wafers are 
processed to PERC solar cells within an industrial 
production line. IV-parameter and j0-images [20] are 
measured after solar cell production. 
 We evaluate the measured images based on the 
feature-engineering approach [12] and the proposed 
feature-learning approach. The models are trained with 
approximately 3000 wafers and tested with the remaining 
samples. This work presents the results of Scenario I 
where no wafers of the same brick are in test and training 
set. In Scenario II all wafers of the tested manufacturer 
are removed from the training set, which will be 
presented in [1].  
 The presented regression activation maps (RAM) are 
based on a network trained for Voc prediction with PL-
images as input. For the computation of the RAM the PL-
image is passed through the network. No additional 
information about Voc from current-voltage measurement 
is required. The RAM is compared to the j0-images to 
visualize what has been learned in the network.  
 
 
4 RESULTS ON CELL QUALITY PREDICTION 
 
 The presented prediction model is capable to quantify 
complex defect structures and predict the solar cell 
efficiency (Figure 3) and open-circuit voltage (Figure 4) 
with low mean absolute error for the prediction of 
unknown bricks (Table I). The prediction of short-circuit 
current density (Jsc) and fill factor are less accurate. The 
network improves the rating with manually designed 
features by about 25%rel for efficiency prediction. 
 
Table I: Prediction of unknown bricks 

Method  Eta Voc Jsc FF 
  [%] [mV] [mA/cm²]  [%] 

Designed MAE 0.16 2.73 0.17 0.32 
features Corr 0.88 0.89 0.83 0.53 

Learned MAE 0.12 2.15 0.15 0.28 
features Corr 0.93 0.93 0.87 0.67 
MAE = Mean absolute error in unit of parameter 
Corr = Pearson correlation coefficient in [-1, 1] 
 
 The network converges rapidly during training and 
overcomes the bias-variance trade-off during testing: on 
the one hand, the network is capable to quantify defect 
patterns within a complex network structure and on the 
other hand, the model is generalizable to predict 
unknown data. The prediction can be computed within 
only a few milliseconds.  

Select as-cut mc-Si and HPMC-Si wafers
About 7300 wafers from 74 bricks from 10 manufacturers 

PL-Imaging with line-scan system

Solar cell production (PERC) 

j0-Imaging for selected samples

IV-Measurement

Feature-engineering:  IV-prediction with classical approach

Sample visualization: visualize network activation map
(Voc-map) of PL-image and compare to j0-image

Feature-learning: End-to-end IV-prediction with CNN

Laser marking

Test generalizablility by varying training and test data
(Scenario I) Predict samples from „unknown“ bricks
(Scenario II) Predict samples from „unknown“ manufacturers

 
Figure 2: Schemata of the experiment 
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 Details on model and rating, as well as the prediction 
results for materials from unknown manufacturers will be 
available in the report on our full study [1]. 

 
 
5 RESULTS ON VISUALIZING WHAT HAS BEEN  

LEARNED IN THE NETWORK 
 
 The network learns a prediction model based on the 
PL-image as input and the solar cell parameter as output, 
here the open-circuit voltage. What has been learned in 
the network? The activation map (AM) is a technique, 
which reveals how different image regions are rated in 
the network purely based on the PL-image and the trained 
model. Note that no human input has been given to the 
network, except the PL-input image and the Voc during 
model training. 
 The average of the activation map for regression 
(RAM) is the prediction result. Thus, the map can be 
scaled to Volts.  
 The comparison of PL-inputs, the RAM of the 
network and the measured j0-images in Figure 5a) show 
strong similarities between predicted and measured 
quality. The network assigns low quality values to 
dislocation clusters and contaminated regions.  
 Even for samples with inverted contrast in Figure 5b) 
the network distinguishes the effect of different structures 
which are comparable to the j0-images. The distributed 
Voc values result in quality estimation with small error. 

 
Figure 3: Result on efficiency prediction 
 

 
Figure 4: Result on open-circuit voltage prediction 
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a) Two samples with dislocation clusters and 

contaminated regions at the edge of the wafer. 
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b) Samples with dislocations showing inverted contrasts 

with (top row) low material quality and (bottom row) 
high material quality. 
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c) Failure case shows activations, which are not directly 
connected to crystallization defects. 

 
Figure 5: Triplets of (left) PL-image of as-cut wafer, 
(center) the j0-image measured after solar cell production 
and (right) the regression activation map learned by the 
network for Voc-prediction. The measured and predicted Voc 
values are annotated below each sample. 
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 Only few examples show artefacts not being related 
to crystallization defects. For example the line like 
structure in the RAM in Figure 5c) might be connected to 
a strong saw-mark.  
 Further errors might be connected to the low 
resolution of the RAM with 32px ൈ 32px. Also the exact 
defect position in the RAM may vary due to the large 
receptive field of each neuron in PL-image space.  
  
 
6 CONCLUSION 

 
 This work showed the first successful application of 
CNNs for material characterization and process control in 
solar cell production. We identified a promising neural 
network architecture, which requires an intensive training 
procedure but allows for a generalizable and inline 
applicable prediction of the material quality. Further 
details on the learning algorithm will be available in our 
report in [1]. 
  We applied an activation mapping technique to reveal 
what has been learned by the network. The regression 
activation map is in accordance with the expectations of a 
human expert: regions with reduced lifetime and 
structural defects in the PL-images are rated as regions 
with reduced quality in the RAM. A comparison of the 
network activation map shows the high similarity of the 
predicted quality distribution in wafer coordinates to the 
measured j0-images. A detailed introduction to this 
mapping technique and further visualization results will 
be given in [2]. 
 The model can be extended easily by adding e.g. 
spatially resolved grain boundary data [22] or a brick 
lifetime parameter [23] to the prediction model, which 
can offer additional information for material 
characterization. 
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