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Abstract. Current major approaches to visual recognition follow an
end-to-end formulation that classifies an input image into one of the pre-
determined set of semantic categories. Parametric softmax classifiers are
a common choice for such a closed world with fixed categories, especially
when big labeled data is available during training. However, this becomes
problematic for open-set scenarios where new categories are encountered
with very few examples for learning a generalizable parametric classifier.
We adopt a non-parametric approach for visual recognition by optimizing
feature embeddings instead of parametric classifiers. We use a deep neu-
ral network to learn the visual feature that preserves the neighborhood
structure in the semantic space, based on the Neighborhood Component
Analysis (NCA) criterion. Limited by its computational bottlenecks, we
devise a mechanism to use augmented memory to scale NCA for large
datasets and very deep networks. Our experiments deliver not only re-
markable performance on ImageNet classification for such a simple non-
parametric method, but most importantly a more generalizable feature
representation for sub-category discovery and few-shot recognition.

Keywords: k-nearest neighbors · large-scale object recognition · neigh-
borhood component analysis · transfer learning · few-shot learning

1 Introduction

Deep learning with end-to-end problem formulations has reshaped visual recog-
nition methods over the past few years. The core problems of high-level vision,
e.g. recognition, detection and segmentation, are commonly formulated as classi-
fication tasks. Classifiers are applied image-wise for recognition [20], region-wise
for detection [30], and pixel-wise for segmentation [23]. Classification in deep
neural network is usually implemented as multi-way parametric softmax and
assumes that the categories are fixed between learning and evaluation.

However, such a “closed-world” assumption does not hold for the open world,
where new categories could appear, often with very few training examples. For
example, for face recognition [43, 42], new identities should be recognized after
just one-time occurrence. Due to the open-set nature, one may want to gener-
alize the feature embedding instead of learning another parametric classifier. A

code & models available: https://github.com/zhirongw/snca.pytorch
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common practice for embedding is to simply chop off the softmax classification
layer from a pretrained network and take the last layer features. However, such
a transfer learning scheme is not optimal because these features only make sense
for a linear classification boundary in the training space, most likely not for the
new testing space. Instead of learning parametric classifiers, we can learn an em-
bedding to directly optimize a feature representation which preserves distance
metrics in a non-parametric fashion. Numerous works have investigated various
loss functions (e.g. contrastive loss [11], triplet loss [15, 26]) and data sampling
strategies [50] for improving the embedding performance.

Non-parametric embedding approaches have also been applied to computer
vision tasks other than face recognition. Exemplar-based models have shown to
be effective for learning object classes [2] and object detection [25]. These non-
parametric approaches build associations between data instances [24], and turn
out to be useful for meta-knowledge transfer [25] which would not be readily pos-
sible for parametric models. So far, none of these non-parametric methods have
become competitive in the state-of-the-art image recognition benchmarks such
as ImageNet classification [31] and MSCOCO object detection [22]. However, we
argue that time might be right to revisit non-parametric methods to see if they
could provide the generalization capabilities lacking in current approaches.

We investigate a neighborhood approach for image classification by learning
a feature embedding through deep neural networks. The core of our approach is
a metric learning model based on Neighborhood Component Analysis (NCA) [9].
For each training image, NCA computes its distance to all the other images in
the embedding space. The distances can then be used to define a classification
distribution according to the class labels. Batch training with all the images is
computationally expensive, thereby making the original NCA algorithm difficult
to scale to large datasets. Inspired by prior works [51, 52], we propose to store
the embedding of images in the entire dataset in an augmented non-parametric
memory. The non-parametric memory is not learned by stochastic gradient de-
scent, but simply updated after each training image is visited. During testing,
we build a k-nearest-neighbor (kNN) classifier based on the learned metrics.

Our work makes three main contributions. 1) We scale up NCA to handle
large-scale datasets and deep neural networks by using an augmented memory
to store non-parametric embeddings. 2) We demonstrate that a nearest neighbor
classifier can achieve remarkable performance on the challenging ImageNet clas-
sification benchmark, nearly on par with parametric methods. 3) Our learned
feature, trained with the same embedding method, delivers improved general-
ization ability for new categories, which is desirable for sub-category discovery
and few-shot recognition.

2 Related Works

Object Recognition. Object recognition is one of the holy grail problems in
computer vision. Most prior works cast recognition either as a category naming
problem [3, 4] or as a data association problem [24]. Category naming assumes
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that all instances belonging to the same category are similar and that cate-
gory membership is binary (either all-in, or all-out). Most of the research in
this area is focused on designing better invariant category representations (e.g.
bag-of-words [47], pictorial models [5]). On the other hand, data association
approaches [2, 53, 24, ?] regard categories as data-driven entities emergent from
connections between individual instances. Such non-parametric paradigms are
informative and powerful for transferring knowledge which may not be explic-
itly present in the labels. In the era of deep learning, however, the performance
of exemplar-based approaches hardly reaches the state-of-the-art for standard
benchmarks on classification. Our work revisits the direction of data associa-
tion models, learning an embedding representation that is tailored for nearest
neighbor classifiers.

Learning with Augmented Memory. Since the formulation of LSTM [14],
the idea of using memory for neural networks has been widely adopted for various
tasks [13]. Recent approaches on augmented memory fall into two camps. One
camp incorporates memory into neural networks as an end-to-end differentiable
module [10, 49], with automatic attention mechanism [33, 45] for reading and
writing. These models are usually applied in knowledge-based reasoning [10,
45] and sequential prediction tasks [40]. The other camp treats memory as a
non-parametric representation [44, 51, 52], where the memory size grows with
the data set size. Matching networks [44] explore few-shot recognition using
augmented memory, but their memory only holds the representations in current
mini-batches of 5− 25 images. Our memory is also non-parametric, in a similar
manner as storing instances for unsupervised learning [51]. The key distinction
is that our approach learns the memory representation with millions of entries
for supervised large-scale recognition.

Metric Learning. There are many metric learning approaches [18, 9], some
achieving the state-of-the-art performance in image retrieval [50], face recogni-
tion [36, 42, 46], and person re-identification [52]. In such problems, since the
classes during testing are disjoint from those encountered during training, one
can only make inference based on its feature representation, not on the subse-
quent linear classifier. Metric learning learning encourages the minimization of
intra-class variations and the maximization inter-class variations, such as con-
trastive loss [1, 39], triplet loss [15]. Recent works on few-shot learning [44, 38]
also show the utility of metric learning, since it is difficult to optimize a para-
metric classifier with very few examples.

NCA. Our work is built upon the original proposal of Neighborhood Com-
ponent Analysis (NCA) [9] and its non-linear extension [32]. In the original
version [32], the features for the entire dataset needs to be computed at every
step of the optimization, making it computationally expensive and not scalable
for large datasets. Consequently, it has been mainly applied to small datasets
such as MNIST or for dimensionality reduction [32]. Our work is the first to
demonstrate that NCA can be applied successfully to large-scale datasets.
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3 Approach

We adopt a feature embedding framework for image recognition. Given a query
image x, we embed it into the feature space by v = fθ(x). The function fθ(·) here
is formulated as a deep neural network parameterized by parameter θ learned
from data D. The embedding v is then queried against a set of images in the
search database D′, according to a similarity metric. Images with the highest
similarity scores are retrieved and information from these retrieved images can
be transferred to the image x.

Since the classification process does not rely on extra model parameters, the
non-parametric framework can naturally extend to images in novel categories
without any model fine-tuning. Consider three settings of D′.

1. When D′ = D, i.e., the search database is the same as the training set, we
have closed-set recognition such as the ImageNet challenge.

2. When D′ is annotated with labels different from D, we have open-set recog-
nition such as sub-category discovery and few-shot recognition.

3. Even when D′ is completely unannotated, the metric can be useful for general
content-based image retrieval.

The key is how to learn such an embedding function fθ(·). Our approach
builds upon NCA [9] with some of our modifications.

3.1 Neighborhood Component Analysis

Non-parametric formulation of classification. Suppose we are given a la-
beled dataset of n examples x1, x2, ..., xn with corresponding labels y1, y2, ..., yn.
Each example xi is embedded into a feature vector vi = fθ(xi). We first de-
fine similarity sij between instances i and j in the embedded space as cosine
similarity. We further assume that the feature vi is `2 normalized. Then,

sij = cos(φ) =
vTi

‖vi‖ ‖vj‖
= vTi vj , (1)

where φ is the angle between vector vi, vj . Each example xi selects example xj
as its neighbor with probability pij defined as,

pij =
exp(sij/σ)∑
k 6=i exp(sik/σ)

, pii = 0. (2)

Note that each example cannot select itself as neighbors, i.e. pii = 0. The proba-
bility thus is called leave-one-out distribution on the training set. Since the range
of the cosine similarity is in [−1, 1], we add an extra parameter σ to control the
scale of the neighborhood.

Let Ωi = {j|yj = yi} denote the indices of training images which share the
same label with example xi. Then the probability of example xi being correctly
classified is,

pi =
∑
j∈Ωi

pij . (3)
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The overall objective is to minimize the expected negative log likelihood over
the dataset,

J =
1

n

∑
i

Ji = − 1

n

∑
i

log(pi). (4)

Learning proceeds by directly optimizing the embedding without introducing
additional model parameters. It turns out that each training example depends
on all the other exemplars in the dataset. The gradients of the objective Ji with
respect to vi is,

∂Ji
∂vi

=
1

σ

∑
k

pikvk −
1

σ

∑
k∈Ωi

p̃ikvk, (5)

and vj where j 6= i is,

∂Ji
∂vj

=

{
1
σ (pij − p̃ij)vi, j ∈ Ωi
1
σpijvi, j /∈ Ωi

(6)

where p̃ik = pik/
∑
j∈Ωi

pij is the normalized distribution within the groundtruth
category.

Differences from parametric softmax. The traditional parametric softmax
distribution is formulated as

pc =
exp(wTc vi)∑
j exp(wTj vi)

, (7)

where each category c ∈ {1, 2, ..., C} has a parametrized prototype wc to repre-
sent itself. The maximum likelihood learning is to align all examples in the same
category with the category prototype. However, in the above NCA formulation,
the optimal solution is reached when the probability pik of negative examples
(k /∈ Ωi) vanishes. The learning signal does not enforce all the examples in the
same category to align with the current training example. The probability of
some positive examples (k ∈ Ωi) can also vanish so long as some other positives
align well enough to i-th example. In other words, the non-parametric formula-
tion does not assume a single prototype for each category, and such a flexibility
allows learning to discover inherent structures when there are significant intra-
class variations in the data. Eqn 5 explains how each example contributes to the
learning gradients.

Computational challenges for learning. Learning NCA even for a single
objective term Ji would require obtaining the embedding as well as gradients
(Eqn 5 and Eqn 6) in the entire dataset. This computational demand quickly
becomes impossible to meet for large-scale dataset, with a deep neural network
learned via stochastic gradient descent. Sampling-based methods such as triplet
loss [42] can drastically reduce the computation by selecting a few neighbors.
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Fig. 1: The original NCA needs to compute the feature embeddings for the entire
dataset for each optimization step. This is not scalable for large datasets and
deep neural networks optimized with stochastic gradient descent. We overcome
this issue by using an augmented memory to store offline embeddings forwarded
from previous optimization steps. The online embedding is learned by back-
propagation, while the offline memory is not.

However, hard-negative mining turns out to be crucial and typical batch size
with 1800 examples [42] could still be impractical.

We take an alternative approach to reduce the amount of computation. We
introduce two crude approximations.

1. We only perform gradient descent on ∂Ji/∂vi as in Eqn 5, but not on ∂Ji/∂vj ,
j 6= i as in Eqn 6. This simplification disentangles learning a single instance
from learning among all the training instances, making mini-batch stochastic
gradient descent possible.

2. Computing the gradient for ∂Ji/∂vi still requires the embedding of the entire
dataset, which would be prohibitively expensive for each mini-batch update.
We introduce augmented memory to store the embeddings for approximation.
More details follow.

3.2 Learning with Augmented Memory

We store the feature representation of the entire dataset as augmented non-
parametric memory. We learn our feature embedding network through stochastic
gradient descent. At the beginning of the t+1-th iteration, suppose the network
parameter has the state θ(t), and the non-parametric memory is in the form of
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M (t) = {v(t)1 , v
(t)
2 , ..., v

(t)
n }. Suppose that the memory is roughly up-to-date with

the parameter θ(t) at iteration t. This means the non-parametric memory is close
to the features extracted from the data using parameter θ(t),

v
(t)
i ≈ fθ(t)(xi), i = 1, 2, ..., n. (8)

During the t+1-th optimization, for training instance xi, we forward it through
the embedding network vi = fθ(t)(xi), and calculate its gradient as in Eqn 5 but
using the approximated embedding in the memory as,

∂Ji
∂vi

=
1

σ

∑
k

pikv
(t)
k −

1

σ

∑
k∈Ωi

p̃ikv
(t)
k . (9)

Then the gradients of the parameter can be back-propagated,

∂Ji
∂θ

=
∂Ji
∂vi
· ∂vi
∂θ

. (10)

Since we have forwarded the xi to get the feature vi, we update the memory for
the training instance xi by the empirical weighted average [52],

v
(t+1)
i ← m · v(t)i + (1−m) · vi. (11)

Finally, network parameter θ is updated and learned through stochastic gra-
dient descent. If the learning rate is small enough, the memory can always be
up-to-date with the change of parameters. The non-parametric memory slot for
each training image is only updated once per learning epoch. Though the em-
bedding is approximately estimated, we have found it to work well in practice.

3.3 Discussion on Complexity

In our model, the non-parametric memory M (t), similarity metric sij , and prob-
ability density pij may potentially require a large storage and pose computation
bottlenecks. We give an analysis of model complexity below.

Suppose our final embedding is of size d = 128, and we train our model
on a typical large-scale dataset using n = 106 images with a batch size of b =
256. Non-parametric memory M requires 0.5 GB (O(dn)) of memory. Similarity
metric and probability density each requires 2 GB (O(bn)) of memory for storing
the value and the gradient. In our current implementation, other intermediate
variables used for computing the intra-class distribution require another 2 GB
(O(bn)). In total, we would need 6.5 GB for the NCA module.

In terms of time complexity, the summation in Eqn 2 and Eqn 3 across
the whole dataset becomes the bottleneck in NCA. However, in practice with a
GPU implementation, the NCA module takes a reasonable 30% amount of extra
time with respect to the backbone network. During testing, exhaustive nearest
neighbor search with one million entries is also reasonably fast. The time it takes
is negligible with respect to the forward passing through the backbone network.
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The complexity of our model scales linearly with the training size set. Our
current implementation can deal with datasets at the ImageNet scale, but cannot
scale up to 10 times more data based on the above calculations. A possible strat-
egy to handle bigger data is to subsample a few neighbors instead of the entire
training set. Sampling would help reduce the linear time complexity to a con-
stant. For nearest neighbor search at the run time, computation complexity can
be mitigated with proper data structures such as ball-trees [8] and quantization
methods [17].

4 Experiments

We conduct experiments to investigate whether our non-parametric feature em-
bedding can perform well in the closed-world setting, and more importantly
whether it can improve generalization in the open-world setting.

First, we evaluate the learned metric on the large-scale ImageNet ILSVRC
challenge [31]. Our embedding achieves competitive recognition accuracy with
k-nearest neighbor classifiers using the same ResNet architecture. Secondly, we
study an important property of our representation for sub-category discovery,
when the model trained with only coarse annotations is transferred for fine-
grained label prediction. Lastly, we study how our learned metric can be trans-
ferred and applied to unseen object categories for few-shot recognition.

4.1 Image Classification

We study the effectiveness of our non-parametric representation for visual recog-
nition on ImageNet ILSVRC dataset. We use the parametric softmax classifica-
tion networks as our baselines.
Network Configuration. We use the ConvNet architecture ResNet[12] as the
backbone for the feature embedding network. We remove the last linear clas-
sification layer of the original ResNet and append another linear layer which
projects the feature to a low dimensional 128 space. The 128 feature vector is
then `2 normalized and fed to NCA learning. Our approach does not induce
extra parameters for the embedding network.
Learning Details. During training, we use an initial learning rate of 0.1 and
drops 10 times smaller every 40 epochs for a total of 130 epochs. Our network con-
verges a bit slower than the baseline network, in part due to the approximated
updates for the non-parametric memory. We set the momentum for updating
the memory with m = 0.5 at the start of learning, and gradually increase to
m = 0.9 at the end of learning. We use a temperature parameter σ = 0.05 in the
main results. All the other optimization details and hyper-parameters remain
the same with the baseline approach. We refer the reader to the PyTorch imple-
mentation [28] of ResNet for details. During testing, we use a weighted k nearest
neighbor classifier for classification. Our results are insensitive to parameter k;
generally any k in the range of 5 − 50 gives very similar results. We report the
accuracy with k = 1 and k = 30 using single center crops.
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Table 1: Top-1 classification rate on ImageNet validation set using k-nearest
neighbor classifiers.

ResNet18

Feature d k=1 k=30

Baseline 512 62.91 68.41

+PCA 128 60.43 66.26

Ours 128 67.39 70.58

ResNet34

Feature d k=1 k=30

Baseline 512 67.73 72.32

+PCA 128 65.58 70.67

Ours 128 71.81 74.43

ResNet50

Feature d k=1 k=30

Baseline 2048 71.35 75.09

+PCA 128 69.72 73.69

Ours 128 74.34 76.67

Table 2: Performance comparison of our
method with parametric softmax.

Feature baseline ours

top-1 top-5 top-1 top-5

ResNet18 69.64 88.98 70.58 89.38

ResNet34 73.27 91.43 74.43 91.35

ResNet50 76.01 92.93 76.67 92.84

Table 3: Ablation study on the feature
size and the temperature parameter.
d k=1 k=30

256 67.54 70.71

128 67.39 70.59

64 65.32 69.54

32 64.83 68.01

σ k=1 k=30

0.1 63.87 67.93

0.05 67.39 70.59

0.03 66.98 70.33

0.02 N/A N/A

Main Results. Table 1 and Table 2 summarize our results in comparison with
the features learned by parametric softmax. For baseline networks, we extract
the last layer feature and evaluate it with the same k nearest neighbor classifiers.
The similarity between features is measured by cosine similarity. Classification
evaluated with nearest neighbors leads to a decrease of 6%− 7% accuracy with
k = 1, and 1%− 2% accuracy with k = 30. We also project the baseline feature
to 128 dimension with PCA for evaluation. This reduction leads to a further
2% decrease in performance, suggesting that the features learned by parametric
classifiers do not work equally well with nearest neighbor classifiers. With our
model, we achieve a 3% improvement over the baseline using k = 1. At k = 30,
we have even slightly better results than the parametric classifier: Ours are 1.1%
higher on ResNet34, and 0.7% higher on ResNet50. We also find that predictions
from our model disagree with the baseline on 15% of the validation set, indicating
a significantly different representation has been learned.

Figure 2 shows nearest neighbor retrieval comparisons. The upper four ex-
amples are our successful retrievals and the lower four are failure retrievals. For
the failure cases, our model has trouble either when there are multiple objects
in the same scene, or when the task becomes too difficult with fine-grained cat-
egorization. For the four failure cases, our model predictions are “paddle boat”,
“tennis ball”, “angora rabbit”, “appenzeller” respectively.

Ablation study on model parameters. We investigate the effect of the fea-
ture size and the temperature parameter in Table 3. For the feature size, 128
features and 256 features produce very similar results. We start to see perfor-
mance degradation as the size is dropped lower than 64. For the temperature
parameter, a lower temperature which induces smaller neighborhoods generally
produces better results. However, the network does not converge if the temper-
ature is too low, e.g., σ = 0.02.
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Fig. 2: Given a query, the figure shows 5 nearest neighbors from our model (1st
row) and from the baseline model (2nd row). Top four examples show the suc-
cessful cases and bottom four show the failure cases.

4.2 Discovering Sub-Categories

Our non-parametric formulation of classification does not assume a single pro-
totype for each category. Each training image i only has to look for a few sup-
porting neighbors [34] to embed the features. We refer nearest neighbors whose
probability density

∑
j pij sum over a given threshold as a support set for i. In

Figure 3, we plot the histograms over the size of the support set for support
density thresholds 0.5, 0.7 and 0.9. We can see most of the images only depend
on around 100− 500 neighbors, which are a lot less than 1,000 images per cate-
gory in ImageNet. These statistics suggest that our learned representation allows
sub-categories to develop automatically.

The ability to discover sub-categories is of great importance for feature learn-
ing, as there are always intra-class variations no matter how we define categories.
For example, even for the finest level of object species, we can further define ob-
ject pose as sub-categories.

To quantitatively measure the performance of sub-category discovery, we
consider the experiment of learning the feature embedding using coarse-grained
object labels, and evaluating the embedding using fine-grained object labels. We
can then measure how well feature learning discovers variations within categories.
We refer this classification performance as induction accuracy as in [16]. We train
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Table 4: Top-1 induction accuracy on CIFAR100 and ImageNet1000 using model
pretrained on CIFAR20 and ImageNet127. Numbers are reported with k nearest
neighbor classifiers.

CIFAR

Task 20 classes 100 classes

Baseline 81.53 54.17

Ours 81.42 62.32

ImageNet

Task 127 classes 1000 classes

Baseline 81.48 48.07

Ours 81.62 52.75
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Fig. 3: Histogram of the size of support set in the ImageNet validation set given
various support density thresholds.

the network with the baseline parametric softmax and with our non-parametric
NCA using the same network architecture. To be fair with the baseline, we
evaluate the feature from the penultimate layer from both networks. We conduct
the experiments on CIFAR and ImageNet, and their results are summarized in
Table 4.

CIFAR Results. CIFAR100 [19] images have both fine-grained annotations
in 100 categories and coarse-grained annotations in 20 categories. It is a proper
testing scenario for evaluating sub-category discovery. We study sub-category
discovery by transferring representations learned from 20 categories to 100 cat-
egories. The two approaches exhibit similar classification performances on the
20 category setting. However, when transferred to CIFAR100 using k nearest
neighbors, baseline features suffer a big loss, with 54.17% top-1 accuracy on
100 classes. Fitting a linear classifier for the baseline features gives an improved
58.66% top-1 accuracy. Using k nearest neighbor classifiers, our features are 8%
better than the baselines, achieving a 62.32% recognition accuracy.

ImageNet Results. As in [16], we use 127 coarse categories by clustering the
1000 categories in a top-down fashion by fixing the distances of the nodes from
the root node in the WordNet tree. There are 65 of the 127 classes present in the
original 1000 classes. The other 62 classes are parental nodes in the ImageNet
hierarchical word tree. The two models achieve similar classification performance
(81% − 82%) on the original 127 categories. When evaluated with 1000 class
annotations, our representation is about 5% better than the baseline features.
The baseline performance can be improved to 52.0% by fitting another linear
classifier on the 1000 classes.
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top retrievals from our model query top retrievals from baseline model

Fig. 4: Nearest neighbors from the models trained with ImageNet 127 classes
and evaluated on the fine-grained 1000 classes. Correct retrievals are boxed with
green outlines and wrong retrievals are with orange.

Discussions. Our approach is able to preserve visual structures which are not
explicitly presented in the supervisory signal. In Figure 4, we show nearest neigh-
bor examples compared with the baseline features. For all the examples shown
here, the ground-truth fine-grained category does not exist in the training cate-
gories. Thus the model has to discover sub-categories in order to recognize the
objects. We can see our representation preserves apparent visual similarity (such
as color and pose information) better, and is able to associate the query with
correct exemplars for accurate recognition. For example, our model finds sim-
ilar birds hovering above water in the third row, and finds butterflies of the
same color in the last row. In Figure 5 we further show the prediction gains for
each class. Our model is particularly stronger for main sub-categories with rich
intra-class variations.

4.3 Few-shot Recognition

Our feature embedding method learns a meaningful metric among images. Such a
metric can be directly applied to new image categories which have not been seen
during training. We study the generalization ability of our method for few-shot
object recognition.
Evaluation Protocol. We use the mini-Imagenet dataset [44], which consists of
60,000 colour images and 100 classes (600 examples per class). We follow the split
introduced previously [29], with 64, 16, and 20 classes for training, validation
and testing. We only use the validation set for tuning model parameters. During
testing, we create the testing episodes by randomly sampling a set of observation
and query pairs. The observation consists of c classes (c-way) and s images (s-
shot) per class. The query is an image from one of thec classes. Each testing
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Fig. 5: Results for sub-category discovery on ImageNet. x axis scans through the
fine-grained 1000 ImageNet categories. Each recycled color represents a coarse
category. All coarse categories are sorted with decreasing order in terms of the
number of sub-categories. y axis indicates the prediction gains of our model
against the baseline model. Within each coarse category, the prediction gains for
sub-categories are also sorted in a decreasing order.

Table 5: Few-shot recognition on Mini-ImageNet dataset.

Method Network FineTune
5-way Setting 20-way Setting

1-shot 5-shot 1-shot 5-shot

NN Baseline [44] Small No 41.1±0.7 51.0±0.7 - -

Meta-LSTM [29] Small No 43.4±0.8 60.1±0.7 16.7±0.2 26.1±0.3

MAML [6] Small Yes 48.7±0.7 63.2±0.9 16.5±0.6 19.3±0.3

Meta-SGD [21] Small No 50.5±1.9 64.0±0.9 17.6±0.6 28.9±0.4

Matching Net [44] Small Yes 46.6±0.8 60.0±0.7 - -

Prototypical [38] Small No 49.4±0.8 68.2±0.7 - -

RelationNet [41] Small No 51.4±0.8 61.1±0.7 - -

Ours Small No 50.3±0.7 64.1±0.8 23.7±0.4 36.0±0.5

SNAIL [27] Large No 55.7±1.0 68.9±0.9 - -

RelationNet [41] Large No 57.0±0.9 71.1±0.7 - -

Ours Large No 57.8±0.8 72.8±0.7 30.5±0.5 44.8±0.5

episode provides the task to predict the class of query image given c × s few
shot observations. We create 3, 000 episodes for testing and report the average
results.

Network Architecture. We conduct experiments on two network architec-
tures. One is a shallow network which receives small 84×84 input images. It has
4 convolutional blocks, each with a 3×3×64 convolutional layer, a batch normal-
ization layer, a ReLU layer, and a max pooling layer. A final fully connected layer
maps the feature for classification. This architecture is widely used in previous
works [6, 44] for evaluating few-shot recognition. The other is a deeper version
with ResNet18 and larger 224 × 224 image inputs. Two previous works [27, 41]
have reported their performance with similar ResNet18 architectures.

Results. We summarize our results in Table 5. We train our embedding on
the training set, and apply the representation from the penultimate layer for
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query five learning examples query five learning examples

Fig. 6: Few shot learning examples in mini-Imagenet test set. Given one shot for
each five categories, the model predicts the category for the new query image.
Our prediction is boxed with green and the baseline prediction is with orange.

evaluation. Our current experiment does not fine-tune a local metric per episode,
though such adaptation would potentially bring additional improvement. As with
the previous experiments, we use k nearest neighbors for classification. We use
k = 1 neighbor for the 1-shot scenario, and k = 5 for the 5-shot scenario.

For the shallow network setting, while our model is on par with the proto-
typical network [38], and RelationNet [41], our method is far more generic.

For the deeper network setting, we achieve the state-of-the-art results for this
task. MAML [6] suggests going deeper does not necessarily bring better results
for meta learning. Our approach provides a counter-example: Deeper network
architectures can in fact bring significant gains with proper metric learning.

Figure 6 shows visual examples of our predictions compared with the baseline
trained with softmax classifiers.

5 Summary

We present a non-parametric neighborhood approach for visual recognition. We
learn a CNN to embed images into a low-dimensional feature space, where the
distance metric between images preserves the semantic structure of categorical
labels according to the NCA criterion. We address NCA’s computation demand
by learning with an external augmented memory, thereby making NCA scal-
able for large datasets and deep neural networks. Our experiments deliver not
only remarkable performance on ImageNet classification for such a simple non-
parametric method, but most importantly a more generalizable feature repre-
sentation for sub-category discovery and few-shot recognition. In the future, it’s
worthwhile to re-investigate non-parametric methods for other visual recognition
problems such as detection and segmentation.
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