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Abstract

We propose a multigrid extension of convolutional neu-
ral networks (CNNs). Rather than manipulating represen-
tations living on a single spatial grid, our network layers
operate across scale space, on a pyramid of grids. They
consume multigrid inputs and produce multigrid outputs;
convolutional filters themselves have both within-scale and
cross-scale extent. This aspect is distinct from simple mul-
tiscale designs, which only process the input at different
scales. Viewed in terms of information flow, a multigrid
network passes messages across a spatial pyramid. As a
consequence, receptive field size grows exponentially with
depth, facilitating rapid integration of context. Most criti-
cally, multigrid structure enables networks to learn internal
attention and dynamic routing mechanisms, and use them to
accomplish tasks on which modern CNNs fail.

Experiments demonstrate wide-ranging performance ad-
vantages of multigrid. On CIFAR and ImageNet classifica-
tion tasks, flipping from a single grid to multigrid within the
standard CNN paradigm improves accuracy, while being
compute and parameter efficient. Multigrid is independent
of other architectural choices; we show synergy in com-
bination with residual connections. Multigrid yields dra-
matic improvement on a synthetic semantic segmentation
dataset. Most strikingly, relatively shallow multigrid net-
works can learn to directly perform spatial transformation
tasks, where, in contrast, current CNNs fail. Together, our
results suggest that continuous evolution of features on a
multigrid pyramid is a more powerful alternative to exist-
ing CNN designs on a flat grid.

1. Introduction
Since Fukushima’s neocognitron [9], the basic architec-

tural design of convolutional neural networks has persisted
in form similar to that shown in the top of Figure 1. Pro-
cessing begins on a high resolution input, of which filters
examine small local pieces. Through stacking many lay-
ers, in combination with occasional pooling and subsam-
pling, receptive fields slowly grow with depth, eventually

encompassing the entire input. Work following this mold
includes LeNet [23], the breakthrough AlexNet [21], and
the many architectural enhancements that followed, such as
VGG [32], GoogLeNet [34], residual networks [11, 12, 38]
and like [22, 15]. Coupled with large datasets and compute
power, this pipeline drives state-of-the-art vision systems.

However, sufficiency of this design does not speak to its
optimality. A revolution in performance may have blinded
the community to investigating whether or not unfolding
computation in this standard manner is the best choice. In
fact, there are shortcomings to the typical CNN pipeline:

• It conflates abstraction and scale. Early layers cannot
see coarser scales, while later layers only see them.
For tasks requiring fine-scale output, such as semantic
segmentation, this necessitates specialized designs for
reintegrating spatial information [24, 10, 3, 1].

• The fine-to-coarse processing within a standard CNN
is in opposition to a near universal principle for effi-
cient algorithm design: coarse-to-fine processing. The
first layer in a standard CNN consists of many filters
independently looking at tiny, almost meaningless re-
gions of the image. Would it not be more reasonable
for the system to observe some coarse-scale context
before deciding how to probe the details?

• Communication is inefficient. A neuron’s receptive
field is determined by the units in the input layer that
could propagate a signal to it. Standard CNNs imple-
ment a slow propagation scheme, diffusing informa-
tion across a single grid at rate proportional to convolu-
tional filter size. This may be a reason extremely deep
networks [34, 11, 22] appear necessary; many layers
are needed to counteract inefficient signal propagation.

These points can be summarized as inherent deficiencies
in representation, computation, and communication. Our
multigrid architecture (Figure 1, bottom) endows CNNs
with additional structural capacity in order to dissolve these
deficiencies. It is explicitly multiscale, pushing choices
about scale-space representation into the training process.

1



b
b
b

b
b
b

b
b
b

3
c

x

y

64

b

64 64 64 64 64

128 128 128 128 128 128 128
256 256 256 256 256 256 256

512 512 512 512 512 512 512

c
3

3

3

3

b
b
b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b
b
b

b
b
b
b
b
b
b
b
b
b
b
b

b
b
b

b
b
b

b
b
b

b

x

ys
ca
le

6
4

3
2

1
6

8

b

6
4

3
2

1
6

8

1
2
8

6
4

3
2

1
2
8

6
4

3
2

2
5
6

1
2
8

5
1
2

Standard CNN

Multigrid CNN

depth

Figure 1. Multigrid networks. Top: Standard CNN architectures conflate scale with abstraction (depth). Filters with limited receptive
field propagate information slowly across the spatial grid, necessitating the use of very deep networks to fully integrate contextual cues.
Bottom: In multigrid networks, convolutional filters act across scale space (x, y, c, s), thereby providing a communication mechanism
between coarse and fine grids. This reduces the required depth for mixing distant contextual cues to be logarithmic in spatial separation.
Additionally, the network is free to disentangle scale and depth: every layer may learn several scale-specific filter sets, choosing what to
represent on each pyramid level. Traditional pooling and subsampling are now similarly multigrid, reducing the size of an entire pyramid.

Computation occurs in parallel at all scales; every layer
process both coarse and fine representations. Section 3.2
also explores coarse-to-fine variants that transition from
processing on a coarse pyramid to processing on a full pyra-
mid as the network deepens. Pyramids provide not only an
efficient computational model, but a unified one. Viewing
the network as evolving a representation living on the pyra-
mid, we can combine previous task-specific architectures.
For classification, attach an output to the coarsest pyramid
level; for segmentation, attach an output to the finest.

Multigrid structure facilitates cross-scale information
exchange, thereby destroying the long-established notion of
receptive field. Most neurons have receptive field equiva-
lent to the entire input; field size grows exponentially with
depth, or, in progressive multigrid networks, begins with
the full (coarse) input. Quick communication pathways ex-
ist throughout the network, and enable new capabilities.

We specifically demonstrate that multigrid CNNs,
trained in a pure end-to-end fashion, can learn to attend
and route information. Their emergent behavior may dy-
namically emulate the routing circuits articulated by Ol-
shausen et al. [28]. We construct a synthetic task that stan-
dard CNNs completely fail to learn, but multigrid CNNs
accomplish with ease. Here, attentional capacity is key.

As Section 2 reviews, recent CNN architectural innova-
tions ignore scale-space routing capacity, focusing instead
on aspects like depth. Multigrid, as Section 3 details, com-
plements such work. Section 4 measures performance im-
provements due to multigrid on classification tasks (CIFAR
and ImageNet) and synthetic semantic segmentation tasks.

Multigrid boosts both baseline and residual CNNs. On a
synthetic spatial transformation task, multigrid is more than
a boost; it is required, as residual networks alone do not pos-
sess attentional capacity. Section 5 discusses implications.

2. Related Work

In wake of AlexNet [21], exploration of CNNs across
computer vision has distilled some rules of thumb for their
design. Small (e.g. 3× 3) spatial filters, in many successive
layers, make for efficient parameter allocation [32, 34, 11].
Feature channels should increase with spatial resolution re-
duction [21, 32] (e.g. doubling as in Figure 1). Deeper net-
works are better, so long as a means of overcoming vanish-
ing gradients is engineered into the training process [34, 16]
or the network itself [33, 11, 22, 15]. Width matters [38].

The desire to adapt image classification CNNs to more
complex output tasks, such as semantic segmentation, has
catalyzed development of ad-hoc architectural additions for
restoring spatial resolution. These include skip connec-
tions and upsampling [24, 3], hypercolumns [10], and,
autoencoder-like, hourglass or U-shaped networks that re-
duce and re-expand spatial grids [1, 13, 27, 30].

This latter group of methods reflects the classic intuition
of connecting bottom-up and top-down signals. Our work
differs from these and earlier models [2] by virtual of de-
coupling pyramid level from feature abstraction. Represen-
tations at all scales evolve over the depth of our network.
Such dynamics also separates us from past multiscale CNN
work [8, 7, 35], which does not consider embedded and con-
tinual cross-scale communication.
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Figure 2. Multigrid layers. Left: We implement a multigrid convolutional layer (mg-conv) using readily available components. For each
grid in the input pyramid, we rescale its neighboring grids to the same spatial resolution and concatenate their feature channels. Convolution
over the resulting single grid approximates scale-space convolution on the original pyramid. Downscaling is max-pooling, while upscaling
is nearest-neighbor interpolation. Right: A building block (res-mg-unit) for residual connectivity [11] in multigrid networks.

While prior CNN designs have varied filter size (e.g. [21,
34]), our choice to instead vary grid resolution is crucial.
Applying multiple filter sets, of different spatial size, to a
single grid could emulate a multigrid computation. How-
ever, we use exponential (power of 2) grid size scaling.
Emulating this via larger filters quickly becomes cost pro-
hibitive in terms of both parameters and computation; it
is impractical to implement in the style of Inception mod-
ules [34]. Dilated [37] and atrous convolution [3], while
related, do not fully capture the pooling and interpolation
aspects (detailed in Section 3) of our multigrid operator.

Recent efforts to improve the computational efficiency
of CNNs, though too numerous to list in full, often attack
via parameter [36, 4, 17] or precision [29, 5] reduction.
Concurrent work extends such exploration to include cas-
cades [14, 26], in which explicit routing decisions allow for
partial evaluation of a network. Unlike this work, our cross-
scale connections are bi-directional and we explore rout-
ing in a different sense: internal transport of information
(e.g. attention [28]) for solving a particular task. We focus
on a coarse-to-fine aspect of efficiency, borrowing from the
use of multigrid concepts in image segmentation [31, 25].

3. Multigrid Architectures
Figure 1 conveys our intention to wire cross-scale con-

nections into network structure at the lowest level. We can
think of a multigrid CNN as a standard CNN in which ev-
ery grid is transformed into a pyramid. Every convolutional
filter extends spatially within grids (x, y), across grids of
multiple scales (s) within a pyramid, and over correspond-
ing feature channels (c). A pyramidal slice, across scale-
space, of the preceding layer contributes to the response at
a particular corresponding neuron in the next.

This scheme enables any neuron to transmit a signal
up the pyramid, from fine to coarse grids, and back down
again. Even with signals jumping just one pyramid level
per consecutive layer, the network can exploit this structure
to quickly route information between two spatial locations
on the finest grid. Communication time is logarithmic in

spatial separation, rather than linear as in standard CNNs.
This difference in information routing capability is par-

ticularly dramatic in light of the recent trend towards stack-
ing many layers of small 3×3 convolutional filters [32, 11].
In standard CNNs, this virtually guarantees that either very
deep networks, or manually-added pooling and unpooling
stages [1, 13, 27, 30], will be needed to propagate informa-
tion across the pixel grid. Multigrid allows for faster prop-
agation with minimal additional design complexity. More-
over, unlike fixed pooling/unpooling stages, multigrid al-
lows the network to learn data-dependent routing strategies.

Instead of directly implementing multigrid convolution
as depicted in Figure 1, we implement a close alternative
that can be easily built out of standard components in ex-
isting deep learning frameworks. Figure 2 illustrates the
multigrid convolutional layer (mg-conv) we use as a drop-in
replacement for standard convolutional (conv) layers when
converting a network from grids to pyramids.

With multigrid convolution, we may choose to learn in-
dependent filter sets for each scale within a layer, or alter-
natively, tie parameters between scales and learn shared fil-
ters. We learn independent sets, assuming that doing so
affords the network the chance to squeeze maximum per-
formance out of scale-specific representations. Channel
counts between grids need not match in any particular man-
ner. Each of c0, c1, c2, c′0, c

′
1, c
′
2 in Figure 2 is independent.

For comparisons, we either set channel count on the finest
grid to match baseline models, or calibrate channel counts
so that total parameters are similar to the baselines. Sec-
tion 4 reveals quite good performance is achievable by halv-
ing channel count with each coarser grid (e.g. c1 = 1

2c0,
c2 = 1

4c0). Thus, multigrid adds minimal computational
overhead; the coarse grids are cheap.

Given recent widespread use of residual networks [11],
we consider a multigrid extension of them. The right side of
Figure 2 shows a multigrid analogue of the original resid-
ual unit [11]. Convolution acts jointly across the multigrid
pyramid, while batch normalization (BN) [18] and ReLU
apply separately to each grid. Extensions are also possible
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Figure 3. Network diagrams. Top: Baseline (VGG) and multigrid (MG) CNNs for CIFAR-100 classification, as well as residual (RES,
R-) and progressive (PMG) versions. We vary depth by duplicating layers within each colored block. Bottom: Semantic segmentation
(SEG) and spatial transformation (SPT) architectures: U-NET [30], and our progressive multigrid alternative (PMG). We also consider
U-MG (not shown), a baseline that replaces U-NET grids with pyramids (as in VGG→MG), yet still shrinks and re-expands pyramids.
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with alternative residual units [12], but we leave such explo-
ration to future work. Our focus is on comparison of base-
line, residual, multigrid, and residual-multigrid networks.

3.1. Pooling

Within an mg-conv layer, max-pooling and subsampling
acts as a lateral communication mechanism from fine to
coarse grids. Similarly, upsampling facilitates lateral com-
munication from coarse to fine grids. Rather than locating
these operations at a few fixed stages in the pipeline, we are
actually inserting them everywhere. However, their action
is now lateral, combining different-scale grids in the same
layer, rather than between grids of different scales in two
layers consecutive in depth.

While Figure 1 shows additional max-pooling and sub-
sampling stages acting depth-wise on entire pyramids, we
also consider pipelines that do not shrink pyramids. Rather,
they simply attach an output to a particular grid (and possi-
bly prune a few grids outside of its communication range).
Success of this strategy motivates rethinking the role of
pooling in CNNs. Instead of explicit summarization em-
ployed at select stages, multigrid yields a view of pooling
as implicit communication that pervades the network.

3.2. Progressive Multigrid

The computation pattern underlying a multigrid CNN’s
forward pass has analogy with the multiscale multigrid
scheme of Maire and Yu [25]. One can view their eigen-
solver as a linear diffusion process on a multiscale pyramid.
We view a multigrid CNN as a nonlinear process, on a sim-
ilar pyramid, with the same communication structure.

Extending the analogy, we port their progressive multi-
grid computation scheme to our setting. Rather than starting
directly on the full pyramid, a progressive multigrid CNN
can spend several layers processing only a coarse grid. Fol-
lowing this are additional layers processing a small pyramid
(e.g. coarse and medium grids together), before the remain-
der of the network commits to work with the full pyramid.

In all multigrid and progressive multigrid experiments,
we set the fine-scale input grid to be the original image and
simply feed in downsampled (lower resolution) versions to
independent initial convolution layers. The outputs of these
initial layers then form a multigrid pyramid which is pro-
cessed coherently by the rest of the network.

3.3. Model Zoo

Figure 3 diagrams the variety of network architectures
we evaluate. For classification, we take a network with mi-
nor differences from that of Simonyan and Zisserman [32]
as our baseline. In abuse of notation, we reuse their VGG
name. Our 16-layer version, VGG-16, consists of 5 sections
of 3 convolutional layers each, with pooling and subsam-
pling between. A final softmax layer produces class predic-

tions (on CIFAR-100). Convolutional layers use 3×3 filters.
We instantiate variants with different depth by changing the
number layers per section (2 for VGG-11, 4 for VGG-21,
etc.). Residual baselines (RES) follow the same layout,
but use residual units within each section. Recall that each
residual unit contains two convolutional layers.

Multigrid (MG) and residual multigrid (R-MG) net-
works, starting respectively from VGG or RES, simply flip
from grids to pyramids and convolution to multigrid con-
volution. Progressive variants (PMG, R-PMG) expand the
first section in order to gradually work up to computation
on the complete pyramid. Even as their depth increases, a
significant portion of layers in progressive networks avoid
processing the full pyramid. As diagrammed, multigrid net-
works match their fine-grid feature count with baselines,
and hence add some capacity and parameters. For classi-
fication, we also consider smaller (denoted -sm) multigrid
variants with fewer channels per grid in order to be closer
in parameter count with baseline VGG and RES networks.

For the semantic segmentation and spatial transforma-
tion tasks detailed in the next section, we use networks that
produce per-pixel output. As a baseline, we employ the U-
NET design of Ronneberger et al. [30]. Again, convolu-
tional filters are 3×3, except for the layers immediately fol-
lowing upsampling; here we use 2×2 filters, following [30].
We examine progressive multigrid alternatives (PMG, R-
PMG) that continue to operate on the multiscale pyramid.
Unlike the classification setting, we do not reduce pyramid
resolution. These networks drop some coarse grids towards
the end of their pipelines for the sole reason that such grids
do not communicate with the output.

4. Experiments

Our experiments focus on systematic exploration and
evaluation of the architectural design space, with the goal
of quantifying the relative benefits of multigrid and its syn-
ergistic combination with residual connections.

4.1. Classification: CIFAR-100 [20]

We evaluate the array of network architectures listed in
Table 1 on the task of CIFAR-100 image classification.

Data. We whiten and then enlarge images to 36 × 36. We
use random 32× 32 patches from the training set (with ran-
dom horizontal flipping) and the center 32× 32 patch from
test examples. There are 50K training and 10K test images.

Training. We use SGD with batch size 128, weight decay
rate 0.0005, and 300 iterations per epoch for 200 epochs.
For VGG, MG, and PMG, learning rate exponentially de-
cays from 0.1 to 0.0001; whereas for RES, R-MG, and R-
PMG, it decays at rate 0.2 every 60 epochs.

Results. From Table 1, we see that adding multigrid capac-
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Method Params (×106) FLOPs (×106) Error (%)
VGG-6 3.96 67.88 32.15
VGG-11 9.46 228.31 30.26
VGG-16 14.96 388.75 30.47
VGG-21 20.46 549.18 31.89
MG-sm-6 3.28 46.10 33.83
MG-sm-11 8.02 154.60 31.55
MG-sm-16 12.75 263.10 32.59
MG-sm-21 17.49 371.60 34.21
MG-6 8.34 116.63 32.08
MG-11 20.46 391.88 28.39
MG-16 32.58 667.13 29.91
MG-21 44.69 942.38 30.03
PMG-sm-9 3.33 73.23 32.38
PMG-sm-16 8.07 183.34 30.47
PMG-sm-30 12.82 293.46 31.06
PMG-9 8.46 186.21 30.61
PMG-16 20.60 468.09 28.11
PMG-30 32.74 749.98 29.89
RES-12 9.50 266.02 28.64
RES-22 20.49 586.93 28.05
RES-32 31.49 907.79 27.12
RES-42 42.48 1228.65 27.60
R-MG-sm-12 8.06 180.12 30.24
R-MG-sm-22 17.52 397.11 28.65
R-MG-sm-32 26.99 614.11 29.27
R-MG-sm-42 36.46 831.11 26.85
R-MG-12 20.56 457.20 27.84
R-MG-22 44.79 1007.70 26.79
R-MG-32 69.02 1558.20 25.29
R-MG-42 93.26 2108.71 26.32
R-PMG-sm-16 8.07 183.34 29.41
R-PMG-sm-30 17.56 403.57 27.68
R-PMG-sm-44 27.05 623.79 27.00
R-PMG-16 20.60 468.09 27.35
R-PMG-30 44.88 1031.87 26.44
R-PMG-44 69.16 1595.64 26.68

Table 1. CIFAR-100 classification performance.

ity consistently improves over both basic (compare green
entries), as well as residual CNNs (blue entries). Progres-
sive multigrid nets of similar depth achieve better or compa-
rable accuracy at reduced expense, as quantified in terms of
both parameters and floating point operations (red entries).

4.2. Semantic Segmentation

We generate synthetic data (10K training, 1K test im-
ages) for semantic segmentation by randomly scaling, ro-
tating, translating, and pasting MNIST [23] digits onto a
64 × 64 canvas, limiting digit overlap to 30%. The task is
to decompose the result into per-pixel digit class labels.

In addition to networks already mentioned, we consider a
single grid (SG) baseline that mirrors PMG but removes all
grids but the finest. We also consider U-MG, which changes
resolution like U-NET, but works on pyramids.

Training. We use batch size 64, weight decay rate 0.0005,
and 150 iterations per epoch for 200 epochs. We set learn-
ing rate schedules for non-residual and residual networks in
the same manner as done for CIFAR-100.

Results. Table 2 and Figure 4 show dramatic performance

Method Params (×106) mean IoU (%) mean Error (%)
U-NET-11 3.79 58.46 22.14
U-MG-11 5.90 58.02 21.45
SG-11 0.23 32.21 22.33
R-SG-20 0.45 69.86 14.43
PMG-11 0.61 61.88 14.75
R-PMG-20 1.20 81.91 8.89

Table 2. MNIST semantic segmentation performance.

Method Params (×106) mean IoU (%) mean Error (%)
U-NET-11 3.79 12.20 37.55
SG-11 0.23 0 100.00
R-SG-20 0.45 0 82.98
PMG-11 0.61 50.64 29.20
R-PMG-20 1.20 55.61 25.59

Table 3. MNIST spatial transformation performance.

Params FLOPs val, 10-crop val, single-crop
Method (×106) (×109) Top-1 Top-5 Top-1 Top-5
VGG-16 [32] 138.0 15.47 28.07 9.33 - -
ResNet-34 C [11] 21.8 3.66 24.19 7.40 - -
ResNet-50 [11] 25.6 4.46 22.85 6.71 - -
WRN-34 (2.0) [38] 48.6 14.09 - - 24.50 7.58
R-MG-34 32.9 5.76 22.42 6.12 24.51 7.46
R-PMG-30-SEG 31.9 2.77 23.60 6.89 26.50 8.63

Table 4. ImageNet classification error (%) on validation set.

advantages of the progressive multigrid network. We report
scores of mean intersection over union (IoU) with the true
output regions, as well as mean per-pixel multiclass labeling
accuracy. These results are a strong indicator that contin-
uous operation on a multigrid pyramid should replace net-
works that pass through a low resolution bottleneck. See the
supplementary material for more examples like Figure 4.

4.3. Spatial Transformers

Jaderberg et al. [19] engineer a system for inverting spa-
tial distortions by combining a neural network for estimat-
ing the parameters of the transformation with a dedicated
unit for applying the inverse. Such a split of the problem
into two components appears necessary when using stan-
dard CNNs; they cannot learn the task end-to-end. But,
progressive multigrid networks are able to learn such tasks.

We generate a synthetic spatial transformation dataset
(60K training, 10K test images) in the same manner as the
one for semantic segmentation, but with only one digit per
image and an additional affine transformation with a uni-
formly random sheering angle in (−60◦, 60◦). Training is
the same as segmentation, except 800 iterations per epoch.

Results. Table 3 and Figure 5 show that all networks except
PMG and R-PMG fail to learn the task. Figure 5 (right side)
reveals the reason: U-NET (and others not shown) cannot
learn translation. This makes sense for single grid methods,
as propagating information across the fine grid would re-
quire them to be deeper than tested. U-NET’s failure seems
to stem from confusion due to pooling/upsampling. It ap-
pears to paste subregions of the target digit into output, but
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Figure 4. Semantic segmentation on synthetic MNIST. We compare U-NET, residual (R-), and progressive multigrid (PMG) networks
on a synthetic task of disentangling randomly distorted and overlapped MNIST digits. Figure 3 specifies the 11-layer U-NET and PMG
variants used here. An 11-layer single-grid (SG) baseline operates on only the finest scale. Analogous residual versions (R-SG, R-PMG)
are 20 layers deep. PMG thus performs similarly to a deeper single-grid residual network (R-SG), while R-PMG bests all.
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Figure 5. Spatial transformations on synthetic MNIST. Left: Only multigrid CNNs (PMG, R-PMG) are able to learn to take a distorted
and translated digit as input and produce the centered original. Right: U-NET can learn to undo rotation and affine transformations, but
not translation. U-NET’s failure stems from inability to properly attend and route information from a sub-region of the input.
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Figure 6. Attention maps for MNIST spatial transformers. To produce attention maps, we sweep an occluder (8× 8 square of uniform
random noise) over the 64 × 64 input image and measure sensitivity of the output at the red and green locations. U-NET, which fails to
learn translation, attends to approximately the same regions regardless of input. PMG and R-PMG instead exhibit attention that translates
with the input. Please see the supplementary material for a more detailed visualization of our attention map generation process.

not in the correct arrangement. Figure 6 reveals that, unlike
U-NET, PMG and R-PMG exhibit attentional behavior.

4.4. Classification: ImageNet [6]

We select two designs to train from scratch on ImageNet:

• R-MG-34: A multigrid analogue of ResNet-34 [11],
with finest grid matching ResNet, and two additional
grids at half and quarter spatial resolution (and chan-
nel count). Pooling and resolution reduction mirror
ResNet-34 and the R-MG diagram in Figure 3.

• R-PMG-30-SEG: Similar to our semantic segmenta-
tion network, but adapted to ImageNet, it maps 224×
224 input onto 4 grids: 56 × 56, 28 × 28, 14 × 14,
7×7, that are maintained throughout the network with-
out pooling stages. We increase feature count with
depth and attach a classifier to the final coarsest grid.

Training uses SGD with batch size 256, weight decay
0.0001, 10K iterations per epoch for 100 epochs, starting
learning rate 0.1 with decay rate 0.1 every 30 epochs. Ta-
ble 4 compares our performance to that of ResNets and wide
residual networks (WRN) [38]. We observe:

• Multigrid substantially improves performance. R-MG-
34 even outperforms the deeper ResNet-50.

• Multigrid is a more efficient use of parameters than
simply increasing feature channel count on a single

grid. Compare R-MG-34 with the double-wide resid-
ual network WRN-34: we match its performance with
fewer parameters and require drastically fewer FLOPs.

• R-PMG-30-SEG outperforms ResNet-34. The same
design we used for segmentation is great for classifi-
cation, lending support to the idea of a single unifying
architecture which evolves a multigrid representation.

5. Conclusion

Our proposed multigrid extension to CNNs yields im-
proved accuracy on classification and semantic segmenta-
tion tasks. Progressive multigrid variants open a new path-
way towards optimizing CNNs for efficiency. Multigrid ap-
pears unique in extending the range of tasks CNNs can ac-
complish, by integrating into the network structure the ca-
pacity to learn routing and attentional mechanisms. These
new abilities suggest that multigrid could replace some ad-
hoc designs in the current zoo of CNN architectures.

On a speculative note, multigrid neural networks might
also have broader implications in neuroscience. Feedfor-
ward computation on a sequence of multigrid pyramids
looks similar to combined bottom-up/top-down processing
across a single larger structure if neurons are embedded
in some computational substrate according to their spatial
grid, rather than their depth in the processing chain.
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