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ABSTRACT

Overhead images captured by helicopters, unmanned aerial
vehicles and satellites are widely available. Prior aerial tar-
get recognition methods mainly deal with generic object cat-
egories such as cars, roads, and boats. We go beyond this and
aim for fine-grained recognition, e.g., distinguishing between
a Toyota and a Honda sedan. This task is so challenging for
human annotators that labeling images directly is no longer
an option: annotators are often unable to identify the object
from such an extreme viewpoint and at such a low resolution.

We propose a novel solution to collect fine-grained anno-
tations of aerial images and develop the first ground-to-sky
cross-view car dataset with instance-level correspondences.
We compare the performance of human experts and deep
learning approaches on fine-grained car recognition from
aerial imagery. Noting that intraclass variation in aerial
images is limited, we further show that with simple data
augmentation, a classifier can be trained from fewer in-
stances yet achieves comparable or even significantly bet-
ter performance than human experts. Our experimental
evidence demonstrates that fine-grained object recognition
from overhead images is not only feasible but also well
suited for deep learning methods. Our dataset is available
at: http://ai.bu.edu/Ground2Sky/

Index Terms— Fine-grained Recognition, Aerial Im-
agery, Label Transfer

1. INTRODUCTION

Can you tell the model and make of the car in the overhead-
view image shown in Fig. 1? Such fine-grained aerial classi-
fication of aerial images is challenging even for humans, yet
it is increasingly important as drones and satellites are be-
coming widely available for surveillance, search-and-rescue,
scientific research and other applications. As more images
are collected from these devices, it becomes harder for hu-
man analysts to process and extract information of interest,
leading to increasing demand for computer vision approaches
to automatic aerial image understanding.

Existing computer vision approaches [1, 2, 3, 4] have
shown great promise for the analysis of aerial imagery, but
have focused on basic rather than fine-grained object cate-
gories. While [5, 6, 7, 8, 9, 10] have successfully investigated
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Fig. 1: We propose to train fine-grained car recognition from aerial
imagery with labels obtained on corresponding ground imagery. La-
belling aerial images is challenging due to extreme viewpoints and
low resolutions. Instead of trying to obtain fine-grained labels from
aerial images directly, we develop a novel method to accurately
transfer labels from high quality and information rich street-view im-
ages. We show that a deep classifier (SkyNet) can be trained with a
relatively small amount of data yet achieve comparable or even better
performance than human experts due to limited intraclass variation.

fine-grained object recognition in consumer photos, few ef-
forts have been made to study this task in aerial images.

Here we focus on fine-grained car recognition in aerial
images (Fig. 1). To the best of our knowledge, we are the
first to study fine-grained classification of mobile targets in
aerial data. RegisTree [11] used both aerial images and street
views to catalog trees. However, as trees are static objects,
they can be more easily annotated in street view, and the la-
bels transferred directly to the overhead images. We tackle a
much more challenging task of fine-grained vehicle recogni-
tion. Cars are mobile objects, so there is no guarantee of syn-
chronization between street-view and aerial-view. The ma-
jor road-block for this line of research is the difficulty and
the lack of ground-truth fine-grained annotations. Aerial im-
ages present the following unique challenges for data collec-
tion and annotation: 1) Annotator unfamiliarity; 2) Extreme
viewpoints; 3) Low resolution; 4) Lack of synchronization be-
tween aerial and street views.

We propose a novel solution to transfer fine-grained la-
bels from street-view images to aerial ones. We choose cars
as our target, as vehicles are ubiquitous, and automatic ve-
hicle model recognition is very useful for surveillance and
analytics. We observe that, although vehicles are mobile,
many residential addresses have the same vehicles parked in
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the same driveway over a long period of time, sometimes
many years. We use this guideline to select paired instances
of street-view and aerial views of cars from Google Maps
and obtain fine-grained labels based on the ground views.
Our fine-grained labels include car body color, body type, car
make, and model. We develop the first fine-grained aerial car
dataset with instance-level cross-view correspondences.

Our main contributions are: 1) the first effort to investi-
gate fine-grained vehicle recognition from aerial images; 2)
an innovative method to collect the first fine-grained aerial
car dataset with accurate labels; 3) experiments comparing
human experts and deep learning methods on car recognition
from aerial imagery, and 4) demonstrating that fine-grained
object recognition from aerial images is not only feasible, but
also maybe be more suitable for deep learning methods than
for humans.

2. RELATED WORK
Recent advances in deep learning have shown that deep neu-
ral networks perform well for a wide variety of tasks, includ-
ing image classification [12], object detection [13], seman-
tic segmentation [14], etc. While consumer photos are the
main focus, aerial images have been used in many computer
vision applications, with the majority on geolocalization [2,
3, 15, 16, 17, 18, 19]. [15] introduced the cross-view im-
age geolocalization problem, while [2, 3] used joint semantic
features learned from deep convolutional neural networks for
geolocalization and showed state-of-the-art performance. [19]
performed ground-to-aerial image matching for robot self-
localization using hand engineered features. [16] also per-
formed ground-to-aerial image matching but to geo-register
ground-level multiview stereo models. [18] performed event
recognition by fusing information from ground images and
co-located satellite images. [17] utilized building facades
from building outlines for geolocalization. [20] introduced a
well-thought-out aerial vehicle dataset, with 11 target cate-
gories including cars, boats, trucks, camping cars, (unknown)
vehicles, airplanes, etc. However, the categories are not fine
grained. [21] tried to leverage deep learning to detect and
count cars from aerial images. [22] utilized aerial images to
localize and orient ground-level query image. [23, 24, 25, 26]
tried to detect vehicle from aerial images.

Fine-grained object recognition [5, 6, 7, 8, 9, 10, 27] is
one of the most active areas of computer vision due to its
broad range of applications. Birds [5], cars [6, 7], flowers [8],
cats [9], and dogs [9, 10, 27] are the most commonly studied
objects. However, most of these are small objects that are
likely to end up in a few pixels in aerial images due to the
much lower resolution and extreme viewpoints. We choose
to investigate cars, but the same approach can be adopted to
annotate similar objects such as boats and airplanes.

Fine-grained object recognition from aerial images has
many important applications and could be a superior alter-
native to conventional approaches. For example, automatic
fine-grained car recognition from aerial images can narrow

down the search of a vehicle much faster than performing the
same task on images from surveillance cameras. It can also
enable fast surveying by comparing the distributions of car
meta-data. For example, the distribution of car makes might
reflect the social economical makeup of an area [28].

3. GROUND TO SKY LABEL TRANSFER
Labelling an aerial car image is more challenging for humans
than labeling a street-view car image as there are much fewer
useful cues. Also, we humans are not used to looking at ob-
jects from the top. For example, we can identify the type,
make, and model of a car from a street-view image fairly eas-
ily. However, without additional information, it is likely to be
difficult to identify them from aerial images.

In order to obtain high quality labels for aerial images, we
propose to collect instance level paired aerial and street-view
images. The street-view images are used by human annota-
tors to get the fine-grained labels for aerial images. We use
Google Maps to collect instance level paired data. As the
Street-view and Earth-view images from Google Maps are
likely to be captured at different time and cars are mobile tar-
gets, it is challenging to identify their correspondence through
geographical locations.

Our idea is that the street and aerial views are likely to
contain the same car if it is stationed for a long time, e.g.,
parked in a private driveway. We use the following heuristic
criteria: residential areas, personal driveway, same location,
and other information from these two views (e.g., color of the
car). The intuition is that if a car is privately owned and the
owner has a private driveway, it is more likely that the same
car is parked at the same location. Therefore the chance of
finding matched cars in the top and side views at the same
location is high. After locating these possible matches, we
then manually compare the cars from the two views and use
other clues (e.g., color and shape) to make the final decision.

3.1. Data Collection
Figure 2 illustrates the whole process of collecting and an-
notating a cross-view matched car instance: 1) Start from a
residential area; 2) Locate possible cars; 3) Match in street-
views; 4) Get fine-grained labels from street-view images.

For each matched car, we collected 6 images, with 3 aerial
images and 3 street-view ones. The reason we collected more
than one image is to enable potential fine-grained pose esti-
mation from street-view images and cross-resolution integra-
tion for aerial images. The 3 street-view images are taken
from various viewpoints: left, right, and rear views. In very
rare cases where a certain viewpoint is not achievable due
to constraints from Google Maps, 2 or even 3 images are
from the same viewpoint but with different angles. The 3
aerial images were taken at different resolutions in Google
Maps, where the “resolution” in feet corresponds to the num-
ber shown at the bottom right corner of the Google Maps in-
terface. For each car, we collected either 10 ft–20 ft–50 ft
images, or 20 ft–50 ft–100 ft (if the 10 ft resolution was not
available at that location).
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Fig. 2: Our data collection and annotation process. Starting from residential areas, we look for cars parked in personal driveways from the
Earth-view of Google Maps. We then compare them with the street-view images manually. If there is a match, we extract 3 street-view images
from different viewpoints and 3 aerial images with different resolutions. The labels are annotated based on street-view images.

3.2. Data Annotation
In this paper, we focus on the four most common tasks: car
body color, car body type, car make, and car model. For car
body color, we followed the annual surveys of PPG Indus-
tries and used these 9 fixed categories: Green, Yellow, White,
Red, Black, Brown, Grey, Silver, and Blue. We followed Na-
tional Appraisal Guides’ division and used these 9 categories
for body type: Convertible, Coupe, Hatchback, SUV, Sedan,
Sports Car, Truck, Van, and Wagon. For car make and model,
we started from an empty set and extended the label list over
the entire data collection process. The annotation was done by
undergraduate students who were trained extensively to make
sure the label quality is as high as possible.

3.3. Dataset Statistics
We have so far collected 1221 cars with paired aerial and
street-view images. While the collection process is still on-
going, here we report results with this initial dataset. Its size
is much smaller than consumer-image datasets (e.g., Ima-
geNet [29]). However, in contrast to consumer images, aerial
images’ viewpoint only differs in the in-plane rotation, and
thus intraclass variation is limited.

4. EXPERIMENTS
In this paper, we conduct two sets of experiments. The first
one tests the quality of labels in our dataset by calculating hu-
man agreement on meta labels and across views. The second
experiment performs automatic fine-grained car recognition
from aerial images. In this experiment, we compared the per-
formance of human experts and deep learning approaches.

4.1. Human Agreement on Meta-labels
To measure the quality of our dataset, we perform a sanity
check by comparing the agreement of two human annotators
for each meta-label based on street view images. We ran-
domly sampled 100 cars (street view) from the whole dataset
for each meta-label and compare the agreement of two indi-
viduals without any collaboration. For each meta-label, the

Agreement Ratio Color Type Make Model

Our Dataset 89% 92% 91% 90%

Stanford Cars [6] 89% 99% 95% 88%

Table 1: Human agreement ratios of meta-labels on our dataset
(street view) and Stanford Cars dataset [6]. The comparable agree-
ment ratios suggest that our annotations are of same high quality as
those in Stanford cars.

Color Type Make Model

Training 621 625 390 73

Test 257 259 185 40

Table 2: Number of training and test data for each task.

100 cars might be different as some cars lack certain meta-
labels. To better interpret the agreement ratio, we also per-
formed the same experiment on the Stanford Cars dataset [6].
The Stanford Cars dataset contains 16,185 high quality im-
ages of 196 classes of cars. Our intuition is that the agreement
ratio on Stanford Cars should be higher than on our data, as
the images are of higher quality and have less ambiguity.

From Table 1, we can that the agreement ratios on our
dataset are comparable to those on Stanford Cars dataset, sug-
gesting that our annotations are of similar high quality.

4.2. Matching Quality Across Views
We have shown that the quality of our labels transferred from
street-view images is very high. To address further concern of
mismatches between cars in aerial and street views, we con-
duct experiments to measure the human agreement of match-
ing across views. We randomly sample 100 addresses from
our dataset, show them to two additional human annotators
and ask if the car is the same in both views. The high agree-
ment ratio (99%) between all 3 annotators (the original anno-
tators and the two additional ones) indicates very high match-
ing likelihood.



Task #Classes Random Guess Human Human-Exp SkyNet-A SkyNet-L SkyNet-A-A SkyNet-L-A

Color 9 11.1% 63.5% 68.9% 65.6% 54.3% 64.8% 59.2%

Type 9 11.1% 45.6% 42.5% 45.9% 45.5% 60.2% 55.8%

Make 20 5.0% 17.8% 20.5% 18.9% 19.0% 19.5% 20.0%

Model 10 10.0% 20.0% 25.0% 20.0% 25.0% 22.5% 25.0%

Table 3: Classification accuracy for each independent meta-label task. We can see that even with relative small training, SkyNet can actually
achieve comparable (color, make, and model) or even significant better (type) performance than human experts.

4.3. Fine-grained Car Recognition
We conduct experiments on fine-grained car recognition from
aerial imagery and compare the performance of human anno-
tators and deep CNN models. We train and test the model on
a single aerial image per car, namely the 20 ft resolution, as it
was the highest and most common resolution across the whole
dataset. Due to the long-tail distribution of the dataset, some
categories might contain one or two cars, especially for some
rare car makes and models. This amount of data is likely not
enough to train a good model. We thus picked the top 20 cat-
egories for car make and top 10 categories for car model. For
color and type, as the amount of data in each category is rela-
tively large, we used all the 9 categories. For each experiment
on color, type, make, or model, we randomly sampled 70% of
the cars as training data and the remaining 30% as test data.
Table 2 shows the exact number of images of the training and
test data for each task.

4.3.1. SkyNet: Fine-grained Car Recognition with Deep
Neural Networks
We modified the commonly used AlexNet [12] deep convnet
for our task. The output dimension of the last fully con-
nected layer was changed to the number of categories for
each sub-task accordingly and initialized with N (0, 0.01).
For simplicity, each task is treated independently. We ini-
tialized the other layers from the parameters pre-trained on
ImageNet [29]. In the training phase, we utilize mini-batch
stochastic gradient descent (SGD) and set the base learning
rate to be 10−3, weight decay to be 5×10−4, and momentum
to be 0.9. We name the model fine-tuned on aerial imagery
SkyNet. Two sets of deep CNN experiments are conducted
for each task: fine-tuning All the layers (SkyNet-A) v.s. fine-
tuning the Last layer only (SkyNet-L). Based on the intuition
that the intraclass variation in aerial images of cars is very
limited compared to street-view ones, we further Augment
the data by transforming the cars to be vertically oriented
and flip upside down (SkyNet-A-A and SkyNet-L-A for fine-
tuning all layer and last layer). We use the Caffe deep learning
framework [30] for all experiments with the default settings.
During the training process, we find that the network begins
to converge after 30,000 iterations and we report the accuracy
at 40,000 iterations.

4.3.2. The “Daunting” Human Performance
On the contrary to most human baselines where the annota-
tors were shown images directly without extensive training,

we conducted two sets of human experiments for fair com-
parison. In the first experiment (‘Human’ column in Table 3),
the human annotators were trained with street view images
only. For the second one (‘Human-Exp’ column), they were
trained with both street view images and aerial view images.
Comparing Human with Human Expert, we can see that the
performances are about the same. This result further confirms
our conjecture that aerial imagery contains very little informa-
tion and humans are not good at looking from the above.

4.3.3. Discussions
From the results in Table 3, we were surprised to find that
with limited training data, SkyNet actually achieves compa-
rable and even better performance than human experts in all
four tasks. Not surprisingly, car body color is the easiest task
for both humans and CNN models and their performance are
comparable. Car body type is relatively easy to classify as
well. One interesting thing is that there is a large gain (60.2%
v.s. 45.9%) from data augmentation and the performance of
SkyNet-A-A is significantly better than human or human ex-
pert (60.2% v.s. 45.6% or 42.5%). This further confirms
our assumption that the intraclass variation is much smaller
than in street-view images. For car make and model, neither
human experts nor SkyNet achieves good performance com-
pared to the other tasks. This might be due to the fact that
different car makes usually produce similar car models (e.g.,
Toyota Corolla v.s. Honda Civic).

5. CONCLUSION
We investigated fine-grained car recognition from aerial im-
agery and proposed a novel method to collect the first fine-
grained car dataset. We then compared the performance of
humans and deep learning approaches. Noting the limited
intraclass variation in aerial images, we further showed that
deep CNN models achieve comparable or even significantly
better performance than humans with limited data and simple
data augmentation, compared to recognition from street-view
images. Our initial evidence suggests that fine-grained car
recognition in aerial images is not only feasible but also well
suited for deep learning methods. We hope that the dataset
will be used by the community as a standard benchmark.
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