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Abstract

A first-person camera, placed at a person’s head, cap-
tures, which objects are important to the camera wearer.
Most prior methods for this task learn to detect such im-
portant objects from the manually labeled first-person data
in a supervised fashion. However, important objects are
strongly related to the camera wearer’s internal state such
as his intentions and attention, and thus, only the per-
son wearing the camera can provide the importance labels.
Such a constraint makes the annotation process costly and
limited in scalability.

In this work, we show that we can detect important ob-
jects in first-person images without the supervision by the
camera wearer or even third-person labelers. We formulate
an important detection problem as an interplay between the
1) segmentation and 2) recognition agents. The segmenta-
tion agent first proposes a possible important object seg-
mentation mask for each image, and then feeds it to the
recognition agent, which learns to predict an important ob-
ject mask using visual semantics and spatial features.

We implement such an interplay between both agents via
an alternating cross-pathway supervision scheme inside our
proposed Visual-Spatial Network (VSN). Our VSN consists
of spatial (“where”) and visual (“what”) pathways, one of
which learns common visual semantics while the other fo-
cuses on the spatial location cues. Our unsupervised learn-
ing is accomplished via a cross-pathway supervision, where
one pathway feeds its predictions to a segmentation agent,
which proposes a candidate important object segmentation
mask that is then used by the other pathway as a supervisory
signal. We show our method’s success on two different im-
portant object datasets, where our method achieves similar
or better results as the supervised methods.

1. Introduction
A question “what is where?” attempts to delineate a pic-

ture as a spatial arrangement of objects rather than a collec-
tion of unordered visual words, which inspires core com-
puter vision tasks such as recognition, segmentation, and
3D reconstruction. This spatial arrangement encodes not

Figure 1: Given an unlabeled set of first-person images our
goal is to find all objects that are important to the camera
wearer. Unlike most prior methods, we do so without using
ground truth importance labels.

only the physical relationship between objects in front of
the camera but also the interactions with the photographer
standing behind the camera1. A picture is always taken by a
photographer reflecting what is important to her/him, which
provides a strong cue to infer the internal states such as
his/her intent, attention, and emotion. In particular, first-
person videos capture unscripted interactions with scenes
suggesting that the spatial layout is arranged such that the
objects can afford the associated actions, e.g., a cup appears
to be held by right hand from the holder’s point of view.

In this paper, we aim to detect objects that are important
to the photographer from a first-person video. Since impor-
tance is a subjective matter, the photographer is the only one
who can identify an important object. However, we conjec-
ture that it is possible to detect important objects without
the supervision by the photographer or even third-person la-
belers because an important object exhibits common visual
semantics (what it looks like) and a spatial layout (where it
is in the first-person image).

To achieve this goal, we formulate an important object
1Figure-ground segmentation, and saliency detection are a line of work

that addresses the relationship with the photographer.
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detection task as an interaction between the 1) segmentation
and 2) recognition agents. Initially, the segmentation agent
generates a candidate important object mask for each image,
and relays this mask to the recognition agent, which then
tries to learn a classifier to predict such an important object
mask using visual semantics and spatial cues.

Our segmentation agent is implemented using an MCG
projection scheme, which employs the samples generated
from an unsupervised segmentation method [1] to propose
important object segmentation masks to the recognition
agent. Our recognition agent is implemented using the vi-
sual (“what”) and spatial (“where”) pathways of our pro-
posed Visual-Spatial Network (VSN), each of which learns
to predict important object masks by asking questions “what
an important object looks like?” and “where an important
object is in the first-person image?”. We design these path-
ways using a fully convolutional network (FCN) while also
embedding a location dependent layer in the spatial path-
way to learn the first-person spatial location prior.

Our VSN then learns to detect important objects with-
out using manually annotated importance labels. We do so
via an alternating cross-pathway supervision, in a synergis-
tic interplay between visual (“what”) and spatial (“where”)
pathways, and a segmentation agent. Each pathway’s output
is provided to a segmentation agent, which first generates a
possible important object segmentation mask and then re-
lays it to the other pathway to be used as a supervisory sig-
nal. The supervision proceeds in such an alternating fashion
as each pathway improves each other, and as the segmenta-
tion agent becomes better as well.

Why Unsupervised Learning? Building a framework
that can learn without manually collected labels is particu-
larly essential for first-person important object detection be-
cause the annotation task is not scalable at all unlike object
detection/segmentation [6, 17] where a consensus of third
parties from crowdsourcing mechanism can be used. In the
important object detection task, only the camera wearer can
perform the annotation task by looking back on his/her past
experiences. Prior methods [15] have used a wearable gaze
tracker to label the camera wearer’s visual attention. How-
ever, gaze tracker is invasive and the data that it captures
has no notion of objects. Instead, our paper addresses these
issues via an unsupervised alternating cross-pathway learn-
ing scheme, which allows our method to achieve similar or
even better results as the supervised methods do.

2. Related Work
Important Object Detection in First-Person. There

have been a number of first-person methods that explored
important object detection task either as a main task [3,
26, 8], or as an auxiliary task for an activity recogni-
tion [25, 15, 20, 7] or video summarization [12, 19]. The
work in [12, 8, 15, 25] employ hand-crafted appearance fea-

tures, egocentric and optical flow features to describe a first-
person image, and then train a discriminative classifier to
detect the regions that correspond to the important objects.
The more recent work [20, 3] use FCNs [18] to predict im-
portant objects end-to-end. Whereas the method in [3] em-
ploys a two stream visual appearance and 3D network, the
work in [20] exploits the connection between the activities
and objects and proposes a two stream appearance and op-
tical flow network with a multi-loss objective function.

All of these methods use manually annotated important
object labels, which may be costly and difficult to obtain.
Our approach, on the other hand, introduces a new unsu-
pervised learning scheme that allows us to learn important
objects without manually labeled importance annotations.

Training FCNs with Weakly-Labeled Data. Re-
cently, there have been several deep learning approaches
that proposed learning with weakly labeled or unlabeled
datasets [14, 5, 2, 21, 28, 24, 16, 23, 22] . Due to the high
cost of obtaining per-pixel labels, this has been a particu-
larly relevant problem for semantic segmentation.

The weakest form of supervision for semantic segmen-
tation includes image-level labels, which were used to train
FCNs in several prior approaches [24, 23, 22, 21]. Some re-
cent work [2] used point supervision, which requires almost
as much effort as the image-level labels but also provides
some spatial information. Several approaches employed
free form squiggles as a supervisory signal [28, 16] which
provides even more information, and are still easy enough to
annotate. Furthermore, several approaches utilized bound-
ing box level annotations for FCN training [21, 5]. Finally,
recent work achieved excellent edge detection results with-
out using any annotations at all [14].

In comparison to prior work, which focuses on the
third-person data, our method focuses on the first-person
data. Unlike third-person object detection/segmentation
tasks where annotations can be obtained via a crowdsourc-
ing mechanism, important object detection task requires the
camera wearer to provide the labels, which severely limits
its scalability. Due to such a constraint, an unsupervised
learning framework is particularly important for the impor-
tant object detection task in the first-person setting.

3. Approach Motivation
Our goal is to 1) recognize and 2) segment important

objects from a first-person image in an unsupervised set-
ting. Thus, we want our method to have two key proper-
ties: 1) it needs to segment the important objects from the
background based on the low-level grouping cues and 2) it
needs to be discriminative, i.e, recognize objects that are
important and ignore all the irrelevant objects.

To achieve these goals, we frame an important object
prediction task as an interplay between the 1) recognition
and 2) segmentation agents, where a segmentation agent
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Figure 2: We implement an interplay between the segmentation and recognition agents via an alternating cross-pathway
supervision scheme inside our proposed Visual-Spatial Network (VSN). Our VSN consists of the 1) visual (“what”) and 2)
spatial (“where”) pathways, which both act as recognition agents. In between these two pathways, the VSN uses an MCG
projection scheme, which acts as a segmentation agent. Then, given a set of unlabeled first-person training images, we first
guess “where” an important object is in the first-person image and use an MCG projection scheme to propose important
object segmentation masks. These masks are then used a supervisory signal to train a visual pathway such that it would learn
“what” an important object looks like. Then, in the V2S round, the predictions from the visual pathway are passed through
the MCG projection, and transfered to the spatial pathway. The spatial pathway then learns “where” an important object is in
the first-person image. Such an alternating cross-pathway supervision scheme is repeated for several rounds.

first proposes a possible important object mask, which a
recognition agent then uses as a supervisory signal to learn
an important object classifier based on visual (“what”) and
spatial (“where”) cues.

In the context of our unsupervised learning framework,
the main challenge is to prevent overfitting of either a seg-
mentation or a recognition agent. If the segmentation agent
proposes too many different segments, the recognition agent
will not be able to learn a concept of important objects (par-
ticularly if these segments are not recurring). On the other
hand, if the recognition agent narrowly focuses on predict-
ing one type of object, or an object that appears at a particu-
lar location, it will not generalize well across all images. We
address the first issue by feeding the predictions from the
recognition agent to the segmentation agent, so that the tar-
get segmentations would consistently improve as the recog-
nition agent gets better. To tackle the second issue, we force
the recognition agent to learn a diverse model by making it
focus on visual (“what”) and spatial (“where”) cues in an
alternating fashion.

We now provide more details related to the 1) segmen-

tation and 2) recognition agents that we want to use for our
unsupervised learning task.

3.1. Segmentation Agent

The goal of a segmentation agent is to propose segmen-
tation masks of the important objects, which could then be
used by a recognition agent as a supervisory signal. We im-
plement such a segmentation agent via our introduced MCG
projection scheme. We define MCG projection as a function
h(A,R) that takes two inputs: 1) a coarse per-pixel impor-
tant object mask prediction A, and 2) a set of regions R
obtained from a segmentation method MCG [1]. The out-
put h(A,R) then captures an important object segmentation
mask proposed by a segmentation agent.

We first run an MCG [1] segmentation algorithm, which
segments a given image into regions R. Then, for every
MCG region R, we compute the mean value of all values in
A that fall in the region R, and assign that value to the en-
tire region R. Since MCG regions overlap with each other,
the pixels belonging to multiple overlapping regions, get as-
signed multiple values (from each region they belong to).



To assign a single value to a given pixel, we perform max-
pooling, over the values of that pixel in each of the regions
that contains that pixel. This then produces a candidate im-
portant object segmentation mask.

3.2. Recognition Agent: Motivation

To build a recognition agent that is discriminative, and
yet generalizable, we focus on two distinct aspects of an
important object prediction task: the “what” (what does an
important object look like?) and the “where” (where does
an important object appear in the first-person image?).

The Visual Cues (What it looks like?) A natural way
to predict important objects is by learning “what” they look
like. Such learned visual appearance cues can then be
used to predict important objects in an image. This is ex-
actly what is done by the supervised methods, which use
the ground-truth data to learn the visual characteristics of
“what” a prototypical important object looks like in a first-
person image. However, in the context of our problem, we
do not have access to such ground-truth data. Thus, the key
question becomes whether we can learn to detect important
objects despite not knowing “what” they look like before-
hand?

The Spatial Cues (Where it is?) We conjecture that
important objects are spatially arranged in the first-person
image to afford the camera wearer’s interactions with those
objects. In other words, by performing activities, and look-
ing at things, the camera wearer is implicitly labeling what
is important to him, which is also captured in a first-person
image. For instance, a cup often appears at the bottom right
of a first-person image, because most people look down at
it and also hold it with their right hand.

Thus, since 1) people typically look down at an object,
with which they interact, and 2) since most people are right-
handed, we conjecture that many important objects appear
at the bottom-right of a first-person image, which we guess
to be at (x, y) location (0.6W, 0.75H), where W and H
denote the width and height of the first-person image. We
refer to this location as a spatial important object location
prior.

Since we do not have ground truth labels, we cannot di-
rectly supervise our network by telling it “what” an impor-
tant object looks like. However, we can tell the network
“where” we think an important object is such that the net-
work would learn the visual appearance cues necessary to
recognize “what” appears at that location. In the best case,
there will be a true important object at our specified loca-
tion, and the network will then learn “what” that important
object looks like. Otherwise, if our guess is incorrect, the
network will try to learn a meaningless pattern of “what”
something that is not an important object looks like. If we
make enough correct guesses of “where” the true important
objects are, our network will learn “what” important objects

look like without ever using ground truth importance labels.

4. Visual-Spatial Network
To holistically integrate both segmentation and recogni-

tion agents, we introduce a Visual-Spatial Network (VSN)
that learns to detect important objects from unlabeled first-
person data. Our network consists of the 1) visual (“what”)
and 2) spatial (“where”) pathways, which act as recognition
agents. In between these two pathways, the VSN employs
an MCG projection scheme, which acts as a segmentation
agent.

During training, we first use an MCG projection to
propose a candidate important object segmentation mask,
which is then used by the visual “what” pathway as a super-
visory signal. Then, the predictions from the visual pathway
are used by the segmentation agent to generate an improved
important object segmentation mask, which is used as a su-
pervisory signal by the spatial “where” pathway. Such a su-
pervision scheme between the two pathways proceeds in an
alternating fashion, allowing each pathway to improve each
other, while the segmentation agent also improves. We refer
to such a learning scheme as a cross-pathway supervision,
which we illustrate in Fig. 2.

4.1. Visual “What” Pathway

The visual pathway of our VSN is based on a fully con-
volutional VGG architecture [27], which is pretrained for
the segmentation task on Pascal VOC dataset with 20 dis-
tinct classes such as airplane, bus, cow, etc. We note that
the classes in Pascal VOC dataset are quite different com-
pared to the important object classes in the datasets that we
use for our experiments. For instance, Pascal VOC segmen-
tation dataset does not include annotations for classes such
as food package, knife, suitcase, sweater, pizza and many
more object classes. In the experimental section, we also
verify this claim by showing that the VGG FCN [27] that
was pretrained for the Pascal VOC semantic segmentation
task alone produces poor important object detection results.

We want to make it clear that we do not claim that our
method does not use any annotations at all. Our main claim
is that we can learn to detect important objects in first-
person images without manually annotated first-person im-
portance labels. Our network still needs a general visual
recognition capability to differentiate between various vi-
sual appearance cues. Otherwise, due to a noisy supervi-
sory signals that we use to train each pathway, our network
would struggle to learn the visual cues that are indicative of
true important objects.

4.2. Spatial “Where” Pathway

The spatial pathway is also based on the pretrained VGG
FCN [27]. However, unlike the visual pathway, the spa-
tial pathway incorporates a two-channel grid of normalized



X and Y coordinates that correspond to every pixel in the
first-person image. These coordinates are resized and con-
catenated to the visual features in the fc7 layer and such
concatenated representation is then used as an input to the
fc8 layer that predicts important objects.

4.3. Alternating Cross-Pathway Supervision

We now describe our alternating cross-pathway supervi-
sion scheme, which is implemented via a synergistic inter-
play between the spatial and the visual pathways, and with
a segmentation agent in between these two pathways.

Initial Round. In the initial round, we want the visual
pathway to predict important objects based on “what” they
look like. It should learn to do so from the important object
segmentation masks provided by an MCG projection step.
These initial segmentation masks are constructed based on
our guesses “where” important objects might appear in the
first-person image.

Formally, we are given a batch of unlabeled first-person
RGB images, which we denote as B ∈ RN×C×H×W ,
where N depicts a batch size, H and W refer to the height
and width of an image, and C refers to the number of chan-
nels (C = 3 for RGB images). Then, let G ∈ RN×H×W

denote images with a Gaussian placed around a spatial im-
portant object prior location (0.6W, 0.75H).

Furthermore let h denote the MCG projection function
that takes two inputs: 1) a coarse important object mask A,
and 2) MCG regions R, and outputs a candidate important
object segmentation mask h(A,R).

Finally, let f(B) ∈ RN×H×W depict the output of the
visual pathway that takes a batch of first-person images as
its input and outputs a per-pixel important objects map for
every image in the batch. Then the cross-entropy loss that
we minimize during the initial round is:

L =
−1
Z

N∑
i=1

H×W∑
j=1

[
hj(G

(i), R(i)) log (fj(B
(i)))

+ (1− hj(G
(i), R(i))) log (1− fj(B

(i)))
]

where Z = NHW .
V2S Round. During the V2S (Visual to Spatial) round,

given the important object masks based on “what” they look
like, we want spatial pathway to find image segments in the
first-person image “where” such important objects appear.

Formally, let g(B,X, Y ) ∈ RN×H×W depict the output
of the spatial pathway, where in this case X,Y denote a
batch of normalized coordinate grids (each with dimensions
N × H × W ). These X,Y coordinate grids correspond
to every pixel in the first-person image. Then the cross-
entropy loss that we minimize during the V2S round is:

EgoNet [3] VSN Ground Truth

Figure 3: The qualitative important object predictions re-
sults. Despite not using any importance labels during train-
ing, our VSN correctly recognizes and localizes important
objects in all three cases.

L =
−1
Z

N∑
i=1

H×W∑
j=1

[
hj(f(B

(i)), R(i)) log (gj(B
(i), X(i), Y (i)))

+ (1− hj(f(B
(i)), R(i))) log (1− gj(B

(i), X(i), Y (i)))
]

S2V Round. In the S2V (Spatial to Visual) round, the
visual pathway receives important object masks from the
spatial pathway. Then, based on the spatial pathway’s pre-
dictions “where” an important object is, the visual path-
way tries to learn “what” those important objects look like.
The cross-entropy loss function that we minimize during the
S2V round is:

L =
−1
Z

N∑
i=1

H×W∑
j=1

[
hj(g(B

(i), X(i), Y (i)), R(i)) log (fj(B
(i)))

+ (1− hj(g(B
(i), X(i), Y (i)), R(i))) log (1− fj(B

(i)))
]

Alternation. We alternate our cross-pathway supervi-
sion process between the V2S and S2V rounds until there
is no significant change in performance (3-4 rounds). Such
an alternating learning scheme is beneficial because differ-
ent visual/spatial feature inputs to the two pathways, force
each pathway to maintain focus on objects that exhibit dif-
ferent spatial/visual characteristics. For instance, the spatial
pathway can focus on objects that are at the same spatial
location, but exhibit different visual features. In contrast,
the visual pathway is able to focus on the objects that look
similar but are at different locations. Such an alternation be-
tween the two pathways provides diversity to our learning
scheme, which we empirically show to be beneficial.



4.4. Using Extra Unlabeled Data for Training

We note that unlike supervised methods that use man-
ually annotated importance labels, we use unlabeled data,
which leads to a much harder learning task. We compen-
sate the lack of importance labels with large amounts of
unlabeled data, a strategy, which was also used by an unsu-
pervised edge detector [14]. For all of our experiments, we
train our VSN on the combined datasets of (1) first-person
important object RGBD [3], (2) GTEA Gaze+ [15], and (3)
five relevant first-person videos downloaded from YouTube
(without using the labels even if they exist). We note that
using more unlabeled data to train our model is essential
for achieving the results that are competitive with the su-
pervised methods’ performance.

We point out that our method’s ability to use unlabeled
data for training is a big advantage in comparison to the su-
pervised methods. The performance of CNNs typically im-
proves with more training data, and unlabeled data is easy
and cheap to obtain. In comparison, getting labeled data
is costly and time consuming, especially if it requires per-
pixel labels as in our work.

4.5. Prediction during Testing

During testing, we average the predictions from the vi-
sual and spatial pathways. Such a prediction scheme allows
each pathway to correct some of the other pathway’s mis-
takes, and achieve a better important object prediction ac-
curacy than any individual pathway alone would.

4.6. Implementation Details

For all of our experiments, we used a Caffe deep learning
library [10]. We employed visual and spatial pathways that
adapted the VGG FCN architecture [27]. During training,
each of the optimization rounds was set to 2000 iterations.
During those rounds one of the selected pathways was opti-
mized to minimize the per-pixel sigmoid cross entropy loss,
while the other was fixed. We performed 3 rounds in total,
which was enough to reach convergence. During the train-
ing we used a learning rate of 10−7, the momentum equal
to 0.9, the weight decay of 0.0005, and the batch size of 15.
The resolution of the resized XY grids concatenated to the
fc7 layer activations were 8 times smaller than the input.

5. Experimental Results
In this section, we present quantitative and qualitative

results of our VSN method. We test our method on two
first-person datasets, that have per pixel action object anno-
tations: (1) First-Person Important Object RGBD [3], and
(2) GTEA Gaze+ [15] datasets. Even though both datasets
have annotated importance labels, they are quite different.
GTEA Gaze+ dataset captures the activities of cooking dif-
ferent meals, and thus there is less variation in the scene and

FP-AO-RGBD GTEA Gaze+ mean
Method MF AP MF AP MF AP

VGG FCN [27] 0.166 0.106 0.325 0.214 0.246 0.160
GBVS [9] 0.197 0.136 0.383 0.296 0.290 0.216
Judd [11] 0.182 0.107 0.406 0.328 0.294 0.218
DCL [13] 0.255 0.068 0.427 0.120 0.341 0.094

SIOLP 0.278 0.148 0.416 0.209 0.347 0.179
Trained SIOLP‡ 0.282 0.176 0.446 0.351 0.364 0.264
FP-MCG [1]‡ 0.317 0.187 0.447 0.361 0.382 0.274
DeepLab [4]‡ 0.370 0.266 0.472 0.390 0.421 0.328
EgoNet [3]‡ 0.396 0.313 0.536 0.449 0.466 0.381

VSN 0.421 0.316 0.482 0.472 0.452 0.394
VSN+EgoNet‡ 0.455 0.382 0.588 0.604 0.522 0.493

Table 1: The quantitative important object prediction re-
sults on the first-person important object RGBD and GTEA
Gaze+ datasets according to the max F-score (MF) and av-
erage precision (AP) metrics. Our results indicate that even
without using important object labels our VSN achieves
similar or even better results than the supervised baselines.
Supervised methods are marked with ‡.

the activity itself. In comparison, the first-person important
object RGBD dataset is smaller but captures people doing
seven different activities in pretty different scenes, which
makes the dataset more diverse and slightly more chal-
lenging. The First-Person Important Object RGBD dataset
has 4247 annotated examples from seven video sequences,
whereas for the GTEA Gaze+ dataset we use 6332 images
from 22 different sequences.

We evaluate the important object detection accuracy us-
ing max F-score (MF), and average precision (AP) metrics,
which are obtained by thresholding the probabilistic impor-
tant object maps at small intervals and computing a pre-
cision and recall curve against the ground-truth important
objects.

As our baselines we use a collection of the methods that
were recently shown to perform well on this task as well
as some of our own baselines. EgoNet [3] is a two-stream
network that incorporates appearance and 3D cues to de-
tect important objects. We also include a DeepLab [4] sys-
tem, which we train for the important object detection task.
Additionally, we incorporate a MCG [1] method trained
for first-person important object detection (FP-MCG). Fur-
thermore, we include three popular visual saliency meth-
ods: (1) Judd [11], (2) GBVS [9], and (3) Deep Contrast
Saliency method [13]. Additionally, we also evaluate the
results achieved by (1) a spatial important object location
prior (SIOLP), and (2) an spatial important object location
prior that was obtained by extracting it from the training
data using ground-truth important object labels. Further-
more, to show that the network that we used to pretrain our
VSN performs poorly by itself, we include a VGG FCN [27]
baseline. To obtain important object predictions we simply
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(a) Spatial pathway performing better than the visual pathway

RGB Input Spatial Pathway Visual Pathway

(b) Visual pathway performing better than the spatial pathway

Figure 4: A figure illustrating a qualitative important object prediction comparison between the visual and spatial pathways
(best viewed in color). Subfigure 4(a) illustrates instances where the spatial pathway’s reliance on location features is ben-
eficial: it detects small and partially occluded important objects, which the visual pathway fails to detect accurately. The
Subfigure 4(b) shows instances where the spatial pathway’s reliance on location features leads to incorrect results: it falsely
marks regions in the first-person image as important objects just because they appear at a certain location in the first-person
image. In contrast, the visual pathway correctly predicts important objects in those instances.

sum up the probabilities for all 20 predicted Pascal VOC
classes. Finally, to show that the predictions of our VSN
method are highly complementary to the best performing
EgoNet method’s predictions, we combine these two meth-
ods via averaging, and demonstrate that for each dataset
VSN significantly improves EgoNet’s results.

Out of the above listed baseline methods, Judd [11],
GBVS [9], DCL [13], SIOLP, VGG-FCN, and our VSN
methods do not use any important object annotations. All
the other methods are trained using the manually annotated
important object labels. We also note that all the FCN
baselines (VGG-FCN, DeepLab, EgoNet and VSN) have
been pretrained for the semantic segmentation task under
the same conditions.

We used publicly available implementations of VGG-
FCN, GBVS, Judd, FP-MCG [1], and DeepLab [4] and
trained and evaluated all these baselines ourselves. We
obtained the results for EgoNet from the technical report
in [3]. To the best of our knowledge EgoNet is currently the
best performing method in this task, and thus, to compare
to the most recent and best performing system, we adopted
the evaluation procedure from [3]. Our evaluations provide
evidence for two conclusions:

• In Subsections 5.1, 5.2, we show that despite not using
any important object labels our VSN achieves results
similar or even better than the supervised methods do.

• In Subsection 5.3, we show that using a visual and a
spatial pathway is beneficial compared to using either
two visual or two spatial pathways.

5.1. Results on Important Object RGBD Dataset

In Table 1, we present important object detection results
on the First-Person Important Object RGBD dataset [3],
averaged over 7 video sequences from different activities.

The results indicate that our VSN achieves the best per-
class mean MF and AP scores. These results may seem
surprising, because unlike EgoNet and all the other super-
vised baselines, our VSN does not use any important object
annotations. However, VSN uses a larger amount of un-
labeled data for its training, which contributes to a better
performance.

We also note that the VGG-FCN, which we use as an
initialization for both of our VSN pathways, achieves the
worst performance among all the baselines, which suggests
that predicting 20 Pascal VOC classes alone is not enough
to achieve a good performance on the important object de-
tection task. We also point out that combining VSN and
EgoNet predictions, leads to a greatly improved accuracy
according to both metrics, which implies that both methods
learn complementary important object information.

In Figure 3, we also compare qualitative important ob-
ject detection results of our VSN and a supervised EgoNet
model. We show that unlike EgoNet, our VSN correctly
detects and segments important objects in all three cases.

5.2. Results on GTEA Gaze+ Dataset

In Table 1, we present MF and AP important object de-
tection results on the GTEA Gaze+ dataset [15] averaged
over 22 videos. The results indicate that our VSN outper-
forms all the other methods according to AP metric, and is
outperformed only by EgoNet according to the MF metric.
We also note that just like with the previous dataset, com-
bining VSN and EgoNet predictions leads to a dramatic ac-
curacy boost according to both metrics.

5.3. Do We Need Both Spatial and Visual Pathways?

One may notice that the spatial pathway is a more power-
ful version of a visual pathway since it can use both spatial
and visual cues to predict important objects. Therefore, a
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Figure 5: Our results demonstrate that using a visual and
a spatial pathway (VSN) yields better important object de-
tection accuracy than using either two visual (VVN) or two
spatial pathways (SSN).

natural question is whether we need a visual pathway at all.
To answer this question we quantitatively compare our

approach to the baselines that use either two visual path-
ways (VVN) or two spatial pathways (SSN). We present
these results in Figure 5, where we show that our VSN
method achieves 0.421 MF accuracy,whereas the VVN and
SSN baselines yield 0.402 and 0.400 MF accuracy respec-
tively, suggesting that having a visual and a spatial pathway
in the network is beneficial.

Furthermore, to get a better qualitative insight into the
reasons of why this is happening, we also perform a number
of other experiments. In Figure 6, we visualize the weight
magnitudes from the second to last layer inside the spatial
pathway. Note that the weight magnitudes corresponding to
the (x, y) location features (last two features in the plot) are
significantly larger then any visual fc7 features, suggesting
that the spatial pathway relies heavily (and maybe even too
heavily) on the (x, y) location features.

Note that our supervisory signal is heavily based on our
guess “where” the important objects are, i.e. it will have
large values around a certain spatial location in the image.
As a result, the spatial pathway, which has access to the
(x, y) coordinates, could learn to produce high response
values at pixels associated with a certain location in the
first-person image. In the extreme case, this could lead to a
severe overfitting, as the spatial pathway could completely
ignore the visual appearance information (e.g. what the ob-
ject looks like) and simply predict important objects based
on their location in the first-person image.

To confirm such behavior, in Figure 4, we present a few
qualitative comparisons between the predictions from the
visual and spatial pathways. In Subfigure 4(a), we illustrate
instances where the spatial pathway’s reliance on location
features is beneficial: unlike the visual pathway, it is able
to detect small and partially occluded important objects be-
cause they appear at a certain location. However, in Subfig-
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Figure 6: Visualization of the spatial pathway’s weight
magnitudes in the layer that is used to predict important ob-
jects. Note that the weight magnitudes corresponding to
the (x,y) location features (the last two features in the plot)
dominate any individual visual fc7 feature. This suggests
that to predict important objects, the spatial pathway relies
heavily on the spatial information.

ure 4(b), we present instances where the spatial pathway’s
reliance on location features leads to incorrect results: it
falsely marks regions in the first-person image as important
objects just because those regions appear at a certain loca-
tion in an image. In contrast, in those cases, the visual path-
way correctly predicts important objects because it makes
the predictions based on “what” those objects look like.

Thus, these qualitative and quantitative results suggest
that the spatial and visual pathways can complement each
other, and thus, having both of them is beneficial.

6. Conclusions

In this work, we propose to detect important objects from
unlabeled first-person images by formulating our problem
as an interplay between the 1) recognition and 2) segmen-
tation agents. To do this, we integrate these two agents in-
side an alternating cross-pathway supervision scheme of our
proposed Visual-Spatial Network (VSN). The MCG pro-
jection scheme (a segmentation agent) proposes important
object segmentation masks, whereas the spatial and visual
pathways (recognition agents) use these masks as a super-
visory signal to predict important object masks based on
visual semantics and spatial features. We demonstrate the
effectiveness of such scheme by showing that it achieves
similar or even better results than the supervised methods.

We believe that in the future, our method could be ex-
tended to other tasks such as first-person activity recogni-
tion, or egocentric video summarization. Furthermore, our
method’s ability to learn without manually annotated la-
bels could be used to learn from large-scale unlabeled first-
person datasets on the web, and in the long run, replace the
supervised methods, which are constrained by the amount
of available annotated data.
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