Learning Lightness from Human Judgement on Relative Reflectance Takuya Narihira^{1,3} Michael Maire² Stella X. Yu 2

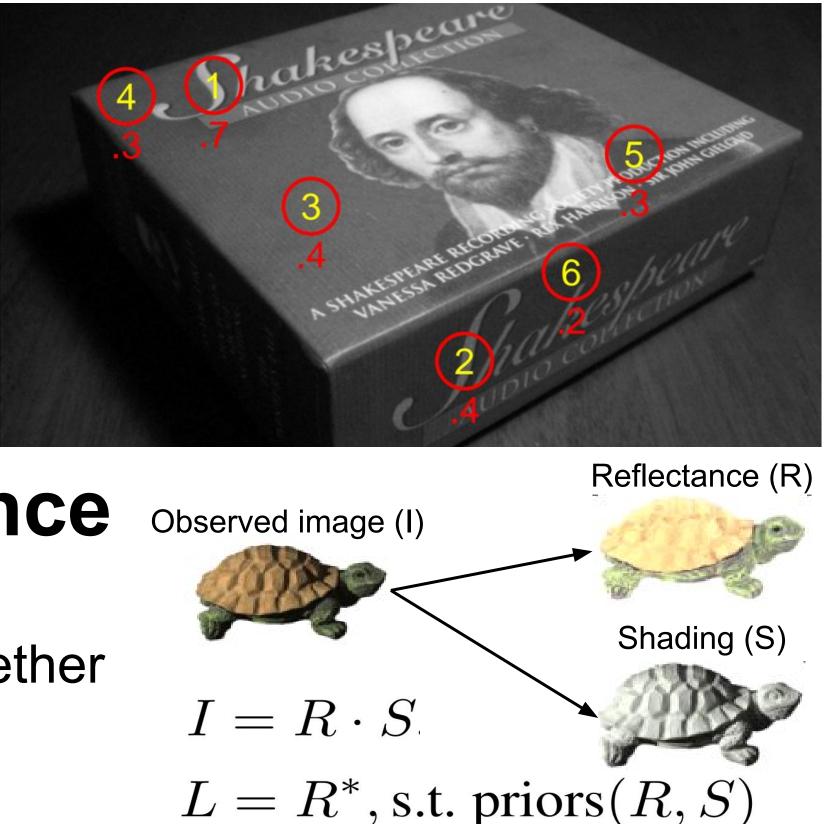
Contributions

- The first to use deep features for lightness prediction
- Simpler and direct approach to lightness
- No hand-designed priors
- Parameters are learned only from human judgement data
- On-par performance with the state-of-the-art intrinsic decomposition method

Goal: Compare Lightness in a Single Image

intensity = measured luminance $I_1 > I_2 = I_3 > I_4 = I_5 > I_6$

lightness = perceived reflectance $L_1 = L_2 > L_3 = L_4 = L_6 > L_5$



Past Work: Recover Reflectance Observed image (I)

- Intrinsic image decomposition
- Reason about reflectance and shading together
- Reliance on assumed priors

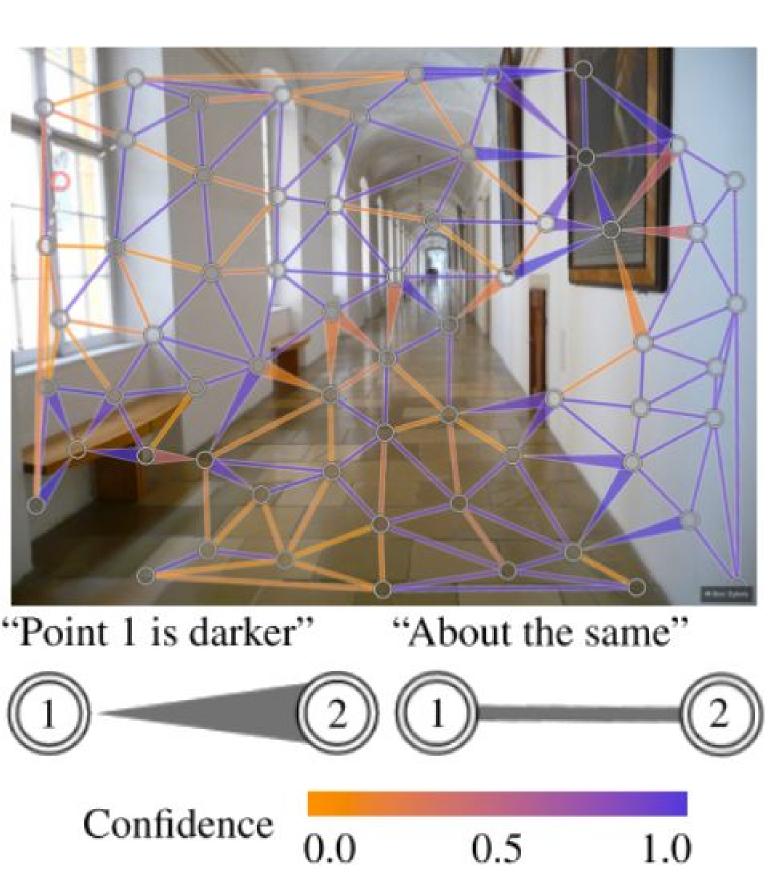
Our Work: Learn from Human Judgment Data

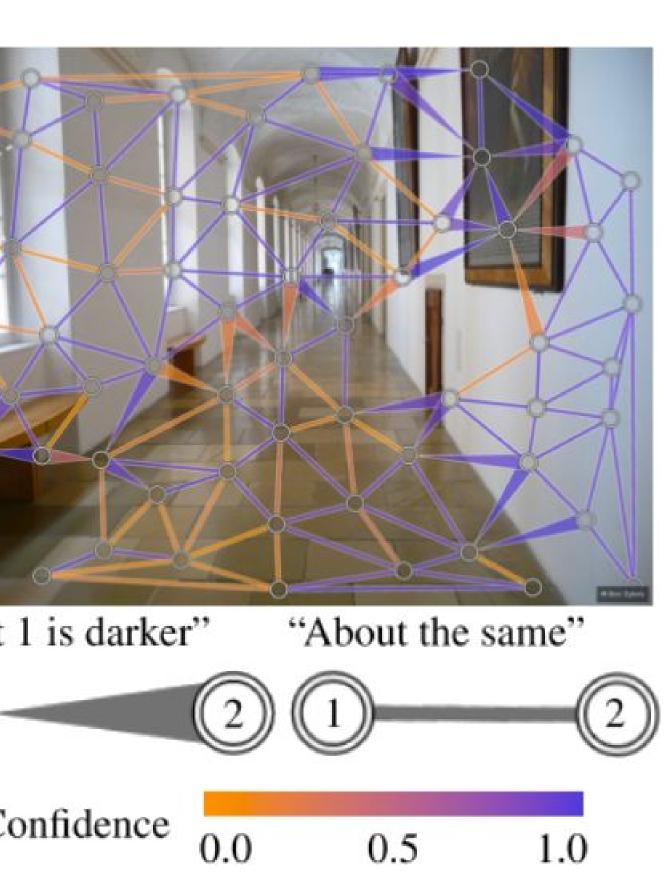
Learn pairwise lightness comparison of features z_i and z_i extracted at location i and j

$$L_i - L_j = f(z_i, z_j) = w^T (z_i - z_j)$$

Intrinsic Images in the Wild Dataset

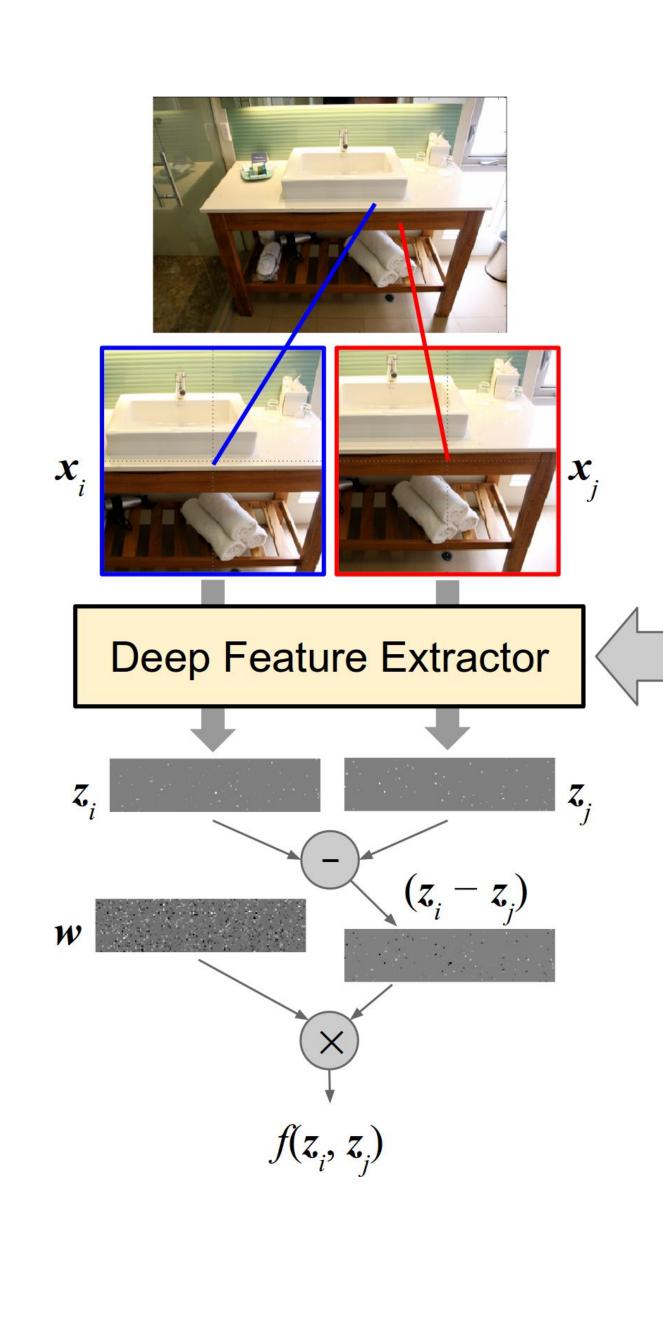
- 5230 interior images in the wild
- 872161 (166/image) pairwise comparisons by humans
- Pairwise label $J_{ii} = 1,-1,0$ for *lighter*, darker, equal
- Confidence C., for inter-observer disagreement

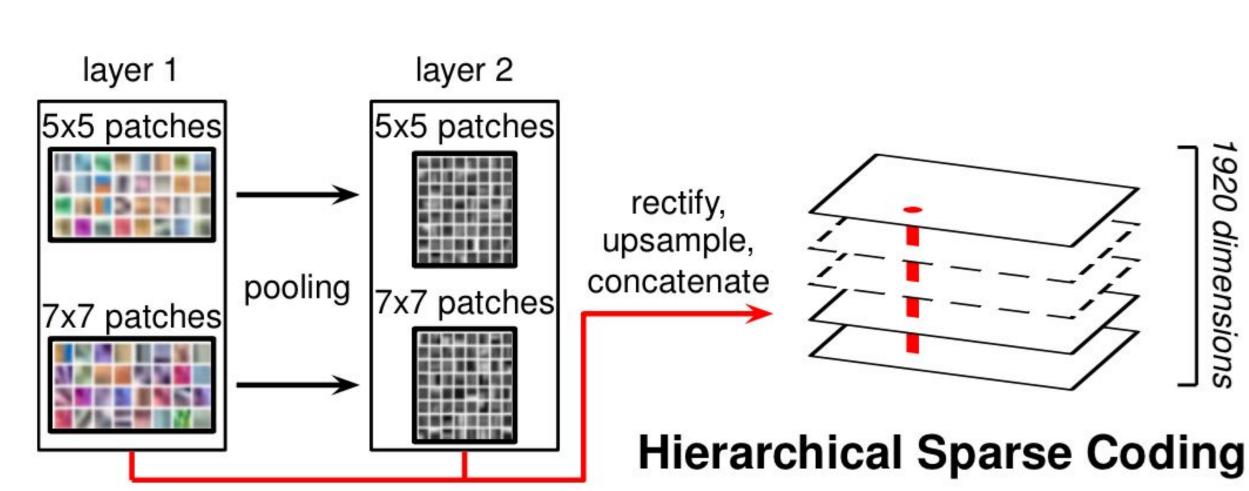


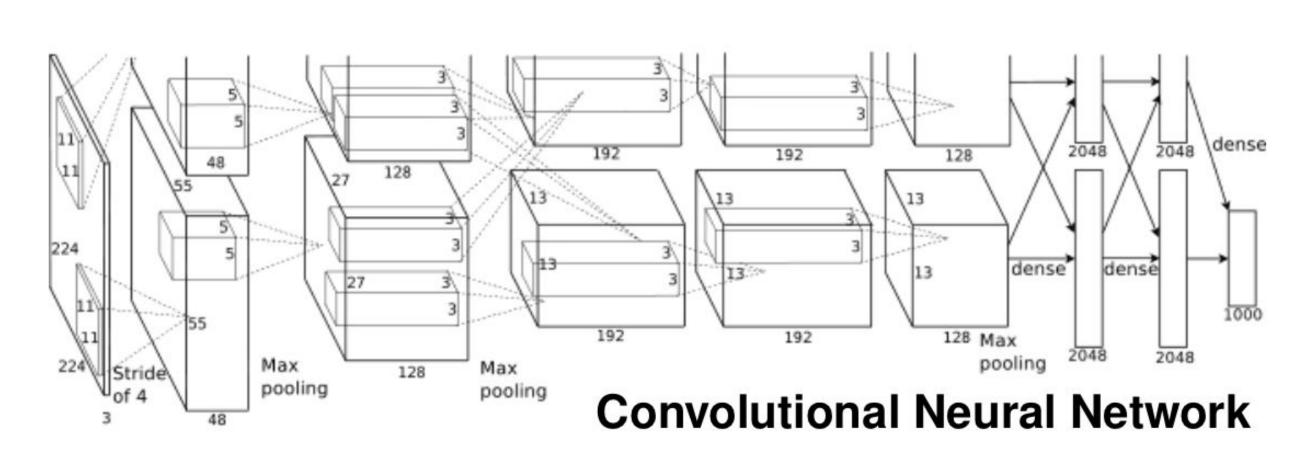


¹ UC Berkeley / ICSI

Deep Learning Framework for Pairwise Comparisons







Ranking loss between the output and the human judgement

$$\min \varepsilon(w) = \sum_{i,j} \log \left(1 + \exp(-J_{ij}w^T (z_i - z_j)) \right)$$

where R^{h}_{i} denotes perceived reflectance by human observer. For $R^{h}_{i} = R^{h}_{i}$, we create two virtual examples with both $J_{ii} = 1$ and $J_{ii} = -1$ in order to force prediction $f(z_i, z_i)$ toward zero. Also, L2 regularizer is applied. We use a standard classification loss for CNN.

Evaluation by Weighted Human Disagreement Rate (WHDR)

$$WHDR_{\delta}(J,R) = \frac{\sum_{ij} C_{ij}(J_{ij} \neq \widehat{J}_{ij}(R;\delta))}{\sum_{ij} C_{ij}}$$

 δ is chosen to minimize WHDR on training images for each model.

² TTI Chicago

³ Sony Corporation

 Unsupervised dictionary learning • Sparse activations using batch orthogonal matching pursuit

 End-to-end training by backprop • Learn from scratch (CNN) or fine-tune from ImageNet AlexNet as distributed by BVLC/Caffe

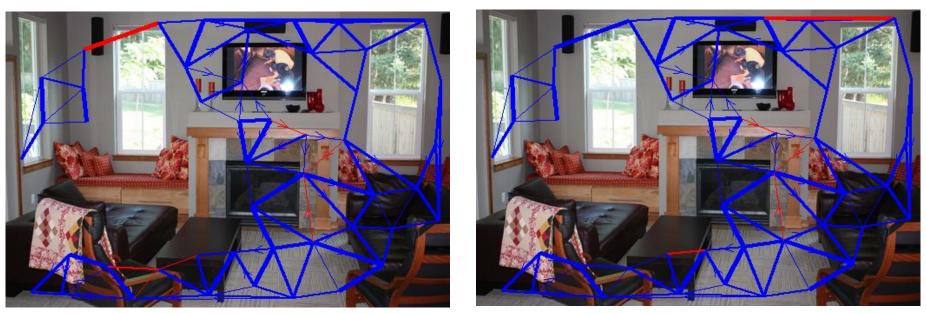
 $\int 1, \quad \text{if } \frac{R_i}{R_j} > 1 + \delta$ $\widehat{J}_{ij}(R;\delta) = \left\{ -1, \quad \text{if } \frac{\widetilde{R}_j}{R_i} > 1 + \delta \right\}$ otherwise

Quantitative Evaluation

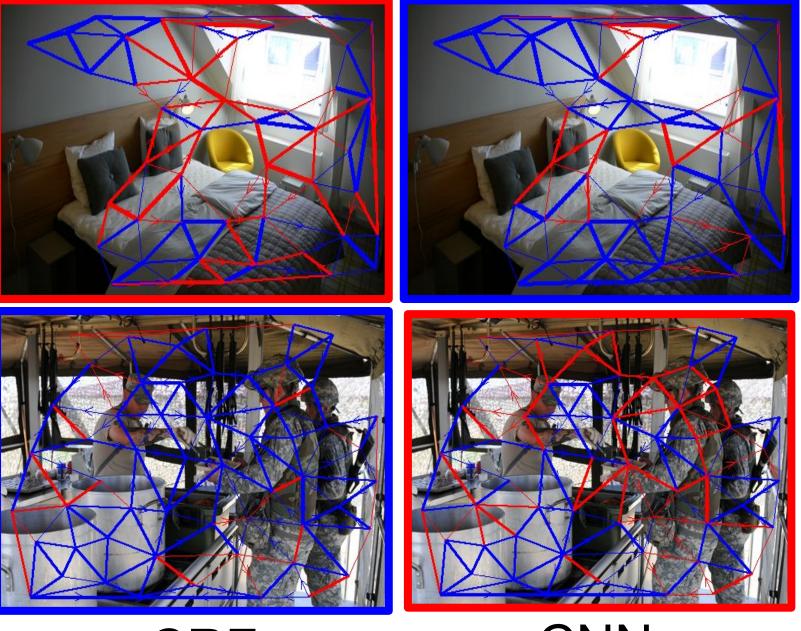
optimized δ

δ =0.1

Sample Results: CRF vs Ours

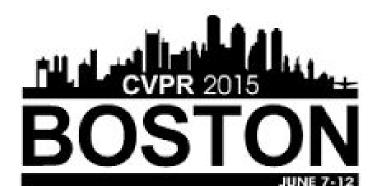


CRF



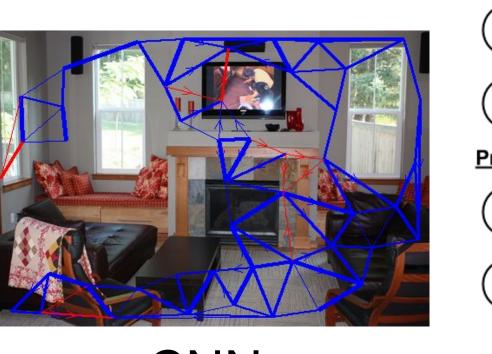
CRF

CRF



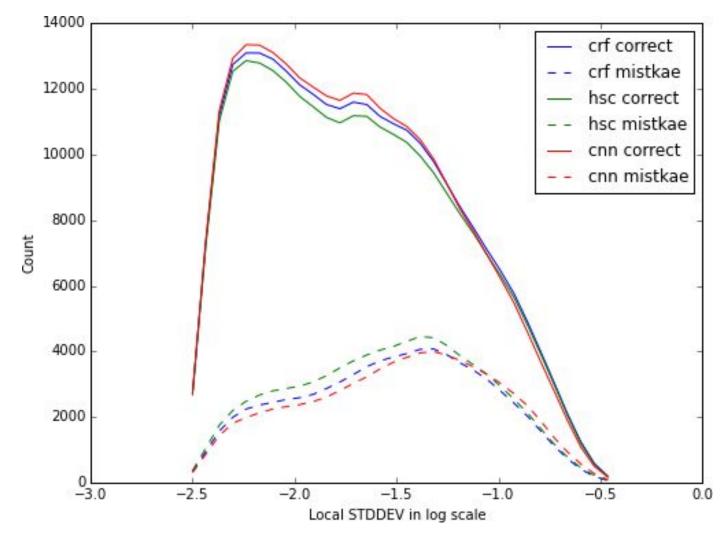
		WHDR (%)	Error Rate (%)
	Ours (HSC)	20.9	24.5
	Ours (CNN)	18.3	22.3
	Ours (CNN-ImageNet)	18.1	22.0
	CRF [4] (rescaled)	18.6	22.3
	Retinex-Color [10] (rescaled)	19.5	23.3
	Retinex-Gray [10] (rescaled)	19.8	23.8
	Shen and Yeo [22] (rescaled)	23.2	26.1
	Zhao et al. [26] (rescaled)	22.8	26.4
	CRF [4]	20.6	25.6
	Retinex-Color [10]	26.9	32.4
	Retinex-Gray [10]	26.8	32.3
	Shen and Yeo [22]	32.5	35.1
	Zhao <i>et al</i> . [26]	23.8	28.2

HSC

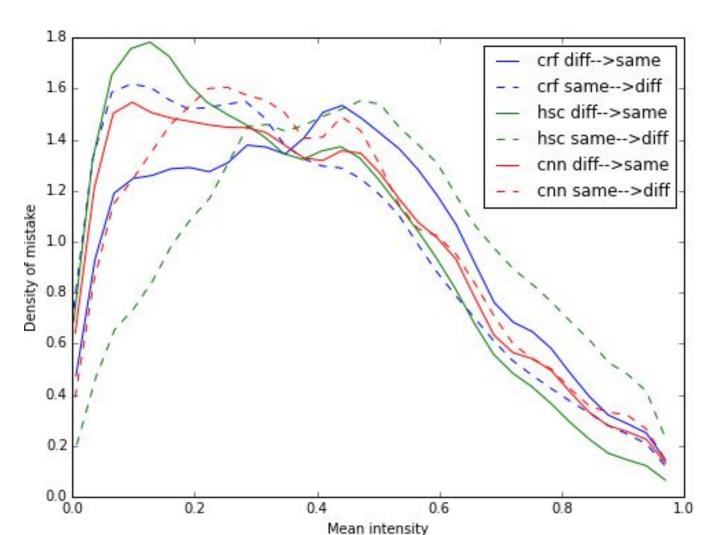




• CNN seems to be better than CRF at smooth shading but not texture



- CRF tends to err in many colors (small color palette assumption fails)
- HSC tends to err in low light and high light



CNN

