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Abstract

We develop a new approach to inferring lightness, the
perceived reflectance of surfaces, from a single image.
Classic methods view this problem from the perspective of
intrinsic image decomposition, where an image is separated
into reflectance and shading components. Rather than rea-
son about reflectance and shading together, we learn to di-
rectly predict lightness differences between pixels.

Large-scale training from human judgement data on rel-
ative reflectance, and patch representations built using deep
networks, provide the foundation for our model. Bench-
marked on the Intrinsic Images in the Wild dataset [4], our
local lightness model achieves on-par performance with the
state-of-the-art global lightness model, which incorporates
multiple shading/reflectance priors and simultaneous rea-
soning between pairs of pixels in a dense conditional ran-
dom field formulation.

1. Introduction
Human vision is remarkable at decoding the physical re-

flectance of an object despite variations of illumination cast
upon it. This subjective constancy of lightness, which refers
to the perceived reflectance, turns out to be hard to achieve
computationally based entirely on the objective intensity of
light recorded in an image [1, 25, 5, 13, 20, 11].

Figure 1 illustrates complicated ranking relationships be-
tween intensity and lightness on pairs of pixels [25]:

• Different intensity → same lightness: Letter S at cir-
cled locations 1 and 2 is seen to be the same white
paint whether it is on the shaded face of the box; like-
wise the unevenly lit background gray at locations 3
and 4 is never mistaken for different paint colors.

• Positive intensity differences→ negative lightness dif-
ferences: The black clothes at location 5 are always
correctly seen to be darker despite receiving in fact
more light than the background gray at location 6.

• Same intensity→ different lightness: Locations 2 and

intensity: I1 > I2 = I3 > I4 = I5 > I6
lightness: L1 = L2 > L3 = L4 = I6 > L5

Figure 1. Intensity vs lightness. The subjective experience of
lightness has a non-trivial relationship with the objective intensity
of light in an image. This image features a 3D box whose top and
front surfaces have identical text and background paint colors. Six
pixels are labeled, and marked with their intensity values between
0 and 1. Their lightness, i.e. perceived reflectance, is ordered very
differently from their measured intensity. Source: [25].

3, 4 and 5, are of the same level of luminance but easily
seen as painted with different shades of grays.

Conventional lightness modeling aims to recover the
physical reflectance by teasing apart the confounded factors
of illumination and reflectance from the image intensity, in
the so-called intrinsic image decomposition [3] framework.

The basic idea is that, while the intensity at the pixels
themselves is a poor indicator of lightness, their neighbor-
ing pixels often have enough variations for revealing the
underlying illumination and reflectance, each of which has
distinctive characteristics in the set of natural images [1].
The lightness results from identifying and discounting the
factor of illumination from the intensity.

Specifically, the intrinsic image model assumes that the
image intensity I is the product of reflectance image R and
shading image S, and lightness L is simply the solution of
R attempted by the visual system given its knowledge about
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Figure 2. Direct learning of pairwise lightness relationships.
Given two image patches xi and xj , we extract their deep features
zi and zj , and train a classifier f that turns their difference zi − zj
into a pairwise lightness ordering.

the regularity of reflectance and shading:

I = R · S, (1)
L = R∗, s.t. priors(R,S) (2)

Such a decomposition would be ill-defined without priors,
and the general strategy is to exploit strong priors in order
to constrain the search space for the solution (R∗, S∗) that
satisfies the per-pixel factorization.

Many forms of priors reflecting the spatial and statis-
tical regularity in a broader context have been explored.
For example, reflectance is assumed piecewise constant
[15, 16, 2], or from a sparse set [18, 9, 22], whereas shad-
ing is similar among nearby pixels [8], or more likely to
take certain values than others [2, 16]. Good priors can also
be learned generatively using deep belief nets [23]. The
solution has been sought globally among all pairs of pix-
els through nonlocal texture constraints [26] or dense con-
nected conditional random fields (CRFs) [4].

Our approach involves a complete change in intuition
and strategy. We learn a lightness model directly from data,
leveraging a training set of many relative reflectance com-
parisons made by human subjects. That is, we focus on
learning the relative ordering of L, i.e. Li − Lj , directly
from contextual cues present in two local image patches, xi
and xj , without resorting to an absolute pixel-wise decom-
position of I into plausible R and S.

Formally, we learn the relative magnitude of lightness at
locations i and j as a function of features zi, zj , extracted
from local image patches, xi, xj , centered at i and j:

Li − Lj = f(zi, zj) (3)

Our intuition is that features extracted at increasingly larger
neighborhoods of two pixels may capture the illumination
and reflectance contexts. We need to know not what they are
exactly, but whether and how they differ in order to render
a judgement on the two pixels’ lightness ordering.

Our model is built upon two key elements of recent work:

Image our HSC results our CNN results

Figure 3. Example pairwise lightness comparison results. We
show HSC and CNN classifier results for some IIW [4] test im-
ages. Arrows on graph edges point from brighter to darker regions
according to the ground-truth; undirected edges indicate equal
lightness. Edge thickness denotes human confidence, while edge
color denotes classifier correctness (red for mistakes). Our errors
tend to occur at challenging places such as low human confidence
(thin red lines) and separate lightness contexts (thick red lines).

1. The Intrinsic Images in the Wild (IIW) dataset [4] pro-
vides a large collection of ground-truth in the form of
human judgements of relative reflectance: 5230 indoor
images with a total of 872,161 pairs of comparisons,
about 106 ± 45 comparisons per image. Unlike the
MIT intrinsic image dataset [24], where R and S are
given as absolute ground-truth, these pairwise compar-
isons take three values: same, lighter, or darker, and
they are noisy across human subjects.

2. Rich contextual features computed through either hier-
archical sparse coding (HSC) [6, 17] or deep convolu-
tional neural networks (CNN) [14, 12] provide an in-
formative fine-to-coarse, small-to-large context feature
vector representation of every patch in the input image,
enabling a simpler and direct local classification ap-
proach without heavy reliance on any hand-designed
global priors or expensive inference algorithms.

Our direct approach (Figure 2) is a departure from virtu-
ally all past methods which focus on differentiating these
two aspects, reflectance and shading, either by learning
to discriminate features and edges between these two as-
pects [24], or by imposing or discovering more priors that
can be used to constrain each aspect [15, 16, 2, 18, 9, 22,
8, 26, 4]. Any hand-designed priors are completely absent
from our algorithm; only implicit priors that are themselves
learned from data have a role in our system.

Surprisingly, presented with a large collection of pairs of
crude relative reflectance, we are able to learn a simple local
linear classifier with lightness comparison accuracy on par
with or better than the state-of-the-art model which relies on
multiple priors and a dense CRF for global reasoning [4].
See sample results in Figure 3.



multiscale layer 1 layer 2

×
5x5 patches

7x7 patches
pooling

5x5 patches

7x7 patches

rectify,
upsample,

concatenate

b

sparse representation

1920
dim

ensions

Hierarchical Sparse Coding [6, 17] Convolutional Neural Network [14]

Figure 4. Deep feature extractors. We consider two different procedures as implementations of the deep feature extractor in Figure 2.
Left: We adapt the sparse coding strategy of [17], which builds on [6], and encode multiple image scales against multiple patch dictionaries.
A second encoding layer operates on pooled output of the first. Concatenating sparse codes across layers at corresponding spatial locations
yields per-pixel descriptors. Only a subset of the dictionaries are visualized here. Right: We utilize the convolutional neural network
architecture of [14] with an image patch as input and treat the activations in the final layer as a spatially localized descriptor for the patch.

Our work is complementary to the global integration ap-
proach proposed in [25], where simple pairwise intensity
differences across multiple scales are used as features and
the global lightness ordering results from a reconciliation of
all such pairwise cues in the entire image. While this model
is demonstrated on challenging synthetic images, it is un-
clear how it can be applied to natural images with much
more complex visual appearances.

Our work is the first to use complex deep features with
a simple local classification rule for lightness prediction
in natural images. It bypasses intrinsic image decompo-
sition, yet could potentially be used by an intrinsic image
model as a more informative local potential to improve e.g.
CRF-based [4] or embedding-based [25] globalization ap-
proaches.

Section 2 describes in detail the two rich feature repre-
sentations, HSC and CNN, that we consider for use as patch
descriptors. Section 3 covers our learned model for pairwise
lightness relationships, as well as the process of extracting,
from this pairwise model, the linear classifier for direct con-
struction of lightness maps. Section 4 provides experimen-
tal results and benchmarks, while Section 5 concludes.

2. Patch Representations

Motivated by their recent successes in other vision appli-
cations, we consider both hierarchical sparse coding [17, 6]
and convolutional neural networks [14] for use as feature
extractors in our system architecture. Figure 4 illustrates
these approaches and we now briefly summarize each.

2.1. Hierarchical Sparse Coding

We borrow the patch representation strategy of [17],
which in turn builds upon the work of [6]. As developed
in [17], hierarchical sparse coding is an efficient algorithm
for obtaining rich, high-dimensional, yet sparse, per-pixel
feature descriptors. This sparseness translates into fast ap-
plication of linear classifiers densely across the image.

Distinguishing characteristics as compared to CNN fea-
tures include that HSC features are learned generatively and
extracted from a multilayer slice of a deep network. Hence,
they capture multiple different levels of abstraction. We re-
view HSC here, but refer readers to [17] for more detail.

In a standard sparse coding setting, a patch x ⊂ I
is expressed as a sparse linear combination of at most K
of N atoms from an overcomplete patch dictionary D =
[d0, d1, . . . , dN−1]. Denoting by z the vector of combina-
tion coefficients, the encoding problem is:

argmin
z
||x−Dz||2 s.t. ||z||0 ≤ K (4)

While there is not a computationally efficient procedure for
finding the exact optimal z, greedy approximation algo-
rithms work well in practice [19, 21]. Having obtained z,
we can simply treat it as a feature vector for x in the setting
of classification or regression.

Encoding every patch in I against the same dictionaryD
yields a sparse N -dimensional coefficient vector for each
pixel, or equivalently, a (sparse) image with N channels
that lives on the same two-dimensional grid as I . In the
hierarchical sparse coding setting, we treat this N -channel
output from an initial layer of sparse coding as an input, af-
ter pooling, to another layer of sparse coding against a new
dictionary of higher-dimensional atoms.

Our hierarchy of sparse coding layers is also “multipath”
in the sense that at each layer, we also encode against sev-
eral different dictionaries, for different patch sizes, and we
encode the image at three different scales. Figure 4 illus-
trates this property. The feature vector representation z of
an input patch is the concatenation of sparse coefficient vec-
tors from all paths through the network. After concatena-
tion, we rectify feature vectors:

z ←
[

max(zT , 0), max(−zT , 0)
]T

(5)

The dictionaries for each stage of encoding are learned
in a generative manner, by sampling a collection of patches



Figure 5. Statistics of human reflectance annotations. Left: On the IIW dataset [4], humans usually have high confidence in their relative
reflectance judgements when annotating both same reflectance and lighter/darker pairs. Middle: Total count of high- and low-confidence
ground-truth pairs of each reflectance type. Right: Proportion of ground-truth pairs of each type having high- and low-confidence.

X = [x0, x1, ...] from training images (or the representa-
tion of training images output from the previous layer), and
applying the MI-KSVD algorithm [6] to approximate a so-
lution to:

argmin
D, Z

||X −DZ||2F + λ

N−1∑
i=0

N−1∑
j=0,j 6=i

|dTi dj |


s.t. ∀i, ||di||2 = 1 and ∀n, ||zn||0 ≤ K

(6)

where || · ||F denotes the Frobenius norm andK is the spec-
ified sparsity level.

In our experiments, we learn dictionaries of N = 32
and 64 atoms for each of 5×5, 7×7, and 9×9 patches in
the first layer. The second layer uses dictionaries of 64
atoms for 5×5 and 7×7 patches of the 32-dimensional 5×5
first layer output. Concatenation and rectification produce a
1920-dimensional feature vector at every pixel in the image.

2.2. Convolutional Neural Network

We use the Caffe [12] implementation of the 7-layer
convolutional neural network of [14] and take the 4096-
dimensional activations of the final fully connected layer
as a feature descriptor for a patch presented as input to
the network. Each patch is taken from a 227 × 227 win-
dow surrounding a location (vertex) in a labeled pair (edge)
from the IIW dataset. Note that the entire network can be
trained via backpropagation in a discriminative manner, in
contrast to HSC, which learns dictionary weights genera-
tively. We attempt to train the CNN from both randomly
initialized weights and weights initialized by pre-training
on ImageNet [7].

3. Lightness Classifier
Humans are capable of making reliable comparisons of

the reflectance at two different points in the same scene [4].
We leverage this observation in building an automatic clas-
sifier that replicates human relative lightness judgements.

Following Equation (3) and choosing a linear form for f
with either the HSC or CNN representations of the preced-

ing section serving as features z, we have

f(zi, zj) = wT (zi − zj) (7)

We learn HSC classifier weights w by ridge ranking re-
gression on the human ground-truth data for reflectance:

min ε(w) =
∑
i,j

log
(
1 + exp(−JijwT (zi − zj))

)
+γwTw

(8)
where:

Jij =

{
1, Rhi > Rhj
−1, Rhi < Rhj

(9)

Cij = confidence in Jij (10)

Here Rh refers to human ratings of relative reflectance
(lightness) on the IIW dataset. γ calibrates regularization.
For each example where humans judge equal reflectance
(Rhi = Rhj ), we create two virtual examples with both
Rij = 1 andRij = −1 in order to force prediction f(zi, zj)
toward zero. Although confidence Cij is present in the
dataset, we do not use it for training. To train our CNN
model, we use the standard cross entropy classification loss.

Figure 5 provides some insight into the distribution of
human confidence (Cij) on their pairwise reflectance rat-
ings. While the IIW dataset contains more examples of
point pairs with the same reflectance than different re-
flectance (as judged by humans), human annotators tend to
be confident when reporting either relationship. The slight
imbalance in the overall number of training examples of
each type is thus not problematic.

We can equivalently regard w as either a linear predictor
for relative lightness from a difference of feature descrip-
tors, or as a lightness potential function acting on the feature
representation at point. Define lightness potential:

g(z) = wT z (11)

Then our relative lightness classifier is a difference:

f(zi, zj) = wT (zi − zj) = g(zi)− g(zj) (12)
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Figure 6. Global lightness rank. From a linear difference model
trained for relative lightness judgements, we extract a per-pixel
lightness potential (a global lightness ranking). Left: Pairwise re-
sults of our HSC model of relative lightness between pixels located
at the graph nodes. Arrows point from brighter to darker according
to model predictions. Right: Densely predicted relative lightness
potential using HSC features.

This perspective is useful as we can evaluate lightness po-
tential g(·) locally at every pixel to recover a global rank
ordering of the lightness of all pixels in the image.

In the case of HSC descriptors, such evaluation is cheap
since z is extremely sparse. The HSC implementation
of [17] generates descriptors densely over the image. Fig-
ure 6 shows example potentials obtained with HSC features.
They are similar to a scaled version of the reflectance chan-
nel in the traditional intrinsic image decomposition.

While dense evaluation of g(·) is also possible using
CNN features, the CNN implementation we use [12] is not
targeted to fully convolutional evaluation over an arbitrary-
sized input and it is prohibitively expensive to run indepen-
dently for all patches in an image. We therefore focus on the
task of matching human judgements for query patch pairs.

As used in the IIW dataset benchmark, given reflectance
R at two points, a discrete judgement in terms of lighter,
darker, same is rendered based on the reflectance ratio test:

Ĵij(R; δ) =


1, if Ri

Rj
> 1 + δ

−1, if Rj

Ri
> 1 + δ

0, otherwise

(13)

where δ is a threshold below which relative reflectance
changes are considered insignificant.

Our linear classifier can be interpreted as performing the
reflectance ratio test according to a difference test in the

transformed log reflectance domain:

g(z) = wT z = α logR (14)
f(zi, zj) = g(zi)− g(zj) = α logRi − α logRj

= α log
Ri
Rj
. (15)

Note that f(zi, zj) does not change its sign, 0 or ±1, no
matter what α is, and it can be considered the internal light-
ness difference between two points; whereas scaling param-
eter α controls the rate at which perceived reflectance re-
lates to the lightness potential, and it can be considered a
sensitivity parameter that turns an absolute internal differ-
ence into an external perceivable lightness difference.

Now given predefined threshold δ for the reflectance ra-
tio test, we tune α so that Ĵ(f ;α, δ) for perceivable light-
ness differences best matches human judgements J on the
training set:

Ĵij(f ;α, δ) =


1, if f(zi, zj) > α log(1 + δ)

−1, if f(zj , zi) > α log(1 + δ)

0, otherwise
(16)

Note that α (and thus the decision threshold α log(1+δ)) is
optimized over the entire training set, not per image or per
pair of query points.

Previous work on intrinsic image decomposition [10, 4]
is not similarly tuned specifically for the pairwise lightness
judgement task. While their reflectance is directly modeled
and does not need an interpretation like ours, to ensure a
fair benchmark comparison, we take their output reflectance
maps and report performance at optimal δ for their algo-
rithms (an equivalent form of rescaling).

4. Results
We use the Intrinsic Images in the Wild (IIW) dataset [4]

for both training and testing our lightness classifier. There
are 44± 16 query points and 106± 45 query pairs between
these points per image (they are the nodes and edges in Fig-
ure 3), over a total of 5230 images. Each query to a human
subject was in the form of “which point has a darker sur-
face color?”. Bell et al. [4] obtained a total of 4,880,372 re-
sponses from 1381 Amazon Mechanical Turk workers and
then aggregated this individual human pairwise judgement
data into 875,833 comparisons across 5230 photos, each
with a confidence measuring how consistent the result is
among workers.

This large set of pairwise comparisons has been used to
benchmark several reflectance models [4]. The weighted
human disagreement rate (WHDR) is proposed to measure
the percent of human judgements that an algorithm dis-
agrees with, weighted by the confidence Cij of each judge-
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Figure 7. Good lightness predictions. We visualize the benchmarked pairwise lightness predictions of both versions of our model (HSC
and CNN) and the CRF model of [4]. As in Figure 3, arrows on graph edges point according to ground-truth (towards darker endpoint) and
color denotes classifier correctness (red for mistakes). Here, we show examples where all models perform well.

ment on point pair (i, j):

WHDRδ(J,R) =

∑
ij Cij(Jij 6= Ĵij(R; δ))∑

ij Cij
(17)

where Jij and Ĵij are human ground-truth and machine pre-
dictions, respectively. Note that such a score is computed
for each image, and then all the scores are averaged across
photos in the dataset to yield an overall benchmark number
for an algorithm.

The state-of-the-art result is by Bell et al. [4], with a
dense CRF model on intrinsic image decomposition incor-
porating many forms of reflectance and shading priors ex-
plored in the literature. Note that human subjects are not
necessarily consistent with each other, or between all the
query pairs per individual. Overall human consistency is at
WHDR of 7.5% [4].

We introduce an additional metric, classification error
rate (1 − ACC), to measure an algorithm’s performance

per query edge, instead of the mean accuracy (or error by
WHDR) over all the query edges per image, as the number
of query edges vary greatly between images. We define the
classification accuracy (ACC) as:

ACCδ(J,R; δ) = mean(Jij = Ĵij(R; δ), ∀i, j) (18)

For our experiments, we split the IIW dataset into 80%
training examples and 20% testing examples as follows. We
sort the dataset by image ID, then take every 5 examples in
order and use the first one as testing and the rest for train-
ing. We re-evaluated several approaches reported in [4] on
this split to make sure that scores matched those reported
in [4] and the particular training-test split had negligible in-
fluence.

Table 1 compares our results with the state-of-the-art
CRF approach as well as other competing methods. Our
models are trained on a fixed 80% of data and with no fur-
ther optimization. Table 1 shows that, despite the simplicity
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Figure 8. Mistakes in lightness predictions. As in Figure 7, we visualize predictions of our model (HSC and CNN versions) and the CRF
model of [4]. Here we show examples where there is a large performance gap between them. Left: Examples with significant performance
gap between CRF and HSC models. Right: Examples with significant performance gap between CRF and CNN models. For each pair,
results of the poorly performing model are highlighted with a red border around the image displaying its predictions.



WHDR (%) Error Rate (%)
Ours (HSC) 20.9 24.5
Ours (CNN) 18.3 22.3
Ours (CNN-ImageNet) 18.1 22.0

CRF [4] (rescaled) 18.6 22.3
Retinex-Color [10] (rescaled) 19.5 23.3
Retinex-Gray [10] (rescaled) 19.8 23.8
Shen and Yeo [22] (rescaled) 23.2 26.1
Zhao et al. [26] (rescaled) 22.8 26.4

CRF [4] 20.6 25.6
Retinex-Color [10] 26.9 32.4
Retinex-Gray [10] 26.8 32.3
Shen and Yeo [22] 32.5 35.1
Zhao et al. [26] 23.8 28.2

Table 1. Intrinsic Images in the Wild benchmark results. For
each algorithm, we display the weighted human disagreement rate
(WHDR, lower is better), as well as the error rate on classify-
ing the sign of lightness change between pairs of points labeled
in the ground-truth. We include our own re-evaluation of com-
peting methods, which closely matches the performance reported
in [4]. In addition, we report performance of a rescaled version of
competing methods, which specifically optimizes their output for
the pairwise classification task. Our algorithm is on par with the
CRF approach developed by [4] for state-of-the-art performance.
We refer the reader to [4] for comparison to an expanded set of
prior work.

of our local classifier model, our CNN performance is on
par with that of the best method on the test set, and ahead of
all others. Here, CNN refers to CNN trained from randomly
initialized weights while CNN-ImageNet is initialized with
pre-trained weights on ImageNet. We do not see significant
performance differences between them.

Figure 7 shows sample images where our method per-
forms equally well as the CRF approach. The query edges
in these images tend to involve points in roughly uniform
patches, where the judgement tends to be less ambiguous
and easier. Figure 8 shows sample images where one tech-
nique is far superior to another. Our model and the CRF
approach have different failure modes.

Our method with HSC features seems to make more mis-
takes than CRF for points in low-light and high-light condi-
tions, and the types of mistakes are characteristic: it tends
to mistake different lightness (edges with arrows) as same
lightness in low light, and mistake same lightness (edges
without arrows) as different lightness in high light. Our
method with CNN features provides a more uniform im-
provement over CRF across lighting conditions. Figure 9
provides additional visualization of classifier performance
as a function of local lighting (mean intensity) and texture
(local variance in pixel intensity) properties of patches.

The CRF method seems to make more mistakes than
ours in textured areas or an image with many small struc-
tures. This error pattern can be explained by the reflectance

Figure 9. Mistakes as a function of local patch statistics. Top
Left: Plotting errors against patch intensity variance reveals that
the the CNN model has lower mistake count in smooth areas (low
pixel intensity variance). Top Right: The HSC model makes more
mistakes when comparing two patches of drastically differing in-
tensities. Bottom Left: We compare model errors with respect to
the mean intensity of two patches. Our CNN model is uniformly
better than others over the range of patch mean intensity. Bot-
tom Right: We organize mistakes by type (ground-truth different
or same lightness patch pairs incorrectly classified). HSC makes
more mistakes on ground-truth diff pairs in low-light, and more
mistakes on same pairs in high-light conditions.

sparsity (about 20 reflectances per image) and piecewise
constancy priors used by the CRF model. When the image
contains many different reflectances, e.g. each small struc-
ture assumes a different reflectance, the CRF gives inaccu-
rate decomposition results due to the assumption violation,
and hence more errors.

5. Conclusion

We demonstrate a local classification model that per-
forms as well as far more complicated schemes on the task
of recovering relative lightness. Use of rich patch represen-
tations, obtained via hierarchical sparse coding or convolu-
tional neural networks, and a large amount of training data,
enable us to learn a better local model than was previously
possible. Such models open up new areas of exploration on
the classic problem of intrinsic image decomposition.

Acknowledgments. We thank Ayan Chakrabarti for valu-
able discussion.
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