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Overview Multiscale Constrained Angular Embedding
Technical Approach: Let (C,0,U) define a constrained Angular Embedding (AE)

e Angular Embedding [9] (generalization of Normalized Cuts) problem by specifying relationships between n graph nodes:

O: n X n pairwise relative ordering matrix

Eigenvector Convergence Comparison

N IPRN

Multiscale Eigenvectors 2 through 7

Multiscale:
e Upgrade C, O, U to arrays C, ©, U, indexed by level s

e Pairwise relationships restricted to be within-level:

Goal: Efficient multiscale spectral clustering

Solution: Multigrid eigensolver on multiscale graph

e Pyramid with cross-scale constraints e Constrained spectral clustering [10]

C': n X n pairwise confidence matrix

e Scale-dependent cues active at each pyramid level
e Multigrid:

— Process coarse-to-fine sub-pyramids

e Constraint-based coarse-to-fine interpolation n, 1s the # of nodes 1n level s

U: n x uw matrix of v linear constraints

n, = >, ng1s the cumulative # of nodes 1n levels s and coarser
$>5s

C., O, are n, X n, matrices

e Randomized methods for matrix approximation [5]

e Self-check for convergence AE recovers global ordering #(p) by embedding: p — 2 = %)

— Many early 1terations on small sub—pyramids Image Segmentation Results: e Constraints organize d into incremental sets: 1 coarse iteration: 0.46 sec 20 coarse iterations: 3 sec 20 coarse, 1 medium: 5 sec 20 c., 3 med, 1 fine: 17 sec

— Fewer later iterations on full pyramid e Order of magnitude speedup u, 1s the # of additional constraints at level s =
— Work with intermediate basis instead of eigenvectors (from multigrid alone; parallelization may further improve) %, = 3w, is the cumulative # of active constrains at level s ;;n
e Parallelizable for arbitrary graph structure (unlike [2]) e Automatic inter-scale edge alignment §>s f
U, 1s an n, X u, matrix - 2
System Comp arison U, 1involves only nodes appearing at levels s and coarser % %
e Extract problem on sub-pyramid: > o

Cs < Diag(C,_ ..., Cy) :9_:’ - ——

: n~
SR _ v 2 G s 2 o, O, < Diag(®, ,...,0,) 2 5 S FEy
/\ Minimize: £ =2, STl 1z(p) — Z(p)| (s.t. U*z =0) U [Un sl g % o | _#.;._
_% \ Relax to generalized eigenproblem () P()z = Az where: Compute D,, W, from C,, O, = g | ".*' \ y
i :ﬁ__:ﬁi \ \ P—D'W Define M, = Q.P.Q. A o
_%_ ‘ [T 1 Q=I-D'UUu'D'U)y'U! e [ ecading eigenvectors of M, solve the full multiscale problem % 't‘!: ; V.
% (T (7)) with: D = diag(C'1) and W = C' e exp(iO) Multigrid: solve M, to assist solution of M, p

Multiscale

-

Transformed Progressive Multigrid Multiscale
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Eigensolver using Randomized Matrix Approximation

Fixed Rank Problem: [ r [ r
II

Given: n X n sparse matrix M
1 1
Diffuse: A= D 2W D 2A

Find: n x [ dense matrix A, where [ = 2m < n "
Such that: range of A approximates range of M

Randomized Subspace Iteration [5]:
Draw n x [ Gaussian matrix g
Y <+ (MM*)IMQ
A < QR-ORTHONORMALIZE(Y)

increase q until convergence’

Coarse-to-Fine Interpolation:
Find A, approximating M, via subspace iteration
Write A approximating M, as: A = [A;; Ay
Look at constraint: U*A = 0

Rewrite as: |Uj,,; Uppg|™ [A1; Ao) =0 " "
Least-squares interpolate: A, = U[no](U[ZO] U[no])_l(—U[’;l]Al) C(n1+ng)-(I+7)
Use A = Ay E)] as starting guess in subspace iteration for A ’
Eigensolver:
B+ A*MA [ X [ matrix O
(V,\) + EIGS(B, m) small eigenproblem By (A)
Z +— AV m leading eigenvectors ’
Convergence Check: q. \

Evolve two independent bases A and A of sizes [ and r
Check whether the [ space contains the r vectors: £/ <— A— AA*A

Return reconstruction error: 7 = max HE[O:<n—1) j]H
7=0,....,r—1 ’

I Avoid explicit computation of M. See paper for details.

1 fine iteration: 15 sec

5 fine iterations: 34 sec

20 fine iterations: 94 sec

50 fine iterations: 202 sec

225 fine iterations: 760 sec

Our solver processes coarse-to-fine sub-pyramids, converging far faster (27 sec vs 760 sec) than the baseline solver, which starts work on the finest pyramid.
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Our eigenvectors live on an image pyramid and produce consistent coarse-to-fine boundaries across scale-space.
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