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Angular Embedding:
A Robust Quadratic Criterion

Stella X. Yu, Member, IEEE

Abstract—Given the size and confidence of pairwise local orderings, angular embedding (AE) finds a global ordering with a near-

global optimal eigensolution. As a quadratic criterion in the complex domain, AE is remarkably robust to outliers, unlike its real domain

counterpart LS, the least squares embedding. Our comparative study of LS and AE reveals that AE’s robustness is due not to the

particular choice of the criterion, but to the choice of representation in the complex domain. When the embedding is encoded in the

angular space, we not only have a non-convex error function that delivers robustness, but also have a Hermitian graph Laplacian

that completely determines the optimum and delivers efficiency. The high quality of embedding by AE in the presence of outliers

can hardly be matched by LS, its corresponding L1 norm formulation, or their bounded versions. These results suggest that the

key to overcoming outliers lies not with additionally imposing constraints on the embedding solution, but with adaptively penalizing

inconsistency between measurements themselves. AE thus significantly advances statistical ranking methods by removing the impact

of outliers directly without explicit inconsistency characterization, and advances spectral clustering methods by covering the entire

size-confidence measurement space and providing an ordered cluster organization.

Index Terms—Least squares methods, spectral methods, graph algorithms, constrained optimization, linear programming, statistical

computing, clustering, modeling and recovery of physical attributes.

✦

1 INTRODUCTION

D ETERMINING a global ranking of elements from
their pairwise local comparisons is a fundamental

problem in decision science [1]–[3], social choice theory
[4], financial economics [5], statistics [6]–[10], machine
learning [11]–[15], and computer vision [16]–[18].

These pairwise comparisons are increasingly given in
terms of cardinal scores (how much is one better than the
other?) instead of ordinal orderings (which one of the two
is better?) [10]. Whether the scores are obtained from
preference judgement by humans or from attribute ex-
traction by a computational routine, as relative measures
over partial observations of all the elements, these local
orderings are often inconsistent between subsets of the
elements to reach a unanimous global ordering.

The basic problem in unmasking the true global rank-
ing inherent in the inconsistent local ranking data is to
prevent rank reversal and preserve the rank magnitude
as much as possible [2], [3], [12], [15], [17].

Formally, all the pairwise local orderings between n

elements can be captured in a pair of n × n matrices
(O,C), with O for the size of the ordering and C for
the confidence in the ordering. We seek an n× 1 global
ordering vector X such that if with consistency a global
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ranking algorithm would produce Xa > Xb for two
elements a and b, then with slight perturbation or even
large outliers in the local orderings (O,C), a good global
ranking algorithm would not produce a rank reversal:
Xa < Xb, and preserve the magnitude of local orderings
as much as possible: Xa−Xb  Oa,b, whenever Ca,b 6= 0.
The problem of solving the global ordering Xn×1 from
pairwise local orderings (On×n, Cn×n) is a data em-
bedding problem, where n elements with inconsistent
pairwise local measurements are now positioned into a
metric space and can be compared with each other on a
global scale.

This paper compares the newly proposed angular
embedding (AE) with the conventional least squares
embedding (LS). AE was first used for modeling subjec-
tive brightness from the objective intensity of an image
[17], where pairwise local orderings are computed from
intensity differences at multiple scales and integrated
into a global brightness ordering. AE has also been
applied to the figure-ground segmentation of natural
scene images [18]. LS has been widely used in surface re-
construction [19], shape from shading [20], high dynamic
range compression [21], image matting and fusion [16],
and various model fitting scenarios [22], [23].

LS and AE differ on the representation used for encod-
ing the global ordering and the objective function used
for measuring the quality of rank preservation (Fig. 1).

1. Representation: linear versus angular space? While
LS ranks the elements on a line, AE ranks them on a
circle. While the size and confidence of a local ordering
are separated as a difference and an importance weight
on the difference in LS, they are integrated as the phase
and magnitude of a single complex number in AE.
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Da,a = the total confidence associated with a.
Za = the average estimate of Za given Z, (O,C).

angular space minimize distance

Fig. 1. LS and AE differ in the representation used for encoding the global ordering X (LS’ linear space vs. AE’s angular space)
and the objective function ε(X) used for measuring the quality of rank preservation (minimize the variance of neighbour estimates
of the embedding for LS vs. minimize the distance between the embedding and its neighbourhood average for AE).

2. Criterion: minimize variance versus minimize
distance? While LS minimizes the variance of neighbour
estimates of the embedding, AE minimizes the distance
between the embedding and its neighbourhood average.

We investigate whether the representation or the crite-
rion is more crucial for the distinctions between LS and
AE, whether and how AE outperforms LS.

Consider ordering pixels by their surface heights, i.e.,
reconstructing a surface from noisy measurements of its
gradients or more generally pairwise height differences.
Without noise, the surface gradient field has zero curl
and is integrable: The integral along any closed path of
pixels is 0, and the height difference computed from inte-
grating the pairwise differences along any path between
two pixels does not depend on the choice of the path.

There are two basic approaches to this 2D integration
problem: One focuses on obtaining an integrable gra-
dient field by incorporating the integrability constraints
into the estimation of the gradient field itself [24]–[27],
and the other applies integrability during the estimate
of the surface when a non-integrable gradient field is
already provided [19], [25], [27]–[30]. These formulations
often minimize an LS cost function between the recon-
struction and a smooth surface space, assuming no mea-
surement outliers. Outliers are often tackled explicitly
and iteratively to reduce their impact on LS [16].

Fig. 2 compares LS and AE on reconstructing a surface
given the same pairwise height differences. With Gaus-
sian noise, the LS and AE results both closely match the
ground-truth surface. With outliers, the LS surface loses
the ground-truth surface to an overwhelming amount of
spiky noise, whereas the AE surface has no noticeable
change in the quality of reconstruction, with only a slight
increase in the overall approximation error.

We will first formulate standard LS and AE criteria,
and then develop an LS variant in terms of AE’s distance

criterion and an AE variant in terms of LS’ variance cri-
terion. Examining these 4 criteria, εLS , εAE , εLSD, εAEV ,
allows us to not only establish that it is not the criterion
but the representation that sets AE and LS apart, but also
tease out AE’s non-convex error function and robust er-
ror weight function, providing a compelling explanation
to AE’s remarkably robust embedding performance.

Quadratic formulations are notorious for their sensi-
tivity to outliers, yet by seeking an embedding in the
complex domain, AE deviates from LS and achieves
robustness without identifying outliers [16] or resorting
to regularization as in Bayesian least squares [31], [32].
Our comparative study on LS and AE suggests that,
the key to overcoming outliers lies not with additionally
imposing constraints on the solution, which is often not
warranted in applications, but with adaptively penaliz-
ing inconsistency between measurements themselves.

2 EMBEDDING FROM PAIRWISE ORDERINGS

We formulate our embedding problem in graph theory
and then proceed from the standard LS and AE criteria
to their cross-combination variants. We use the same
notations (e.g. L for Laplacian) for both LS and AE to
draw similarity, sometimes adding subscripts for clarity.

2.1 Problem Formulation in Spectral Graph Theory

Given n elements and their pairwise local ordering mea-
surements in the d-dimensional space, with size On×n×d

and confidence Cn×n×d, we would like to establish their
global ordering in the same space, with coordinates
Xn×d. We focus on d = 1, as it will soon become
evident that, for all our embedding criteria, solving the d-
dimensional embedding problem is equivalent to solving
d independent 1-dimensional embedding problems.
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For elements a and b, their local ordering size Oa,b can
be arbitrary, whereas the confidence level Ca,b in this size
is always between 0 and 1. A positive (negative) Oa,b can
be interpreted as a measurement on how much better
(worse) a is than b. While there often holds Oa,b = −Ob,a

and Ca,b = Cb,a, neither O nor C is required to have such
consistency. Naturally, Oa,a = 0 and Ca,a = 1.

The goal of embedding is to find a global ordering X ,
such that its relative differences between elements match
those pairwise local ordering measurements:

Ea,b = (Xa −Xb)−Oa,b  0, if Ca,b > 0 (1)

When no global ordering X can fulfill all these measure-
ments, a criterion assessing the overall fulfillment errors
is needed to help choose the optimal X .

In graph theory, the pairwise local ordering measure-
ments are fully captured in a weighted graph of n nodes,
where each node denotes an element, and the edge going
from node a to node b is associated with two weights:
Oa,b and Ca,b, describing how much a is better than b

and how much confidence we have in this information.

a: ground truth

b: Gaussian noise c: + 10% outliers

LS

AE

Fig. 2. AE with a quadratic criterion in the complex domain is
remarkably robust to outliers, unlike its real domain counterpart
LS. a) A ground-truth surface with a height range of 1 and a max-
imal gradient magnitude of 0.16. b) Gaussian noise with σ=0.05
is added to the pairwise height differences between pixels within
a city-block distance of 2. Integration of these differences by LS
and AE shows comparable reconstructions, both with a standard
error of 0.0085. c) Uniformly distributed outliers of values ±3 are
added to 10% of these noisy height differences. The standard
error becomes 0.1666 for LS and 0.0184 for AE. The surface
reconstructed by LS is barely recognizable, while that by AE
remains a close approximation to the ground truth surface.

In this directed graph, node a has 2 connections with
node b: an outgoing edge (Oa,b, Ca,b) and an incoming
edge (Ob,a, Cb,a). We consider b a neighbour of a’s if Ca,b>

0 or Cb,a > 0. The neighbourhood of a is thus N(a) = {b :
Ca,b > 0 or Cb,a > 0}. Confidence C can be regarded as
the strength of connection between nodes, i.e. weight in
the traditional sense, with 0 for a non-existing edge and
1 for a maximal edge, while ordering O can be regarded
as the relative displacement between nodes.

The problem of embedding is to assign Xa to node a,
∀a, so that all the nodes become ordered by their X num-
bers. To find the global ordering X that fulfills (O,C), the
local views of (O,C) from all the neighbourhoods need
to be reconciled and propagated to the entire graph.

It is helpful to express a criterion as a sum of n errors,
one per node. From node a’s point of view, the degree
of weights or the total confidence from all its edges is:

degree or total confidence: Da,a =
n∑

b=1

(Ca,b + Cb,a) (2)

Its neighbour b has 2 estimates of a’s position:

neighbour estimate relative confidence

outgoing
−→
Xa,b = Xb +Oa,b

−→
C a,b =

Ca,b

Da,a

(3)

incoming
←−
Xa,b = Xb −Ob,a

←−
C a,b =

Cb,a

Da,a

(4)

The average of the neighbour estimate of a’s position is:

average: Xa =
n∑

b=1

(
−→
C a,b

−→
Xa,b +

←−
C a,b

←−
Xa,b) (5)

These definitions lend themselves to matrix notations.

outgoing incoming

total
confidence

D = Diag(C1n + C ′1n) (6)

relative
confidence

−→
C = D−1C

←−
C = D−1C ′ (7)

neighbour
estimate

−→
X = 1nX

′ +O
←−
X = 1nX

′ −O′ (8)

neighbourhood
average

X = (
−→
C • −→X +

←−
C •←−X )1n (9)

where ′ denotes matrix conjugate transpose, Diag(·) the
diagonal matrix formed from its vector argument, • the
Hadamard (element-wise) product of two matrices, and
1n the n× 1 vector of 1s.

The 4 embedding criteria we will consider can all be
written as a sum of n node-centric errors, each pertinent
to a single node in the graph and capturing the local
view of the embedding X with respect to the neighbour

estimate (
−→
X,
←−
X ) or the neighbourhood average X .
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2.2 LS Standard: Minimize Variance

The standard LS criterion seeks to minimize the embed-
ding errors weighted by their confidence levels:

εLS=

n∑

a=1

n∑

b=1

Ca,bE
2
a,b=

n∑

a=1

n∑

b=1

Ca,b(Xa−Xb−Oa,b)
2 (10)

Writing it as n node-centric errors, we see that the usual

weighted LS is symmetrical with respect to
−→
X and

←−
X :

2εLS =

n∑

a=1

n∑

b=1

Ca,bE
2
a,b +

n∑

a=1

n∑

b=1

Cb,aE
2
b,a (11)

=

n∑

a=1

Da,a

n∑

b=1

−→
C a,b(Xa −

−→
Xa,b)

2 +
←−
C a,b(Xa −

←−
Xa,b)

2

(12)

= D (
−→
C • (X1′n −

−→
X ) • (X1′n −

−→
X )

+
←−
C • (X1′n −

←−
X ) • (X1′n −

←−
X ) ) 1n. (13)

If we assume that
−→
Xa and

←−
Xa each has a mean of Xa, εLS

aims to minimize the variance of the neighbour estimate
(Fig. 3).

b
Xa

b
Xb

b
Xd

b
Xc

b
Xe

bbb b

Oa,b

Oa,d

Oa,c

Oa,e

Fig. 3. LS seeks to minimize the variance in the neighbour
estimate of the embedding. For element a, every neighbour
b casts its estimate of Xa based on its own position Xb and
local ordering Oa,b with confidence Ca,b. εLS measures the total
variance of these estimates around Xa from all as.

We write εLS as a quadratic form of vector X :

εLS(X) =
n∑

a=1

n∑

b=1

Ca,b(X
2
a +X2

b − 2XaXb)

−
n∑

a=1

n∑

b=1

2(Xa −Xb)Ca,bOa,b +

n∑

a=1

n∑

b=1

Ca,bO
2
a,b (14)

= X ′(D − C − C ′)X − 2X ′(C •O − C ′ •O′)1n (15)

+ 1′n(C •O •O)1n (constant, to be dropped). (16)

Dropping the last constant term, we rewrite εLS(X) in
terms of graph Laplacian L and measurement M :

Laplacian: L = D − (C + C ′), (17)

measurement: M = C •O − (C •O)′, (18)

minimize: εLS(X) = X ′LX − 2X ′M1n. (19)

The optimal LS embedding X∗LS is thus X∗LS = L−1M1n.
Since L1n = 0, L is rank deficient and L−1 is interpreted
as the pseudo-inverse of L. Given that L depends only
on C, the propagation aspect of global integration is reg-
ulated by C only, while the local ordering reconciliation
aspect is primarily achieved by M1n, the confidence-
weighted sum of local orderings in each neighbourhood.

In spectral graph theory [33], the normalized Lapla-
cian L̃ is often more revealing of the graph structure.
Given any degree D and Laplacian L, we define

normalized Laplacian: L̃ = D−
1
2LD−

1
2 . (20)

We can rewrite LS as follows:

minimize: ε∗LS(X̃) = X̃ ′L̃X̃ − 2X̃ ′M̃1n, (21)

scaled embedding: X̃ = D
1
2X, (22)

normalized Laplacian: L̃ = I −D−
1
2 (C + C ′)D−

1
2 , (23)

normalized measurement: M̃ = D−
1
2M, (24)

optimal solution: X̃∗LS = L̃−1M̃1n. (25)

If (O,C) are d-dimensional measurements, we have

εLS(X) =

d∑

k=1

n∑

a=1

n∑

b=1

Ca,b,k(Xa,k −Xb,k +Oa,b,k)
2. (26)

Since each of the d dimensions (column k) of Xn×d can
be optimized independently with respect to its own 1-
dimensional pairwise measurements, the d-dimensional
embedding X∗LS is simply d 1-dimensional embeddings.

2.3 AE Standard: Minimize Distance

While LS realizes the global ordering X in the positions
of points on a line, AE realizes it in the angles of points
on a unit circle (Fig. 4). These points can be conveniently
represented by single numbers in the complex domain:

Za = ejXa , j =
√
−1, a = 1, . . . , n. (27)

In this new representation, the neighbour estimate has a
multiplicative instead of an additive adjustment:

outgoing:
−→
Z a,b = ej

−→
Xa,b = ej(Xb+Oa,b) = Zbe

jOa,b , (28)

incoming:
←−
Z a,b = ej

←−
Xa,b = ej(Xb−Ob,a) = Zbe

−jOb,a . (29)

The neighbourhood average in the complex plane is

average: Za =

n∑

b=1

(
−→
C a,b

−→
Z a,b +

←−
C a,b

←−
Z a,b). (30)

b

1

j

0

b Zb

b
Za=ejXa

bZc

b Zbe
jOa,b

bZce
jOa,c

Ca
,b

C
a
,c

rsZa

Xa

O
a
,bO

a
,c

Fig. 4. AE places elements on the unit circle such that their
angular displacements fulfill local ordering measurements. It
seeks to minimize the total (squared) distance between position
Za and its neighbourhood average Za from all as.
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Similarly to locally linear embedding (LLE) in the real
domain [34], AE minimizes the L2 distance in the com-
plex domain between the embedding Za and its neigh-
bourhood average Za from all the a’s, weighted by its
total confidence Da,a:

εAE(Z) =

n∑

a=1

Da,a|Za − Za|2 (31)

=

n∑

a=1

Da,a

∣∣∣∣∣Za −
n∑

b=1

Zb(
−→
C a,be

jOa,b +
←−
C a,be

−jOb,a)

∣∣∣∣∣

2

. (32)

Yet, unlike LLE or the original proposal of AE [17], where

only the outgoing neighbour estimate
−→
Z a,b is used to

define the neighbourhood average, here we also use the

incoming estimate
←−
Z a,b to define the average Za. Za is

identical to that in the original AE only when (O′, C ′) =
(−O,C). This modification renders AE symmetrical with

respect to
−→
X and

←−
X , just like the standard LS.

We relax the n unit-length constraints in Eqn. 27 to a
single constraint Z ′DZ=1′nD1n, and rewrite εAE(Z) in
terms of the real degree matrix D, complex measurement
M , and complex graph Laplacian L:

measurement: M = C • ejO + (C • ejO)′, (33)

Laplacian: L = D −M, (34)

average: Z = D−1MZ, (35)

minimize: εAE(Z) = (Z − Z)′D(Z − Z)

= Z ′(L′D−1L)Z, (36)

subject to: Z ′DZ = 1′nD1n. (37)

Note that eA denotes entry-wise exponentiation of A, i.e.,
(eA)a,b = eAa,b . While the Laplacian for LS depends only
on confidence C, the Laplacian for AE depends also on
ordering O and, in fact, on the entire measurement M .

As with the standard LS criterion, we can rewrite the
AE criterion using the normalized Laplacian L̃:

minimize: εAE(Z̃) = Z̃ ′L̃2Z̃ (38)

subject to: Z̃ ′Z̃ = 1′nD1n (39)

scaled embedding: Z̃ = D
1
2Z (40)

normalized Laplacian: L̃ = I −D−
1
2MD−

1
2 (41)

normalized measurement: M̃ = D−
1
2M (42)

As a result of standard Rayleigh quotient optimization
over L̃2, the optimum Z̃∗ is the eigenvector of L̃2 with
the smallest eigenvalue. Since L̃V = λV ⇒ L̃2V = λ2V ,
it is also the eigenvector of L̃ with the eigenvalue of the
smallest magnitude. AE optimum X∗AE is thus encoded
in the angles of V1 (Eqn. 27):

optimum: X∗AE = ∡Z∗ = ∡D
1
2Z∗ = ∡Z̃∗ = ∡V1, (43)

where Z̃∗ = V1, ε∗AE = λ2
1(1
′
nD1n), (44)

L̃Vk = λkVk, |λ1| ≤ . . . ≤ |λn|. (45)

2.4 LS Variant: Minimize Distance

We consider an LS variant (Fig. 5) which adopts LS’
representation of X in the linear space and AE’s crite-
rion of distance minimization, now between Xa and its
neighbourhood average Xa (Eqn. 5):

εLSD(X) =
n∑

a=1

Da,a(Xa −Xa)
2 (46)

=

n∑

a=1

Da,a

(
Xa −

n∑

b=1

(
−→
C a,b

−→
Xa,b +

←−
C a,b

←−
Xa,b)

)2

. (47)

b
Xa

b
Xb

b
Xd

b
Xc

b
Xe

||| |

Oa,b

Oa,d

Oa,c

Oa,e

rs

Xa

Fig. 5. The LS variant seeks to minimize the distance between
Xa and its neighbourhood average Xa (�) for all as, employing
the same criterion as AE but in the linear embedding space for
X.

We write εLSD using the Laplacian L and the mea-
surement M for the standard LS criterion:

Laplacian: L = D − (C + C ′), (48)

measurement: M = C •O − (C •O)′, (49)

average: X = D−1(C + C ′)X

+D−1(C •O − C ′ •O′)1n
= X −D−1(LX −M1n), (50)

minimize: εLSD(X) = (X −X)′D(X −X)

= (LX −M1n)
′D−1(LX −M1n). (51)

Further simplifying with LS’ normalized Laplacian L̃ =

D−
1
2LD−

1
2 , normalized measurement M̃ = D−

1
2M , and

scaled embedding X̃ = D
1
2X , we have

minimize: εLSD(X̃) = (L̃X̃ − M̃1n)
′(L̃X̃ − M̃1n), (52)

optimum: X̃∗LSD = L̃−1M̃1n. (53)

Despite the difference in the criterion, the optimum for
the LS variant is identical to that for the standard LS.

2.5 AE Variant: Minimize Variance

Conversely, we consider an AE variant (Fig. 6) which
adopts AE’s representation of X in the angular space of
embedding Z and LS’ criterion of variance minimization,
now of the neighbour estimate of the embedding Z:

εAEV (Z) =
n∑

a=1

n∑

b=1

Ca,b|Za − Zbe
jOa,b |2. (54)

Since |Zb − Zae
jOb,a | = |Zbe

−jOb,a − Za| = |Za −
←−
Z a,b|,

2εAEV =

n∑

a=1

n∑

b=1

Ca,b|Za − Zbe
jOa,b |2 + Cb,a|Zb − Zae

jOb,a |2

=

n∑

a=1

Da,a

n∑

b=1

−→
C a,b|Za −

−→
Z a,b|2 +

←−
C a,b|Za −

←−
Z a,b|2. (55)
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b

1

j

0

b Zb

b
Za=ejXa

bZc

b Zbe
jOa,b

bZce
jOa,c

Xa

O
a
,b

O
a
,c

Fig. 6. The AE variant seeks to minimize the variance in the
neighbour estimate Zbe

jOa,b of Za for all as, using the same
criterion as LS but in the angular embedding space for X.

Just like the standard LS criterion, the AE variant is sym-

metrical with respect to
−→
Z a,b and

←−
Z a,b, the neighbour

estimate of Za in both outgoing and incoming directions.
However, unlike the standard LS criterion, the AE

variant is a quadratic of Z without any linear terms:

εAEV (Z) =
n∑

a=1

n∑

b=1

Ca,b|Za − Zbe
jOa,b |2

=

n∑

a=1

n∑

b=1

Ca,b(|Za|2+|Zb|2−Z ′aZbe
jOa,b−ZaZ

′
be
−jOa,b)

= Z ′(D − (C • ejO + C ′ • e−jO′

))Z. (56)

We write the AE variant as a complete quadratic form
of L, subject to the same single relaxed norm constraint:

measurement: M = C • ejO + (C • ejO)′, (57)

Laplacian: L = D −M, (58)

minimize: εAEV = Z ′LZ, (59)

subject to: Z ′DZ = 1′nD1n. (60)

Further simplifying with AE’s normalized Laplacian L̃ =

D−
1
2LD−

1
2 , normalized measurement M̃ = D−

1
2M , and

scaled embedding Z̃ = D
1
2Z, we have

minimize: εAEV (Z̃) = Z̃ ′L̃Z̃, (61)

subject to: Z̃ ′Z̃ = 1′nD1n. (62)

We obtain a near-global optimum X∗AEV in the angles of
the eigenvector of L̃ with the smallest eigenvalue:

optimum: X∗AEV = ∡Z∗ = ∡D
1
2Z∗ = ∡Z̃∗ = ∡V1, (63)

where Z̃∗ = V1, ε∗AEV = λ1(1
′
nD1n), (64)

L̃Vk = λkVk, λ1 ≤ . . . ≤ λn. (65)

3 LS–AE DISTINCTIONS AND CONNECTIONS

Fig. 7 summarizes the four embedding criteria we have
investigated, along with new results to be proven in this
section. There are a few commonalities:

1. They all use the same degree matrix D, which has
the total level of confidence for each element.

2. They all can be written compactly as a quadratic
form of scaled embedding, normalized Laplacian,
and normalized measurement matrices.

3. For both LS and AE, minimizing variance or mini-
mizing distance results in the same optimum.

There are also several differences:

1. Whereas the Laplacian and the measurement are
respectively symmetrical and skew-symmetrical for
LS, they are always complex Hermitian for AE.

2. While the measurement M is defined by C • O for
LS, it is C • ejO for AE. For LS, the measurement
is the same whether it is a large value with a small
confidence or a small value with a large confidence.

3. While the Laplacian for LS is exclusively determined
by confidence C, it also involves size O for AE.

4. While the LS optimum requires a linear solver for

fitting M̃1n in the column space of L̃, the AE opti-
mum needs the smallest eigenvector of L̃ only.

5. Minimizing variance or distance only changes the
kernel for the quadratic objective function. Com-
pared to the distance criterion, the variance criterion
introduces an extra L̃−1 for LS and L̃ for AE.

We first prove the above claims regarding the distance
and variance criteria, then offer a diffusion interpretation
to both LS and AE optima, and finally establish connec-
tions between LS’ and AE’s error functions.

3.1 Equivalent Variance and Distance Criteria

The LS variance and distance criteria are equivalent,

since they have identical optima: X∗LS = L̃−1M̃1n.
Their connections can be further clarified when both are
written as complete quadratic forms of X̃ , L̃, and M̃ .

The LS variant is already a complete quadratic form.
We accordingly complete the square for the standard LS

by adding a constant 1′nM̃
′L̃−1M̃1n (different from the

earlier dropped constant 1′n(C •O •O)1n in Eqn. 16):

εLS = X̃ ′L̃X̃ − 2X̃ ′M̃1n

⇔ (X̃ ′L̃)L̃−1(L̃X̃)− 2(L̃X̃)′L̃−1(M̃1n)

+ 1′nM̃
′L̃−1M̃1n (constant added) (66)

= (L̃X̃ − M̃1n)
′L̃−1(L̃X̃ − M̃1n). (67)

That is, the two LS criteria only differ in the quadratic
kernel: identity matrix I for the LS variant, and dif-
fusion matrix L̃−1 for the LS standard, both acting on

L̃X−M̃1n, the error between the embedding differences
and the neighbourhood averages of local ordering mea-
surements.

The AE variance and distance criteria can be written as
quadratic forms of Z̃, with kernels L̃2 and L̃ respectively.
The optimum is the smallest eigenvector of L̃, in terms
of the absolute size (minnk=1 |λk|) for the former and the
algebraic size (minnk=1 λk) for the latter. They are identical
when all the eigenvalues are nonnegative. We prove that
in fact L̃’s eigenvalues are bounded between 0 and 2.
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problem: ( local ordering O, confidence C ) ⇒ global ordering X

approach: Least Squares Embedding (LS) Angular Embedding (AE)

representation: linear space angular space
embedding: Y = X Y = Z = ejX

measurement: M = (C •O)− (C •O)′ M = (C • ejO) + (C • ejO)′
Laplacian: L = D − (C + C ′) L = D −M

common:
degree: D = Diag((C + C ′)1n)

scaled embedding: Ỹ = D
1
2Y

normalized measurement: M̃ = D−
1
2M

normalized Laplacian: L̃ = D−
1
2LD−

1
2

pairwise transition: P = I −D−1L

criterion:

minimize variance: εLS = (L̃Ỹ − M̃1n)
′L̃−1(L̃Ỹ − M̃1n) εAEV = Ỹ ′L̃2Ỹ

minimize distance: εLSD = (L̃Ỹ − M̃1n)
′ (L̃Ỹ − M̃1n) εAE = Ỹ ′L̃ Ỹ

optimum:

scaled embedding: Ỹ ∗ = L̃−1M̃1n Ỹ ∗ = V1, L̃Vk = λkVk, λ1 ≤ . . . ≤ λn

global ordering: X∗LS = D−
1
2 Ỹ ∗ X∗AE = ∡Y ∗ = ∡D−

1
2 Ỹ ∗ = ∡Ỹ ∗

diffusion:

initial solution: Y (0) = X(0) = D−1M1n Y (0) = ejX
(0)

or any
recursion: Y (k) = PY (k−1) + Y (0) Y (k) ∝ PY (k−1) + Y (k−1)

convergence: X∗LS = (I − P )−1Y (0) X∗AE = ∡(I + P )∞Y (0)

sensitivity:

error function: ρLS(δ) = δ2 × 1

π2
ρAE(δ) = sin2

δ

2

derivative: ρ′LS(δ) = 2δ × 1

π2
ρ′AE(δ) = sin δ × 1

2

weight function:
ρ′LS(δ)

δ
= 2× 1

π2

ρ′AE(δ)

δ
=

sin δ

δ
× 1

2

Fig. 7. Summary of LS and AE criteria. The input of embedding is arbitrary pairwise local ordering measurements in value On×n

and confidence Cn×n (nonnegative). The output of embedding is global ordering Xn×1. LS and AE have distinctive representations
of the embedding Y , the measurement matrix M , and the Laplacian matrix L. They share the same degree matrix D, as well as the

definitions of scaled embedding Ỹ , normalized measurement M̃ , normalized Laplacian L̃, and pairwise transition P from their own
Y , M , and L. For LS or AE, the variance and distance optimality criteria lead to identical optima for quadratic forms with different
quadratic kernels. The LS and AE optima can be interpreted, respectively, as passive and active diffusion from the same initial
solution. Their distinction in the robustness to outliers is revealed by LS’ constant and AE’s sinc error weight functions.

Theorem 1. For any nonnegative matrix C and arbitrary ma-
trix O, let M = C•ejO+(C•ejO)′, D = Diag((C + C ′)1n),
L̃ = I −D−

1
2MD−

1
2 . For any eigenvalue λ of L̃, there must

be 0 ≤ λ(L̃) ≤ 2, and L̃ is semi-positive definite.

Proof: Since C is nonnegative, D must be semi-
positive definite, i.e. Z ′DZ ≥ 0, ∀Z. Let Za = rae

jXa ,
Zb=rbe

jXb , ra, rb ≥ 0, Ea,b = Xa −Xb −Oa,b. We have

Z ′(D −M)Z

= Z ′
(
Diag((C + C ′)1n)− (C • ejO + C ′ • e−jO′

)
)
Z

=

n∑

a=1

n∑

b=1

Ca,b(r
2
a + r2b − rarb(e

−jEa,b + ejEa,b)) (68)

=
n∑

a=1

n∑

b=1

Ca,b(r
2
a + r2b − 2rarb cos(Ea,b)) (69)

≥
n∑

a=1

n∑

b=1

Ca,b(r
2
a + r2b − 2rarb), since ra, rb ≥ 0, (70)

=

n∑

a=1

n∑

b=1

Ca,b(ra − rb)
2 ≥ 0, ∀Z, (71)

⇒ λ(L̃) ≥ min
Z

Z ′L̃Z

Z ′Z
= min

Z

Z ′(D −M)Z

Z ′DZ
≥ 0. (72)

Since −2rarb cos(Ea,b)≤2rarb≤r2a + r2b , we also have

Z ′(D −M)Z ≤
n∑

a=1

n∑

b=1

Ca,b2(r
2
a + r2b ) = 2Z ′DZ (73)

⇒ λ(L̃) ≤ max
Z

Z ′L̃Z

Z ′Z
= max

Z

Z ′(D −M)Z

Z ′DZ
≤ 2. (74)

Thus, 0 ≤ λ(L̃) ≤ 2, and L̃ is semi-positive definite.
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Therefore, whether LS or AE is formulated in the LS’
standard variance criterion or AE’s standard distance
criterion makes no difference in the optimal solution.

3.2 Passive vs. Active Diffusion

For any graph, we can write the symmetrically nor-
malized Laplacian L̃ in terms of the asymmetrically
normalized Laplacian D−1L, or transition matrix P :

L̃ = D−
1
2LD−

1
2 = D

1
2 (I − P )D−

1
2 = I −D

1
2PD−

1
2 , (75)

transition: P = I −D−1L. (76)

For LS, since L = D − (C + C ′), P is determined by C

exclusively. It is nonnegative and row-normalized:

transition for LS : P = D−1(C + C ′), (77)

row normalized: P1n = 1n. (78)

P can be interpreted as a transition probability matrix.
The larger the combined confidence of Ca,b + Cb,a, the
more likely the transition from a to b. What PX does to
X is simple averaging or smoothing, with Xa replaced
by its neighbourhood average (PX)a.

For AE, since L = D −M , P also depends on O:

transition for AE: P = D−1(C • ejO + C ′ • e−jO′

). (79)

P is row-normalized in the magnitudes of individual
complex components. It can thus still be interpreted as a
probability transition matrix, with a diffusion process in
the magnitude space just like LS and a new jump process
in the phase space. What PZ does to Z = ejX is jump
averaging: While Za is also replaced by its neighbourhood
average (PZ)a, Zb is first adjusted in phase by Oa,b or
Ob,a, and then averaged with others in the complex plane

according to
−→
C a,b or

←−
C a,b.

If O comes from pairwise differences of some underly-
ing global ordering X , we prove that the transition ma-
trices for LS and AE have the same spectrum, and their
eigenvectors are related by ejX , the angular embedding
of the global ordering X in the complex domain.

Theorem 2. Assume O = X1′n−1nX ′ and C is nonnegative.
Let D = Diag((C + C ′)1n), PLS = D−1(C + C ′), and
PAE = D−1((C • ejO) + (C • ejO)′).

1. PLS and PAE have the same set of eigenvalues, which
are all real and bounded between -1 and 1.

2. Their eigenvectors for the same eigenvalue λ are related
as such: V for PLS and Diag(ejX)V for PAE .

3. In particular, the largest eigenvalue-eigenvector pair is
(1, 1n) for PLS , and (1, ejX) for PAE .

Proof: For O = X1′n − 1nX
′, we have: O′ = −O, and

PAE = D−1((C • ejO) + (C • ejO)′) (80)

= D−1(C + C ′) • ejO (81)

= PLS • ejO = PLS • ejX1′n • e−j1nX′

(82)

= Diag(ejX)PLSDiag(e−jX). (83)

If PLSV = λV , then PAE(Diag(ejX)V ) = λ(Diag(ejX)V ),
Likewise, PLS shares the same spectrum as

D
1
2PLSD

− 1
2 = D−

1
2 (C + C ′)D−

1
2 , (84)

a symmetrical matrix with all real eigenvalues. Taking to-
gether with the well-known fact that the spectral radius
of a transition matrix is 1, we have shown that both PLS

and PAE have the same and all real eigenvalues bounded
between −1 and 1. Their corresponding eigenvectors are
related as (V,Diag(ejX)V ) for (PLS , PAE) respectively.

Since PLS1n = 1n, 1n is the eigenvector with the
largest eigenvalue 1. PAE thus also has the eigenvector
of Diag(ejX)1n = ejX with the largest eigenvalue 1.

PLS depends just on C; thus, its eigenvector can only
encode confidence in a global ordering. PAE depends on
both O and C; thus, its eigenvector can encode the size
and confidence of an optimal global ordering separately
in the angles and magnitudes of the same complex num-
bers. For (O,C) consistent with global ordering X , the
above theorem shows that PAE and PLS ’s corresponding
eigenvectors reveal the same level of confidence in X .

This result generalizes the concept of transition ma-
trix, useful for understanding the geometry of the data
through diffusion [35]–[39], from the real domain to
the complex domain. We show next that the LS (AE)
optimum can be understood as the result of a passive
(active) diffusion of local orderings.

The optimal LS embedding can be viewed as the result
of an infinite diffusion of X(0), the confidence-weighted
average measurement of each neighbourhood:

X(0) = D−1M1n = D−
1
2 M̃1n, (85)

X(k) = X(0) + PX(k−1), k = 1, 2, . . . , (86)

X∗LS = D−
1
2 X̃∗LS = D−

1
2 L̃−1M̃1n (87)

= (I − P )−1X(0) = (I + P + P 2 + . . .)X(0) (88)

=

∞∑

t=0

P tX(0) = lim
k→∞

X(k) = X(∞). (89)

X∗LS is thus an aggregation of X(0), a direct measurement
on each element’s overall superiority against neighbours,
PX(0), the one-step propagation of neighbours’ assess-
ment of its superiority, P 2X(0), the two-step propagation
of its neighbours’ assessment of its superiority, and so on
and so forth. How many steps the aggregation needs to
converge depends on the transition matrix P , which is
determined entirely by confidence C.

The optimal AE embedding is ∡V1, where V1 is the
eigenvector of L̃ with the smallest eigenvalue λ1. Since
L̃’s eigenvalues are bounded between 0 and 2, V1 must
be the eigenvector of 2I − L̃ with the largest eigenvalue
2− λ1. V1 can thus be solved via power iteration:

V1 = lim
k→∞

V
(k)
1 = V

(∞)
1 , (90)

V
(k)
1 ∝ (2I − L̃)V

(k−1)
1 , s.t. ‖V (k)

1 ‖ = 1, (91)

= (I +D
1
2PD−

1
2 )V

(k−1)
1 . (92)
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This recursion can be simplified with Z(k) = D−
1
2V

(k)
1 .

We obtain an interpretation comparable to that for LS:

Z(0) = ejX
(0)

, (93)

Z(k) ∝ (I + P )Z(k−1) ∝ (I + P )kZ(0), k > 0, (94)

X∗AE = ∡D−
1
2V1 = ∡Z(∞). (95)

Unlike X(0) for LS, Z(0) can be any non-degenerate
initial solution. The particular choice for Z(0) in the
above satisfies ∡Z(0) = X(0), which allows us to examine
how the AE and LS optima emerge differently from X(0).

Therefore, both LS and AE optima can be regarded as
some global ordering equilibrium reached upon diffu-
sion of average local ordering X(0):

X∗LS = (I − P )−1X(0), P = D−1(C + C ′), (96)

X∗AE=∡(I+P )∞ejX
(0)

, P =D−1(C•ejO+C ′•e−jO′

). (97)

or expressed in the following recursive iterations:

X∗LS ← X(k) = PLSX
(k−1) +X(0), k →∞, (98)

Z∗AE ← Z(k) ∝ PAEZ
(k−1) + Z(k−1), k →∞. (99)

The LS optimum can be understood as an aggregation
of progressively diminishing smoothed versions of X(0)

via passive diffusion. In contrast, the AE optimum can be
understood as an aggregation of progressively stabilized
jump averages of any non-trivial initial global ordering
via active diffusion, with a jump mechanism in the phase
space exerting more inertia on the diffusion process,
making the convergence steadier and smoother.

3.3 Sensitivity to Errors and Outliers

AE in its original distance criterion appears to be quite
different from LS. Since AE can be equivalently cast in
LS’ variance criterion, we can reveal their connections.
According to the variance interpretation of LS and AE,

εLS =
n∑

a=1

n∑

b=1

Ca,b E
2
a,b, (100)

1

4
εAEV =

n∑

a=1

n∑

b=1

Ca,b sin2
Ea,b

2
, (101)

∵ |Za−Zbe
jOa,b |2 = |ejXa − ejXbejOa,b |2 = |ejEa,b − 1|2

= (cosEa,b − 1)2 + sin2 Ea,b = 4 sin2
Ea,b

2
. (102)

We can thus write both as a weighted squared sum of
errors (SSE), with their own error function ρ(δ)s:

SSE: ε(X) =

n∑

a=1

n∑

b=1

Ca,b · ρ(Ea,b), (103)

error functions: ρLS(δ) = δ2 · 1

π2
, (104)

ρAE(δ) = sin2
δ

2
. (105)

Here we have scaled the LS and AE criteria in Eqns.100-
101 so that their error functions have the same range of
[0, 1] over δ ∈ [−π, π], the central period of ρAE (Fig. 8a).

a: error function

0.5

1.0

−0.5

−1.0

π 2π−π−2π δ

ρ(δ)
LS
AE

b: derivative

0.5

1.0

−0.5

−1.0

π 2π−π−2π δ

ρ′(δ)
LS
AE

c: weight function

0.5

1.0

−0.5

−1.0

π 2π−π−2π δ

ρ′(δ)

δ

LS
AE

Fig. 8. AE is more sensitive to small errors yet more robust to
large errors than LS. a) Since AE’s error function is bounded and
cyclic, we scale LS’ error function to span the same range within
the highlighted white box (−π, π)×(0, 1). b) While ρ′LS increases
with δ at a linear rate, ρ′AE peaks at π

2
. c) The weight function is

constant (0.2) for LS, regardless of δ, and is a sinc function for
AE that peaks (0.5) at 0 and vanishes at π, repeating the same
pattern with a period of 2π and a decaying magnitude.

While LS and AE have different error functions, they
become equivalent at very small δ, since

ρAE(δ) = sin2
δ

2
=

(
δ

2
− δ3

3!23
+

δ5

5!25
− ...

)2

(106)

≈ δ2

4
∝ δ2

π2
= ρLS(δ), |δ| → 0, (107)

i.e., LS and AE behave alike when the local ordering O

slightly deviates from some true global ordering X .

The sensitivity of LS and AE to the embedding error
δ is revealed in the iterative re-weighted LS procedure
for solving the SSE optimum X∗ [40]:

0 =
∂ε

∂Xa

=

n∑

b=1

Ca,b ρ
′(Ea,b)− Cb,a ρ

′(Eb,a) =

n∑

b=1

(
Ca,b

ρ′(Ea,b)

Ea,b

)
· Ea,b −

(
Cb,a

ρ′(Eb,a)

Eb,a

)
· Eb,a, (108)
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n∑

b=1

Wa,b(X
∗
a −X∗b −Oa,b)−Wb,a(X

∗
b −X∗a −Ob,a) = 0,

(109)

X∗ = (Diag((W +W ′)1n)−W −W ′)−1·
(W •O −W ′ •O′)1n, (110)

where Wa,b = Ca,b

ρ′(Ea,b)

Ea,b

= Ca,b · w(Ea,b), (111)

weight function: w(δ) =
ρ′(δ)

δ
, (112)

wLS(δ) =
ρ′LS(δ)

δ
= 2 · 1

π2
, (113)

wAE(δ) =
ρ′AE(δ)

δ
=

sin δ

2δ
. (114)

Eqn. 110 prescribes a series of weighted LS embeddings
for solving the optimum, the weights evolving with the
embedding error. Each iteration solves a standard LS em-
bedding problem for (O,Ceq): While the local ordering
O is always the original, the equivalent confidence Ceq

is the original confidence C multiplied by the weight
function w at the current embedding error E:

iterative optimum: X∗ = L−1eq Meq1n, (115)

equivalent confidence: Ceq = W = C • w(E), (116)

degree: Deq = Diag((Ceq + C ′eq)1n), (117)

measurement: Meq = Ceq •O − (Ceq •O)′, (118)

Laplacian: Leq = Deq − (Ceq + C ′eq). (119)

For LS, wLS(E) is a constant; thus, Ceq ∝ C, the optimum
is solved in a single iteration. For AE, wAE(E) is a non-
convex sinc function, with larger errors (e.g., outliers)
given less weight (Fig. 8c); thus, more iterations are
required for convergence, with local optimality guaran-
tee only. This fact makes AE’s eigensolution only more
remarkable: The eigenvector is a near-global optimum
solved in one step from the original (O,C).

To summarize, what sets LS and AE apart is not their
criteria but their representations. For both LS and AE, the
variance and distance criteria lead to the same optima.
AE represents the size and confidence of pairwise local
orderings in single complex numbers, and encodes the
size and confidence of an optimal global ordering in
the eigenvector of its transition matrix. As a quadratic
criterion in the complex domain, AE has a non-convex
error function that is more sensitive to small errors yet
at the same time more robust to large errors. The AE
optimum can be viewed as the result of an iterative LS
procedure where the confidence in local orderings gets
adjusted according to the size of the embedding error.

4 EXPERIMENTAL RESULTS

We implement LS and AE in MATLAB (version: R2009b)
on a PowerMac OS X with 2x3 Dual-Core CPU and 8GB
memory. We compare LS and AE on accuracy (Fig. 9),
efficiency (Fig. 10), and robustness (Fig. 11 and Fig. 12).

a: average standard error (%)
vs. total number of elements

– complete measurements

LS = AE

100 600 1100 1600 2100

0.2

0.4

0.6

0.8

1.0

b: average standard error (%)
vs. neighbourhood radius

– partial measurements

LS = AE

0 200 400 600 800 1000

0.5

1.0

1.5

2.0

Fig. 9. LS and AE are equally accurate for Gaussian additive
noise σ on complete or partial measurements. a) We generate
ground-truth X as uniformly random numbers in [−1, 1], obtain
measurement O with confidence C = 1 by adding Gaussian
noise to pairwise differences of X, and compute LS (gray) and
AE (black) embeddings from (O,C). We repeat this 20 times
for each number of elements and noise level σ, and obtain the
error bar plots for the overall difference between the embedding
and X. Thicker lines for larger σ, σ = 0.05, 0.1, 0.2. LS and
AE (curves overlap) always give the same optimum at each
noise level, and the average standard error with respect to X
increases with σ. b) For n=2000 elements labeled from 1 to n,
each has 2r+1 neighbours (labeled from k−r to k+r for element
k). We run the same experiment as in a, with C(a, b) = 1 if a, b
are neighbours and 0 otherwise. LS and AE (curves overlap)
converge quickly to that from complete measurements.

Given measurements (O,C), we first compute the
normalized Laplacian L̃ for LS or AE. We then use
MATLAB built-in function lscov.m, a Cholesky linear
solver which is faster and more stable than pseudo-

inverse, to obtain the optimum L̃−1M̃1n for LS, or use
MATLAB function eigs.m to obtain the eigenvector V1

of L̃ with the smallest eigenvalue for AE. Since an
ordering is subject to arbitrary translation, we center it
at 0 by subtracting its mean value. With the arbitrary
constants removed from all the embedding and ground-
truth solutions, they can be directly compared.

We compare the accuracy of LS and AE upon Gaussian
noise with respect to the number of elements and the
number of measurements per element. Given all pair-
wise measurements, Fig. 9a shows that: 1) The embed-
ding becomes more accurate with more elements at any
noise level; 2) both LS and AE can achieve high accuracy
in the presence of Gaussian noise, e.g., the standard error
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a: running time (seconds)
vs. total number of elements

– complete measurements

LS

AE

100 600 1100 1600 2100

1
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b: running time (seconds)
vs. neighbourhood radius

– partial measurements

LS

AE

0 200 400 600 800 1000
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Fig. 10. Running times for Fig. 9. a) LS takes more time
than AE with more elements, both varying little with σ (curves
overlap) for complete measurements. b) LS takes the same
amount of time while AE takes less time as the radius increases.

is less than 1% over signal range [−1, 1] at noise level 0.2.
Given measurements in limited neighbourhoods, Fig. 9b
shows that: 1.) The accuracy is poor at a small radius, but
becomes on par with that from complete measurements
with only 20 ∼ 40% of them, depending on the noise
level; 2) the accuracy is similar for LS and AE at any
neighbourhood radius and measurement noise level.

While LS and AE are equally accurate upon Gaussian
noise, their running times are different. Fig. 10 shows
that:

1. The level of measurement noise has little impact on
the running time for either LS or LE;

2. While the time always increases with more elements,
it does so more rapidly for LS than for AE;

3. The running time is insensitive to the radius for LS,
but drops with an increasing radius for AE;

4. AE takes far less time than LS at a radius large
enough to discover the same solution from complete
measurements, i.e., AE is more effective at global
integration from incomplete measurements.

It might appear counter-intuitive that AE’s running
time actually decreases with an increasing radius. The

a: ground truth b: AE (0.023, 16s)

c: LS (0.188, 6s) d: LSB (0.275, 25s)

e: L1 (0.188, 846s) f: L1B (0.203, 1465s)

Fig. 11. Image reconstruction by AE, LS, bounded LS (LSB),
L1, and bounded L1 (L1B) from pairwise intensity differences.
a) Image X as the ground-truth ordering, with an intensity range
of 1 over 180 × 160 pixels. b,c,d,e,f) Embedding results marked
by their standard errors with respect to X and running times in
seconds. Local ordering O is obtained with confidence 1 as in-
tensity differences of X between pixels within a neighbourhood
radius of 2, added with Gaussian noise of σ = 0.05. 10% of these
measurements are further added with random noise of ±3 (i.e.
outliers). The AE optimum is far superior to others (despite the
fact that the true range 1 is used in LSB and L1B). The time
for AE (16s) is a little more than that for LS (6s) in this small
radius case, but it is generally much less as the radius increases
(Fig. 10, Fig. 12).

explanation is that while more matrix-vector operations
are needed during each iteration of the eigensolver for a
denser matrix L̃, the number of iterations is reduced as
less cue propagation is required with a larger radius.
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a: LS (0.059, 166s) — 20% outliers — b: AE (0.006, 18s)

c: LS (0.073, 166s) — 30% outliers — d: AE (0.010, 18s)

e: LS (0.083, 165s) — 40% outliers — f: AE (0.025, 19s)

Fig. 12. Image reconstruction by LS (a,c,e) and AE (b,d,f) over
an increasing percentage of outliers. The same convention as
Fig. 11. These results are obtained at r = 8. While robustness
often increases with the neighbourhood radius, we observe a
fairly stable break point for AE between 40% and 50%, the
results showing more speckles with more outliers.

The efficiency of LS and AE certainly evolves with
new linear solvers and eigensolvers. Since the Laplacian
for LS is singular, the linear solver must handle rank
deficient matrices. Many solvers such as conjugate gra-
dient methods (e.g. MATLAB functions pcg.m, bicg.m)
are fast but fail to converge for the ill-conditioned LS
Laplacian. We use MATLAB 7.6’s built-in Cholesky lin-
ear solver and Lanczos eigensolver. For general matrices,
the current best computational complexity is O(n logc n)
for the linear-solver [41] and O(n1.5) for the eigen-solver

[42]. The former becomes O(n log2 n log log n) when the
graph is planar, and the latter becomes O(n) when the
graph is sparse, as in most computer vision applications.

Having studied the accuracy and efficiency of LS
and AE with independent and identically distributed
Gaussian noise, we turn to the robustness of LS and AE
to singularly large noise that could potentially disrupt
the entire embedding, i.e. measurement outliers.

We also investigate whether AE’s robustness can
be achieved by bounding the LS solution [43] or us-
ing L1 instead of L2 norm [23]. Specifically, if Xa ∈
[Xmin, Xmax], ∀a, we first optimize regarding X̃ = D

1
2X :

min ‖L̃X̃ − M̃1n‖k, k = 1 or 2 (120)

s.t. D
1
2 (Xmin1n) ≤ X̃ ≤ D

1
2 (Xmax1n) (121)

and then recover the optimum X∗=D−
1
2 X̃∗ and remove

its mean as the final solution. For k=2, without and with
the constraint, we have the old LS and the new bounded
LS (LSB) optima respectively. Likewise, for k=1, without
and with the constraint, we have the L1 and bounded
L1 (L1B) optima respectively. We use MATLAB function
lsqlin.m for LSB and linprog.m for L1 and L1B.

Fig. 11 and Fig. 12 show that AE can recover the
original image from noisy and outlier infected local
intensity differences with a quality and computational
efficiency that cannot be matched by LS, L1, or their
bounded versions. AE can remain unaffected by as many
as 40% outliers, with more speckles showing up as the
percentage of outliers further increases. It eventually
breaks down completely with 50% outliers.

For AE, the quality of embedding remains high before
the percentage of outliers reaches the break point. This
effect cannot be achieved by employing L1 norm on the
error or bounding the range of the embedding, where
outliers with their large magnitudes force oscillations in
the outcome to accomodate them. AE removes outliers
not by imposing smoothness or bounds on the solution,
but by penalizing inconsistency between the measure-
ments themselves: small inconsistencies are sensitively
tuned to, while large inconsistencies are simply ignored.

5 SUMMARY AND DISCUSSION

We conclude the paper with a summary of our results
and a discussion on the connections of AE to statistical
ranking and spectral clustering.

5.1 Summary

We compare LS and AE on integrating pairwise local or-
dering measurements to yield a global ordering. LS and
AE are different on two accounts: seeking the embedding
in the linear space or the angular space, and evaluating
the embedding in terms of the variance or the distance
minimization criterion.

Our theoretical analysis shows that:

1. Both distance and variance criteria result in the same
LS or AE optimum.
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2. It is thus not the criterion that sets LS and AE apart,
but encoding the size and confidence of ordering in
complex numbers and seeking the embedding in the
angular space allows AE to be more effective than
LS at integration.

3. The transition matrix for AE encodes the propaga-
tion of confidence (just like LS) in the magnitude
space and the separation of ordering in the phase
space, and its eigenvector completely determines the
optimal embedding.

4. The representation in the complex domain leads to a
non-convex error function that gives AE sensitivity
to small inconsistencies and yet robustness to large
inconsistencies in the embedding, and leads to an
eigensolution that gives AE efficiency and near-
global optimality in computation.

Our numerical experiments demonstrate that:

1. AE is faster and more effective than LS at global
integration from partial measurements.

2. AE has a stronger capability to correct measurement
outliers, mitigate and restrict embedding errors to
infected pixels and their involved neighbours.

3. AE enjoys little loss in the embedding quality with
an increasing percentage of measurement outliers
until the level reaches a break point beyond 40%.

4. AE’s robustness to outliers cannot be matched by
employing L1 norm on the error or bounding the
range of the embedding, suggesting that the key
to overcoming outliers lies not with additionally
imposing constraints on the solution, but with adap-
tively penalizing inconsistency between measure-
ments themselves.

5.2 Connections to Statistical Ranking

AE significantly advances statistical ranking methods [2],
[3], [8], [10] by removing the impact of outliers without
expensive and explicit inconsistency characterization.

Pairwise rankings can be represented as edge flows
on a graph, and pure inconsistency in these measure-
ments is indicated by cyclic edge flows. The graph
Helmholtzian (i.e., the vector Laplacian, as opposed to
the scalar Laplacian) can thus unravel the ranking struc-
ture from edge flows [10]. According to the combinato-
rial Hodge theory, each edge flow can be decomposed
into three orthogonal components, a curl-free gradient
flow that represents the L2-optimal global ranking and
two divergence-free flows that measure the validity of
the global ranking (larger values for poorer rankings): a
locally cyclic curl flow and a locally acyclic but globally
cyclic harmonic flow that indicate whether the inconsis-
tency in the measurements arises locally or globally.

However, the discrete Hodge decomposition [44] only
provides some diagnostic information about outliers; it
does not remove the impact of the outliers. It is an
LS problem of higher computational complexity, since
it deals with not just the number of nodes but the

number of triangles in the graph. Algorithms based
on finite elements, multiscale, and smoothed particle
hydrodynamics [45]–[48] have been proposed to reduce
the complexity. While, in theory, the inconsistency is
indicated by large curl or harmonic flow components,
in practice it is hard to identify the few sparse outliers
that could cause cyclic flows in a much larger scope. Fur-
thermore, as our results have demonstrated, while an L1

modification may enforce the sparseness in embedding
errors [10], it cannot achieve robustness to outliers.

Another interesting connection between AE and sta-
tistical ranking is angular formulations. When AE is
rewritten as a function of angular differences (as op-
posed to its complex representation), it exhibits a non-
convex objective function that behaves like LS near 0 but
is upper-bounded. This key property reveals why AE
is more robust to outliers than LS, while still allowing
for a global optimization via eigendecomposition as the
constraint of embedding into the unit circle is relaxed.
Curiously enough, while a χ2 test for the goodness of
fit between measured data and fitted data is usually
performed on their differences directly, which requires
estimating variances, an alternative is performed on the
differences in the angles obtained by applying the in-
verse sine transformation to the data, which are normally
distributed with variance independent of the underlying
distribution [8] . A full investigation from a statistical
perspective could shed more light into the advantage of
formulating the embedding in the angular space.

5.3 Connections to Spectral Clustering

AE significantly advances spectral clustering (SC) meth-
ods [35], [49]–[52] by providing an ordered cluster or-
ganization and covering the entire size-confidence mea-
surement space.

Popularized by normalized cuts for image segmen-
tation [49], SC has been applied to motion segmenta-
tion and tracking [53], boundary detection [54], object
recognition [55], image matching [56], contour grouping
[57], spatial layout inference [58], image matting [59],
etc. What makes them appealing is the convenience of
pairwise grouping cues readily definable from applica-
tions, and the assurance of near-global optima efficiently
computable via eigendecomposition [60].

However, knowing what goes with what in the same
cluster is often not enough. It is desirable to know how
different clusters go together (Fig. 13a). For example,
image segmentation organizes pixels into disjoint re-
gions, with little sense of the organization of the regions
themselves, in terms of either visual saliency or depth
ordering. SC with attraction and repulsion cues [61]–[63]
does produce an ordered clustering, but it is problematic
in theory and rather limited in practice.

Conventionally, SC views clustering as an emergent
global property from local measurements of feature
similarity. Consequently, there are three key limitations
which have motivated the introduction of the dual cues
of attraction and repulsion [61], [62].
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Fig. 13. AE improves SC with an ordered cluster organization
and more complete measurement coverage. a) While SC finds
a list of disjoint clusters, AE outputs an ordered partitioning.
b) While AE covers the entire size-confidence measurement
space, SC covers only two lines of different natures: Attraction
measures the confidence in size 0, whereas repulsion measures
the size of local orderings with a constant level of confidence.

1. The ambiguity of zero. The similarity relationships
can be regarded as a form of attraction. Attraction is
transitive, allowing us to supply local attraction fields
and assume zero connections beyond. This step reduces
the computational complexity of SC from O(n3) to O(n

3
2 )

[64], where n is the number of elements to be grouped.
However, attraction of 0 is ambiguous: It could mean
that the measurement is either zero or not available.

2. Fatal attraction. Attraction alone has no mechanism
to check the growth of its transitivity. Suppose a and b

are good friends of c, but a and b completely dislike
each other. When grouping is carried out with attraction
alone, a high affinity between (a, c) and (b, c) ensures
that even zero affinity between (a, b) cannot interfere
with clustering a, b, c into one group. This fatal drawback
is caused by the innate transitivity of attraction, the
very property that allows a global grouping to emerge
from local attraction fields. However, with no explicit
encoding of dislikes between elements, it is difficult to
stop the unwanted propagation of attraction.

3. Disjoint use of similarity and dissimilarity. Feature
dissimilarity contributes independently of feature simi-
larity to the process of grouping. For examples, reds and
greens pop out among surrounding blacks, due not so
much to the similarity between them as to their dissimi-
larity from the common blacks; local occlusion cues that
separate two regions in depth layers also bind different
regions in the same depth layers together. However, such
an active force for grouping has traditionally not been
considered simultaneously with feature similarity.

With pairwise cues of attraction and repulsion natures,
SC views clustering as the result of both grouping and

segregation processes, by feature similarity as well as
feature dissimilarity. A positive (negative) cue suggests
that two elements more likely to be together (separate),
whereas 0 indicates a neutral tendency towards either
outcome. To be grouped and not to be grouped can both
be specified and considered simultaneously.

When repulsion is directional, an ordered clustering
results: A zero difference between two elements in the
outcome means they are in the same group, whereas a
positive (negative) difference means they are in different
groups with a positive (negative) advance [61].

A close examination of the ordered clustering inter-
pretation reveals that the dichotomy of attraction and
repulsion is flawed. Attraction describes the confidence
in a zero-difference outcome: Large attraction encour-
ages a zero-difference outcome, and says nothing about
any non-zero difference outcomes. On the other hand,
repulsion describes the size of the difference itself: Large
repulsion encourages the difference of this particular size
in the outcome, and says nothing about the confidence
in this or any other outcome (Fig. 13b).

Attraction being the confidence in size 0, repulsion
being the size of a measurement itself, the two do not
specify pairwise cues on the same terms. They work
together only when their measurements complement
each other. For example, region segmentation and depth
ordering can be accomplished in one step, only when
attraction acts to pull pixels together inside a region
and repulsion acts to push pixels apart along region
boundaries [61]. However, as observed in segmentation
with matting cues [65], such a scheme works only if
the right cues are at the right places. This requirement
is obviously too much to ask of local cues in most
applications. Consequently, ordered SC has not been so
widely used as its orderless counterpart despite its larger
demand and revived interest [18], [63], [65]–[67].

SC with attraction and repulsion is a remedy to an
essentially orderless clustering, imposing an ordering
out of grouping cues of two different natures, which
cannot represent or distinguish low confidence in a large
value from high confidence in a small value.

AE aims at a global ordering directly from its local
ordering measurements, each equipped with two num-
bers: size and confidence (Fig. 13b). As SC with attraction
and repulsion, AE also has a complex representation and
an efficient eigensolution. However, AE overcomes the
three limitations of SC and gives a principled interpre-
tation to every cue, not by the nature of grouping it
suggests, but by the outcome in the ordering it desires.

AE is superior to SC with attraction and repulsion,
not only because it covers the entire measurement space
and delivers an ordered clustering, but also because it is
remarkably robust to measurement outliers.

Since AE overcomes the limitations of the widely used
LS and SC, it is a valuable new tool for many appli-
cations other than brightness modeling [17] and figure-
ground segmentation [18]. Quadratic criteria prone to
outliers can nonetheless achieve robustness with com-
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plex measurements. This idea is also applicable to prob-
lem formulations other than embedding.
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