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Abstract

In medical research, many applications require counting and measuring small re-
gions in a large image. Segmenting these images poses a dilemma in terms of
segmentation granularity due to fine structures and segmentation complexity due
to large image sizes. We propose a constrained spectral graph partitioning frame-
work to address the former while also reducing the segmentation complexity as-
sociated with the latter. The final segmentation is obtained from a set of patch
segmentations, independently derived but subject to stitching constraints between
neighboring patches. Individual segmentation is based on local pairwise cues de-
signed to pop out all cells simultaneously from their common background, while
the constraints are derived from mutual agreement analysis on patch segmenta-
tions from a previous round of segmentation. Our results show that we success-
fully extract many small regions in a variety of images.
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1. Introduction

There is often a need in medical research to count, measure, and compare nu-
merous small structures in a large image. As the examples in Fig. 1 illustrate,
images can be very different in nature and visual appearance. They could be
from a frog’s inner ear (left) or from a drosophila’s fly brain region from elec-
tron microscopy (EM) data (right). On the left, regions of interest could be the
larger scale haircell bundles or the smaller scale individual stereocilia that com-
pose them. While cluster intensities vary across the image, cell intensities peak
towards the center of each bundle. On the right, salient regions assume a larger
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Figure 1: Many small structures in a large image. Left: stereocilia bundles of the frog’s inner
ear, 1600 × 1600 pixels (Image Courtesy: Medha Pathak and David Corey at Harvard). Right:
electron microscopy (EM) data from the medulla brain region of the drosophila fly, 1800 × 1800
pixels (Image courtesy: Mitya Chklovskii, C Zhiyuan Lu, Rick Fetter, Shinya Takemura and Ian
Meinertzhagen at Janelia Farm Research Institute). Cells are approximately 15 pixels in diameter.

range of shapes and they are densely packed in the image together with new elon-
gated structures. Whether one wants to extract a 15 pixel cilia from the frog’s
hairbundles or a similar size vesicle in the fly’s brain, one has to address complex-
ity issues associate with a 1600× 1600 pixels or more image. In both images, the
regions of interest are very small when compared to the large image size.

Finding these small structures is a challenging segmentation problem on its
own. Figure 2 displays images from two human pathology image datasets in can-
cer research. The appearance variety of these cells illustrate common problems
encountered when dealing with these small regions. Rows 1 and 2 display images
of epithelial and embryonic cells, with faint boundaries, large intensity variations
and occlusions. Rows 3 and 4 display histopathological images of tumor-like le-
sions with textured cells and non-homogenous backgrounds.

The challenge of segmenting many small structures in a very large image is
therefore two-fold: fine segmentation granularity when dealing with the size of
the small segment and segmentation complexity when dealing with the size of the
large image.
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Figure 2: Segmenting cells challenges. Row 1: Epithelial A549 and embryonic kidney HEK293T
cells featuring faint boundaries, varying dot intensities and occlusions. Row 2: More HEK cells
of different convex geometries often appearing as cell clusters (Image courtesy: Nisha Sosale
at UPenn). Row 3: Histopathology images depicting tumor-like lesions: cells of various sizes
and textures in spleen cell lymphoma. Row 4: spleen tumor cells metastatic melanoma, clusters
of glands in ovarian cells and clear cell cribriform hyperplasia from prostate illustrating cells on
non-homogenous backgrounds (Image courtesy: www.webpathology.com).
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1.1. Challenge 1: Segmenting many small structures
Segmentation of medical images often appears to be governed by global inten-

sity levels, yet imaging noise and local intensity fluctuation present considerable
challenges. Faint regions, similar intensities between adjacent regions and con-
joined cells make these images challenging even for a human eye.

Many segmentation approaches for these type of image are based on math-
ematical morphology and energy-driven methods. In mathematical morphology,
the watershed transform (Meyer, 1994) is applied to extract an initial set of con-
tours, and markers or seeds are used to refine the contours of interest. The water-
shed transform is computationally very efficient (Meyer, 2005), but finding seeds
automatically is application-driven and can be very challenging. Without proper
seeds, oversegmentation results, since watershed is easily disrupted by local in-
tensity fluctuations. Less prone to local noise fluctuations, energy-driven meth-
ods involve the minimization of an energy function formulated either on regions
(Mumford and Shah, 1989; Geman and Geman, 1990; Zhu and Yuille, 1996) or
contours, such as snakes (Xu and Prince, 1998) and level set methods (Malladi
and Sethian, 1997). These algorithms though are computationally costly and they
depend on initial seed choices. Various techniques have been proposed to combine
the benefits of watershed and energy-driven methods, e.g. level sets for watershed
(Tai et al., 2007) or watersnakes (Hieu et al., 2003) that allows to inject smooth-
ness priors in the watershed formulation.

Graph cuts methods have also been employed to overcome the limitations
of watershed algorithms, e.g. segmenting a single connected component with
isoperimetric graph partitioning (Grady, 2006a). In (Coutsy et al., 2009), water-
sheds are formulated within a graph setup. Their theory together with a larger
family of segmentation methods including random walker (Grady, 2006b) are
generalized in the theory of power watersheds (Couprie et al., 2009). The lat-
ter though also depend on initial seeds and are thus not tailored for images with
many small conjoined regions with faint boundaries and no clear minima.

1.2. Challenge 2: Dealing with a large image
Segmentation methods such as watershed and k-means clustering are efficient

but unable to deal with large intensity variation (Fig. 3c,d). On the other hand,
spectral graph partitioning methods (Shi and Malik, 2000; Yu, 2005) are prized for
their ability to grasp the large structural organization of an image from the global
integration of local cues. While this property is desired for understanding a real-
scene image, it unnecessarily handles a huge number of pixels in a large image,
since segmenting cells in one region really should not be influenced by cells far
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a: image b: our results

c: watershed d: k-means e: normalized cuts

Figure 3: Efficiency versus robustness dilemma for segmenting small regions in a large image.
a,b) Image of epithelial cells and our resulting cell segmentation (gold). c,d) Efficient two-way
segmentations by watershed, k-means. Watershed oversegments in the presence of local intensity
fluctuations while k-means is unable to distinguish cells of similar intensities apart. e) Normalized
cuts (N-cuts) for 2, 4, 32, 64 regions is meant to segment large regions in natural images. While
robust in general, it fails for these structures.

from them. It also prevents small structures from being segmented all at once
(Fig. 3e), since a larger image size leads to larger regions instead of numerous
small ones given a fixed number of segments.

The two main approaches to reduce complexity, coarse-to-fine and multireso-
lution segmentations (Yu, 2005; Felzenszwalb and Huttenlocher, 2004; Cour et al.,
2005; Barbu and Zhu, 2003; Galun et al., 2003; Hofmann et al., 1997; Yu, 2004),
are not suitable for this task. The former approach speeds up the segmentation
by initializing a finer segmentation with the results of a coarser one, whereas the
latter integrates features at multiple scales to yield a better segmentation. Since
small structures are not present in either coarser-scale segmentations or coarser-
scale features, there is no help to be gained from either approach.
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a: input image

c: stitching constraints

e: output segmentation

b: independent segmentation d: constrained segmentation

BackgroundCells

Figure 4: Segmentation subject to stitching constraints algorithm overview. Segmenting numerous
small structures in a large input image (a) is performed as a series of independent patch segmenta-
tion subject to stitching constraints between neighboring patches. The constraints (c) are derived
from mutual agreement analysis on adjacent patch segmentations from a previous round. Seg-
mentations between neighboring patches are marked in blue, green, or maroon, if 1, 2, or more
than 3 patches agree. Stitching constrains cells (yellow circles) and background (purple squares)
to group within each type respectively. The constrained segmentation (d, in gold) improves the
initial segmentation (b, in cyan) and can be seamlessly combined to obtain the final output (e).

1.3. Our Solution: Popping out many small structures in a large image
We propose a spectral-graph framework which scales effectively with image

size without losing the fine granularity of small segments (as shown in Fig. 3b).
Our segmentation algorithm is outlined in Fig. 4.

We focus on segmenting small convex regions (e.g. cells), which we will
refer to as dots. Each image is divided into patches and each is segmented inde-
pendently. Pixels in the image become nodes of a weighted graph, and finding
dots becomes dissecting the graph based on weighted connections between nodes.
Whereas attraction cues are commonly used to encode affinity between pixels, it
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is the crucial role of repulsion cues that allows popping out all dots simultane-
ously from a common background. In order to compute these local cues, unlike
real-scene image segmentation (Shi and Malik, 2000), we do not use single edge
features (e.g. large intensity gradients along region boundaries) to delineate re-
gions. Instead, we use distributive local gradient fields to characterize geometrical
distinction between region cores in the foreground and region peripheries in the
background. Similar ideas have been used in (Staal et al., 1999) to detect criti-
cal points in images with topological numbers, and in the mean shift-generated
displacement vectors used in (Tek et al., 2001) to guide active contour models.

The individual segmentations are then used to establish the agreement be-
tween the patches, which provide pairwise long-range stitching constraints to be
respected by each patch. We run the segmentation again on each patch, but now
subject to these pairwise constraints on its pixels. The segmentation can be solved
efficiently as a constrained eigenvalue problem (Yu and Shi, 2004). Since these
segmentations have mutual agreement in the overlapping areas, their individual
solutions can be collapsed into one segmentation on the entire large image. Seg-
mentation subject to stitching is more than simple stitching. Constraints in the
overlapping regions propagate through in the optimization process to also improve
the interior segmentation.

This paper extends our previous theoretical model on segmentation subject to
stitching constraints (Bernardis and Yu, 2010b) and finding dots (Bernardis and
Yu, 2010a). In Section 2, we present a constrained spectral-graph partitioning
framework that naturally integrates the stitching constraints with the fine segmen-
tation granularity of the individual patches. In section 3, we present a detailed
analysis of the parameters used in the algorithm and how they can be adaptively
chosen without user interaction. The benefits of stitching are illustrated both on
dot structures and on more complex geometries. Finally, we present results and
performance comparisons with both general and state-of-the-art domain specific
segmentation algorithms. Section 4 concludes the paper.

2. Spectral Graph Partitioning Subject to Stitching Constraints

We formulate the image segmentation problem as a constrained graph parti-
tioning problem over a set of overlapping patches. Each patch is represented by
a weighted graph, where nodes denote pixels and weights attached to edges con-
necting two nodes encode grouping cues between the pixels. Segmenting small
structures becomes a two-way node partitioning problem: pixels inside cells form
a foreground node set, and those outside form the other background node set.
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2.1. Segmentation with Stitching: Constrained Graph Partitioning
We first formulate the constrained spectral graph two-segmentation criterion

ε (Yu and Shi, 2001) in terms of pairwise grouping cues encoding short-range
(with-group) attraction A and long-range (between-group) repulsion R between
background and cells:

max ε =
within-group attraction

total degree of attraction
+

between-group repulsion
total degree of repulsion

(1)

For each image patch I , we encode the grouping cues in an n×nweight matrix
W , where n is the total number of pixels, to facilitate the foreground-background
segmentation. Let:

W = A−R +DR (2)
D = DA +DR (3)

where DM = Diag(M1n) is the diagonal degree matrix for a n × n matrix M .
Note that W could have both positive and negative weights. If we let X denote
an n× 2 binary partition matrix, where X(i, g) = 1 if pixel i belongs to group g,
g = 1, 2, the above criterion can be formally written in matrix form as a two-way
segmentation using the constrained normalized cuts (Yu and Shi, 2004, 2003):

maximize ε(X) =
2∑
g=1

XT
g WXg

XT
g DXg

(4)

subject to X ∈ {0, 1}n×2, X12 = 1n (5)

UTX = 0 (6)

where 1n denote an n× 1 vector of 1’s.
The near-global optimal solution is given by the eigenvectors of QPQ, where

P = D−1W (7)

Q = I −D−1U(UTD−1U)−1UT . (8)

While the eigensolution of QPQ takes longer than that of P (unconstrained ver-
sion) to compute at each iteration, it often requires fewer iterations.We follow the
eigensolution and its discretization procedures developed in Yu and Shi (2004,
2003) and their code online to obtain a binary segmentation.

We next need to address: 1) How to compute local grouping cues A and R
to achieve the desired segmentation; 2) How to set up stitching constraints U
between adjacent patches.
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2.2. Local Features and Grouping Cues
To derive the attraction and repulsion cues, we start by extracting local features

from the image. The features that make our dot boundaries regions of their own
are not statistics which characterize local textural appearance, but patterns which
characterize local geometry. Instead of measuring local convexity with curvature
numbers, we describe it using a distributed relational representation, i.e., each
pixel has a pixel-centric flow field, which is a sink for pixels inside the dots (in-
tensity peaks) and a source for pixels outside the dots. We characterize cells of
small convex bright regions as the sinks of local gradient fields as in (Bernardis
and Yu, 2010a). Each pixel is associated with a peak direction vector p that indi-
cates where pixels of higher intensity are located in its convex vicinity. Two pixels
are attracted to the same region if their pixel-centric local gradient fields are sim-
ilar, and repelled into different regions if they are of opposite types (e.g. sources
and sinks). Computing the cues can therefore be divided into the following three
steps.

Step 1: Consider pixel i and its neighborhood Nd(i) of radius rd (neighbor-
hoods are taken as log-polar) as in Fig. 5a (a simple case of two separate dots,
as can be appreciated by viewing the intensity profile in Fig. 5d). If neighbor
a ∈ Nd(i) can be reached in a straight line from i with non-decreasing intensity, a
is a higher intensity pixel in the same convex region. Let p(i) be the average direc-
tion from its a neighbors, weighted by the total non-decreasing intensity T (i, a)
along the straight line from i to a:

p(i) ∝
∑

a∈Nd(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (9)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (10)

where L(i) denotes the 2D location of pixel i in the image, I(i) the intensity of
pixel i, and | · | the L2 norm of a vector. The peak direction vector p(i) thus points
from i towards the core of the cell that i belongs to, i.e., the highest intensity of
its local convex region. It measures the direction and distance from pixel i to the
center of the cell. T (i, a) = 0 if no ascending path exists on the specific line
(resulting in p = 0 at the center of the dots, i.e. where sinks occur).

Step 2: We define the convexity feature vector F (i, a) as the inner product of
p(i) and p(a) within a convexity neighborhood Nc(i), measuring how much a’s
cell center estimate agrees with i’s. The ensemble of {F (i, a): a ∈ Nc(i)} is a
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a: image I c: peak direction vector p e: degree of F
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Figure 5: Computing pairwise features and grouping cues. Step 1: Given a) image I , with b) a
sample intensity profile along the line intersecting a pair of separated dots, an initial radius rd is
used to compute c) a peak direction vector p at each graph node. This is achieved by taking the
average of the direction from i to all its a neighbors, each weighted by the total non-decreasing
intensity T (i, a) along the straight line from i to a. Step 2: A convexity feature radius rc is then
used to compute d) the local convexity feature vector F , which characterizes where pixel i lies
with respect to closest convex region. F can be visualized by looking at e) its degree at each i,
i.e.

∑
a∈Nc(i)

F (i, a). Sinks of the flow (dot centers) result in negative values while sources are
positive. Step 3: Finally, F is used to compute the pairwise cues: f) short-range attraction A and
g) a long-range repulsion R between graph nodes within radii rA and rR of each other.

pixel-centric vector field (i.e. with the absolute direction of p(i) factored out) that
characterizes where pixel i is in the shape of a convex region, and we can use
the feature similarity S to establish later pairwise pixel attraction and repulsion
grouping cues:

F (i, a) =< p(i), p(a) >, a ∈ Nc(i) (11)

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)|
, j ∈ NA(i), NR(i) (12)

where NA and NR are the attraction and repulsion neighborhoods respectively.
F (i, :) shows how much i’s neighbors agree with i on the direction the dot lies in,
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a: separated dots b: tangent dots c: overlapping dots
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Figure 6: Local pairwise cues based on feature similarity for three typical scenarios. The initial
image with intensity profiles (rows 1 and 2) of the line joining the two dot centers is used to
compute the peak direction vectors (row 3). Three points (off-centered on the left dot, midpoint
between the dots and on-center on the right dot) are selected to show feature vector F (row 4),
attraction A (row 5) and repulsion R (row 6).
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with p(i) itself factored out. Note that p(i) ∈ R2 while F (i, :) is a 2rc×2rc vector.
S(i, j) is more likely to be positive for nearby pixels inside the same dot, and neg-
ative for distant pixels between different dots, giving rise to two kinds of grouping
cues. In Fig. 5 we visualize F also by computing its degree at each pixel i, i.e.∑

a∈Nc(i) F (i, a), so that sinks (dot centers) are characterized by negative values
and sources by positive ones. We illustrate the sizes of attraction and repulsion
neighborhoods NA and NR on this last image.

Step 3: Since only convexity cues are used to differentiate dots apart, pairwise
grouping cues are based directly on the similarity feature measure S. While the
attraction A only operates at short ranges, the repulsion R operates at long ranges
pushing apart pixels inside dots from pixels outside and is essential for popping
out disconnected regions (Yu and Shi, 2001; Bernardis and Yu, 2010a). The short
range attraction A and long-range repulsion R are then defined as:

A(i, j) = e−
1−S(i,j)

σ , |L(j)− L(i)| ≤ rA (13)

R(i, j) =
1− S(i, j)

2
, |L(j)− L(i)| ≤ rR (14)

Figure 6 illustrates how A and R change as two dots become closer together.

2.3. Stitching Constraints U
A two-way node partitioning can be described by a n × 2 binary partition

matrix X , where n is the total number of pixels, X(i, 1) and X(i, 2) indicating
whether pixel i belongs to the inside or outside of a cell.

Our stitching constraints are imposed on the partition indicator X that is to
be solved in the optimization. If pixels a and b are known to belong in the same
region, we have the constraint X(a, :) = X(b, :), or X(a, :) − X(b, :) = 0. All
these equations can be described in a linear constraint UTX = 0, where U(a, k) =
1, U(b, k) = −1 is the k-th constraint that a and b belong to the same region.

The initial first-round patch segmentation does not require any constraints
U , although simple intensity thresholding or initial seeds can be introduced. In
the second-round patch segmentation, where each patch has been segmented, U
comes from a mutual agreement analysis ofX in the overlapping regions between
neighboring patches: pixels for which two adjacent patches agree on the seg-
mentation become either foreground or background pixels. Only a sparse set of
pairwise constraints are needed to ensure that two neighboring patches will have
consistent segmentations in their overlapping areas.
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a: rc = 4 b: rc = 6 c: rc = 8 d: rc = 12 e: rc = 16

Figure 7: Finding larger dots by increasing the convexity feature radius rc . As the attraction and
repulsion radii remain fixed, we display the change of segmentation boundaries as a function of
increasing rc. This shows how choosing a smaller template allows detection of all dots regardless
of their exact sizes with the same set of parameters. As the radius increases, the boundary expands
to include the entire dot shape after which neighboring regions start merging together.

Compared with traditional normalized cuts, the increase in time complexity
is negligible if the number of constraints is small (Yu and Shi, 2004). Addition-
ally, the space complexity is reduced using patch segmentation with stitching con-
straints, as the image is broken down into smaller patches and finding numerous
small regions becomes possible in a single two-way segmentation.

3. Experiments

We implement our algorithm in MATLAB and present results on different
datasets of dot-like structures encountered in human pathology studies. The ex-
perimental section starts with a detailed analysis of parameter selection followed
by details on the selection and effects of stitching constraints. We extend our
model to thin and elongated structures to illustrate the benefits of the segmenta-
tion subject to stitching constraints beyond the simpler dot structures. We bench-
mark our method for the epithelial and embryonic cells against other commonly
used segmentation algorithms. Finally, we also compare our dot segmentation
method with state of the art domain-specific segmentation algorithms presented
at the 2010 International Conference for Pattern Recognition (ICPR) as part of
the Pattern Recognition in Histopathological Images contest for counting lym-
phocytes on histopathological images.

3.1. Segmentation Parameters
The setup of pairwise cues for convex region detection requires four radii, first

to compute image features and then to compute pairwise cues:
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a: degree of F b: degree of F ≤ 0 c: dots radii distribution
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Figure 8: Automatic core radius estimation for parameter selection. Starting with a) the 2D visual-
ization of the degree of the feature vector F , where negative values (blue) represent the sinks (dots)
while positive ones (red) are background. We obtain b) disconnected components (i.e. possible
dots candidates) by simply thresholding the negative values. After computing a radius estimate for
each component, we look at c) the radii distributions for each patch (shown in the histogram) and
we take the peak as possible core radius estimate (red dotted line).

rd : radius of the neighborhood from which the peak direction vector p is com-
puted. Beyond a certain radius, rd gives a constant p, so it can be chosen
independently of the dot scale.

rc : radius of the neighborhood used to compute the feature vector F , it encodes
the local convexity of the neighborhood. Increasing rc, while keeping all
other parameters fixed, allows to look for larger shapes (Fig. 7). As rc
increases, the boundary expands to first include the entire dot and then to
merge adjacent dots together.

rA : radius used to compute short-range attraction cues. Increasing rA brings
nearby pixels together, so it should be at least comparable to the dot size.

rR : radius that determines the extent of long-range repulsion cues. The absence
of repulsion yields a segmentation similar to the traditional normalized cuts
result shown in (Fig. 3e).

Intuitively, rc has to entirely contain the dot to set a proper ‘template’ size for the
feature vector F computation, while rA and rR have to be large enough to capture
shape information and surrounding information respectively. rc, rA and rR can
be therefore defined in terms of a core radius r0 that represents the size of the
average dot. To compute the core radius, we use the heuristics depicted in Fig. 8.
Starting with degree of the convexity feature F (illustrated in Fig. 5), we threshold
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a: segmenting individual cilia: rc = 4, rR = 20, rA = 4

b: segmenting haircell bundles: rc = 30, rR = 40, rA = 10

Figure 9: Hierarchical dot structures and radii parameters. Changing the template size rc is not
sufficient when looking for significantly larger objects. In order to add proper repulsion between
the regions, the overall radius rR must also be increased. In a) we have results with the standard
set of parameters and in b) with increased repulsion and template radii.
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a: input image c: constrained segmentationb: stitching constraints

Figure 10: Beyond simple stitching. b) Constraints are derived from mutual agreement analysis on
adjacent patch segmentations from a previous round (blue, green, or orange/maroon indicate 1, 2
or more patches agreement). Stitching constrains cells (circles) and background (squares) to group
together respectively. c) Constrained segmentation (gold) improves the initial segmentation (cyan)
by cleaning up spurious small regions, separating conjoined cells, and refining their boundaries.

the negative values to obtain disconnected components that represent possible dot
regions and estimate the radius of each component. We take the radius associated
with peak of the radii distribution as core radius estimate, restricting the radius to
be at least 4 pixels. The rest of the parameters can then be set accordingly: rc =
max(4, 1.5r0), ra = max(4, r0) and rR = max(20, 3r0). In special case scenarios,
such as the hierarchical dot phenomenon illustrated in Fig. 9, parameters have to
be manually tuned to extract the desired structures.

3.2. Constraint Propagation and Elongated Structures
Segmentation subject to stitching constraints is not simple stitching. The con-

straints set on the overlapping regions propagate to the interior regions and are
able to correct improper initial segmentation, as shown in cyan in Fig. 10. A few
constraints are sufficient to correct mistakes, such as two cells erroneously seg-
mented as one, spurious segment cleanup and boundary refinement. We choose an
overlap size that is able to contain at least one entire dot in order to be informative.
For all results, we use 20 pixels of overlap and patches of approximately 256×256
pixels. Clearly, larger overlap would allow more constraints between cells but one
must take into account the tradeoff of having to compute more patches and the
complexity increase due to increasing the number of constraints.

Recalling the EM data from the medulla brain region of the drosophila fly
from Fig. 1, there is often also a need to segment small and thin structures. The
strength of our method is that it can be extended to a larger set of geometries. The
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Figure 11: Thin structures and constraint propagation.The initial segmentation (cyan) is corrected
by the constrained segmentation (brown). The segments where the two segmentations agree are
depicted in gold. Constrained segmentation is more than simple stitching. Its effectiveness can be
better seen for membrane structures that have a geometry that inherently propagates throughout the
image to interior regions which are farther away and not located within the overlapping regions.
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same visual popout applies, since salient regions have a common repelling back-
ground, but in order to extract the more complicated geometries, new attraction
and repulsion cues have to be defined.

To avoid breaking each line into many small convex regions, we add an ad-
ditional pairwise component S̃(i, j) = exp (− 1

σ
(Φ(i)− Φ(j))2) based on the de-

gree Φ(i) =
∑

a∈Nc(i) F (i, a) of the feature vector F , introduced in Section 2.2.
The pairwise attraction and repulsion cues are now a function of:

T (i, j) = βS(i, j) + (1− β)S̃(i, j) (15)

where β a constant parameter and S(i, j) is the similarity feature measure from
Eqn. 12. The pairwise attraction and repulsion cues are then defined as:

R(i, j) = |α− T (i, j)|, |L(j)− L(i)| ≤ rA, T < α (16)
A(i, j) = |T (i, j)− α|, |L(j)− L(i)| ≤ rR, T ≥ α. (17)

For the images shown, we empirically chose parameters σ = 0.25, β = 0.35 and
α = 0.35. As before, attraction A only operates at short ranges and repulsion R
operates at long ranges, to give a total effective weight W is A−R +DR.

The benefits of the stitching are highlighted in Fig. 11. The initial (cyan) seg-
mentation is improved after the constraints are enforced to obtain a final (gold)
segmentation that corrects segmentation mistakes also outside the overlapping re-
gions. The yellow segmentation denotes where the segmentations, before and
after the constraints, agree. The elongated structures then allow the stitching ben-
efits to be more pronounced as the constraints propagate within the regions to the
interior of the image. The final results for the original 1800 × 1800 pixel image,
obtained using a 8 × 8 stitching grid, are shown in Fig. 18. A post-processing
step, dividing regions with larger diameters, is added to discriminate between
membranes (gold) and all the other structures (blue).

3.3. Benchmark with General Segmentation Methods
To compare our results with other commonly used segmentation algorithms,

we run our method on images (a selection was given in Fig. 2) from two datasets
of dot-like structures encountered in human pathology: 1) 512× 512 pixels bright
field and fluorescent images of epithelial and embryonic cells; and 2) 600 × 900
pixels histopathology images from various tumor-related lesions. Figures 14, 15,
16 and 17 illustrate sample results of our segmentation method.

We benchmark our results against human labeled dot centers. Givenm ground-
truth dot centers and n segment centers for an image, let Dij be the Euclidean
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a: epithelial & embryonic kidney cells
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b: histopathology cells
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Figure 12: Precision-recall statistics for a) epithelial cells images and b) histopathology images.
Our method (yellow square dots, upper right corner) has better precision and recall overall when
compared with quickshift, k-means, gradient-based and standard watershed.
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distance between dot i and segment j. If it is less than a certain radius threshold
ρ, we consider (i, j) a matched detection. We then define:

precision =
#{j : minmi=1Dij ≤ ρ}

n
=

# nearest dots within radius ρ
# segments

recall =
#{i : minnj=1Dij ≤ ρ}

m
=

# nearest segments within radius ρ
# dots

The precision measures the proportion of true dots among all the segments, and the
recall measures the proportion of segments among all the true dots. We compare
our method with the following segmentation methods:

k-means: We use MATLAB’s built-in function. It clusters pixels based on their
intensity values, thus has trouble separating conjoined like-intensity cells
and increasing k only leads to clustering instability.

Watersheds: Watershed is directly applied to either the intensity image (MAT-
LAB’s built-in function) or the gradient magnitudes (with radius 5) of the
image. While the standard watershed results tend to be over-fragmented in
the presence of local intensity fluctuation, the gradient-based watershed re-
sults tend to miss many dots of weak contrast but improves on the precision.

Quickshift: We use the online code by Vedaldi and Fulkerson (2010). Analo-
gous to meanshift, quickshift can be used to partition an image into a set
of superpixels. It enhances intensity differences, but it is sensitive to scale
choices and cannot break up dots based on convexity.

The precision-recall statistics in Fig. 12 shows that our method works better
than others at segmenting small regions in terms of both precision and recall. Our
stitching constraints can be appreciated by comparing the quality of segmentation
without and with constraints: While there is no significant improvement in the
recall, there is an average improvement of 0.04 in the precision.

3.4. Benchmark with Domain Specific Methods
We also compare our dot segmentation method with state of the art domain-

specific segmentation algorithms presented at the 2010 International Conference
for Pattern Recognition (ICPR) as part of the Pattern Recognition in Histopatho-
logical Images contest for counting lymphocytes on histopathological images. For
this benchmark we use an additional set of 100 × 100 pixels histopathology im-
ages, very kindly provided by the contest organizers. Given the 100× 100 pixels
dimensions, we did not divide the images and simply ran the segmentation once.
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a: labeled centers b: our result c: our segmented dots

Figure 13: Sample results from the ‘Counting Lymphocytes on Histopathology Images’ contest
dataset (Fatakdawala et al., 2010; Basavanhally et al., 2010), courtesy of Anant Madabhushi at
Rutgers. a) Labeled ground-truth was provided for comparison. b) Our results: boundaries of our
computed segments and c) the centers (gold pluses) extracted from them together with the ground
truth (green dots). Performance details are given in Table 1. We display our results on the inverse
images, for clearer display. As in the contest, the goodness of the boundaries was not measured
as specific boundaries cannot be identified to begin with. Our algorithm is not domain specific,
which explains why we pick up many more dots that are not identified by experts as lymphocytes.
A post-processing step, for example based on color, can be applied to refine the results.

Each image took approximately 2 seconds to segment. Sample results are shown
in Fig. 13. Finally, we compare performances in Table 1 with the algorithms pre-
sented at the contest:

Method 1: (Kuse et al., 2010) based on extracellular matrix segmentation, i.e.
mean shift clustering for color approximation followed by hsv space thresh-
olding. Texture features are extracted from the cells and then used to train a
SVM classifier to find the lymphocytes.

Method 2: (Graf et al., 2010) based on connected components. A first process-
ing step involves thresholding and morphological operators to improve the
quality of the images for recognition; a second recognition step then extracts
the lymphocytes with a template matching method.

Method 3: (Cheng et al., 2010) starts with a segmentation based on multi-phase
level sets, followed by morphological operations to clean-up the image of
small spurious regions. Features are then used to identify the target cells.

Method 4: (Panagiotakis et al., 2010) based on the estimation of a mixture of
Gaussians for determining the probability distribution of the principal im-
age component. Lymphocyte are detected after post-processing to eliminate
small regions, using a transferable belief model for knowledge modeling.
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Ranking Group md sd mN sN

1 Kuse et al. (2010) 3.04 3.40 14.01 4.4
2 Panagiotakis et al. (2010) 2.87 3.80 14.23 6.3
3 Graf et al. (2010) 7.60 6.30 24.50 16.2
4 Cheng et al. (2010) 8.10 6.98 26.67 12.5

our results (ρ = 5) 3.22 3.92 5.40 3.68
our results (ρ = 4) 2.84 2.89 8.20 4.75
our results (ρ = 3) 2.20 1.80 12.90 5.38
our results (ρ = 2) 1.12 0.71 16.75 7.47

Table 1: Our results compared with the finalists of the PR in HIMA (ICPR 2010) contest per-
formance ranking provided online, for the ‘Counting Lymphocytes on Histopathology Images’
dataset. The ranking of performance, where m and s denote the mean and standard deviation,
respectively. For all numbers, smaller numbers represent a better result. The criteria are (a) the
Euclidean distance d between the ground truth and the result provided by the participants; (b) the
absolute difference between the true number of cells and N the number of cells found. We show
our results for tolerances ρ = 2, 3, 4, 5 pixels from the center. Our results are very intuitive. De-
creasing the tolerance allows to find less true dots (higher mN ) but with higher precision (smaller
d). For each choice of radii, we perform well when compared with the other proposed methods.

The criteria for evaluation are (a) the Euclidean distance between the ground truth
and the segmented lymphocytes; (b) the absolute difference between the true num-
ber of cells and the number of cells found, denoted byN . m and s denote the mean
and standard deviation, respectively. As before, we consider (i, j) a matched de-
tection if the segment center is within a ρ threshold from the ground-truth dot ( we
use tolerance radii ρ = 2, 3, 4, 5 pixels). For all numbers, smaller numbers rep-
resent a better result. We are not able to distinguish lymphocytes from the other
dot structures present because our method is not domain-specific. For fairness we
stress that we did not have different training and testing sets. We used one image
to test our automatic core radius estimator and then ran the algorithm on the en-
tire image set. For each tolerance radius, we perform well when compared with
the other proposed methods. As intuitively expected, decreasing the tolerance al-
lows to find less true dots (higher mN ) but with higher precision (smaller d) and
vice-versa, so the threshold can be fixed according to desired balance.

4. Summary

Segmenting small structures in a large image presents a scale dilemma be-
tween the image size and the segment size. Our approach resolves this by decou-
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a: A549 & HEK293T cells b: our results

Figure 14: Results (b) on human alveolar basal epithelial A549 cells and embryonic kidney
HEK293T cells (a). A quantitative measure of our segmentation is given in Fig. 12.
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a: HEK cells b: our results

Figure 15: Results (b) on HEK cells (a) with a variety of ‘convex shapes’. Our method pops out all
the cells in these images with the same parameters. Minimal post-processing with morphological
operations allows to mask out the ‘flat’ background regions.
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a: cells in histopathology b: our results

Figure 16: Results (b) on histopathology images (a) depicting tumor-like lesions in the spleen
(top,bottom) and in mediastinum (center) containing ‘dots’ of various sizes and textures. Our
method pops out all the cells in these images with the same parameters and no post-processing.
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a: cells in histopathology b: our results

Figure 17: Results (b) on histopathology images (a) depicting tumor-like lesions in the ovaries
(top), spleen (center) and prostate (bottom) containing ‘dots’ within a variety of background struc-
tures. Our method pops out all the cells in these images with the same parameters and no post-
processing. Images were darkened for final result display only.
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Figure 18: Results on EM brain sections of drosophila fly. Extending the weights beyond the sim-
ple ’dots’ structures shows the potential of our method for a large variety of microscopic images.
Images are approximately 900x900 cutouts (for display purpose) of the original 1800x1800 pixel
image. We differentiate large regions from thin membranes with a simple sequence of morpholog-
ical operations to obtain (bottom row) thin membranes in gold and mitochondria in blue.
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pling the two sizes in constrained patch segmentations. Although segmentation
subject to stitching constraints could work with any patch segmenter, a spectral
graph partitioning formulation naturally integrates stitching constraints together
with the foreground/background patch segmentation. The experimental section
features a detailed parameter analysis to segment dots of different shapes and
sizes, and illustrations of the different cases that arise in segmenting dots. We
benchmark our results with general segmentation algorithms and we also com-
pare our method with domain-specific algorithms presented at the ‘Counting Lym-
phocytes in Histopathology Images’ contest at ICPR 2010. Our method outper-
forms state-of-the-art results in both precision and recall by identifying all faint
and conjoined cells simultaneously in a two-way segmentation, without need for
post-processing.
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