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We present a novel viewpoint which approaches the
structural correspondence across an image stack in the 3D
space as solving a contour grouping problem. Finding 3D
cellular tubes becomes finding closed contours. We derive
grouping cues between cells in adjacent slices based on
their ability to relate in the 3D space. Those that form a
long 3D tube in the space become the most salient contour,
while those of shorter lengths become less salient. In the
spectral graph-theoretical framework for contour grouping,
such a separation by the contour length is reflected in com-
plex eigenvectors of different magnitudes, from which these
3D tubes of varying lengths can thus be extracted, obviating
the need for identifying missing correspondences.

1. Introduction

Extracting 3D tubular cell structures across a stack of
2D image slices (Fig. 1) requires establishing cellular cor-
respondences between images (Fig. 2), and we approach it
as a contour grouping problem.

Figure 1. 3D Stereocilia segmentation. Hair cells are composed of
tens of stereocilia organized in an organ-pipe-like formation of in-
creasing height. We propose to solve the correspondence between
cells across the 2D image stack as a contour grouping problem.

Figure 2. Extracting 3D tubes by finding correspondences (coded
in color) across the image stack. Missing correspondences simply
result in shorter contours in our contour grouping framework.
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The most straightforward approach is to consider all the
images in a stack simultaneously and solve a 3D pixel seg-
mentation problem. There are many 3D image segmenta-
tion methods, e.g. level sets [1], clustering algorithms [2, 3]
and region growing [4], etc. While this formulation has an
output format that naturally describes 3D tubes, it is unclear
how grouping cues within and across individual 2D images
can be properly integrated. Another major issue is scala-
bility. The number of pixels increases with the increasing
image resolution and number of slices, often rendering the
computation infeasible.

An alternative approach is to solve a series of 2D pixel
segmentations independently and then combine the results
to obtain the 3D structures [5, 6, 7, 8]. Since cells of dif-
ferent tubes often look alike, there are few good features to
distinguish them. In practice, it is problematic to identify
and cluster 3D tubes of varying lengths.

Both approaches need to address the structural corre-
spondence problem, which is explicit in the 2D segmenta-
tion approach and implicit in the 3D segmentation, e.g. in
the derivation of motion cues linking the deformation of one
image slice to the next image in the stack.

We propose to solve the structural correspondence be-
tween slices in the 3D space by solving a contour grouping
problem. Here the contours are imaginary closed contour
cycles cutting through the stack, going through the centers
of the regions that have correspondences in the 3D space.

We derive grouping cues between cells in adjacent slices
based on their ability to relate in the 3D space. Those that
form a long 3D tube in the space become the most salient
contour, while those of shorter lengths become less salient.

We solve the contour grouping problem in the spectral
graph-theoretical framework [9]. The separation by the con-
tour length is reflected in complex eigenvectors of different
magnitudes, from which these 3D tubes of various lengths
can be extracted.

The most appealing strength of our formulation is that
missing correspondences no longer poses a special and dif-
ficult problem. They simply lead to shorter contours which
are extracted from cycles of shorter lengths.

2. Contour Grouping for 3D Correspondence
To find the 3D tubes transversing a 2D image stack, we

formulate the cellular correspondence as a contour grouping
problem. Each 3D tube is represented by a contour starting
from the cell in the lower stack, transversing the stack and
turning backward once the end of the hair cell is reached,
returning back to the initial slice.

Our method is inspired by the Untangling Cycles [9]
model for contour grouping, which extracts contours by
searching for salient cycles of a random walk, within a spec-
tral graph partitioning framework. In our setup, nodes of the
weighted graph no longer represent edge pixels of possible

2D contours on an image, instead, they represent segment
centers from each individual stack.

2.1. Untangling Cycles for Contour Grouping

Within a single image, modeling contour grouping as a
spectral graph partitioning problem can be seen as finding
persistent cycles in a random walk along a weighted graph
G(V,E), where weights W correspond to ‘edge’ nodes V ,
derived from an initial edge map, and edges E between
nodes are given by spatial proximity in the original image.
We generate a directed random walk matrix

−→
P = D−1W (1)

normalized with respect to the outgoing connections from
each node, i.e. D is a diagonal matrix with entries

D(i, i) =
∑

j

[W (i, j)] (2)

The criterion is more robust to contour leakages.
The idea behind Untangling Cycles, is that paths within

the random walk have to return to their initial starting point
(to guarantee closeness of the contour) and have to do so
in the same period t (to guarantee the repeated transvers-
ing of a salient contour rather than an accidental returning
from surrounding clutter). In this context, salient contours
can be thought of as 1D cycles, with a special returning pat-
tern quantified through a peakness measure R(i, T ) of the
random walk probability pattern at steps of multiples of T .

The key observation [9] is that R(i, T ) closely relates
to complex eigenvalues of the transition matrix P , instead
of real eigenvalues, showing that it is the complex eigen-
values with proper phase angle and magnitude that lead to
repeated peaks. A random walk step on a 1D cycle tends to
stay within the cycle, while moving a fixed amount forward
in the cyclic ordering. Therefore, the link between finding
image contours and distinguish them from clutter amounts
to searching for persistent cycles in this random walk.

2.2. Graph Setup for Structural Correspondence

We start with stack of images and their respective seg-
mentations and assign to each segment a node. With this
new set of vertices, nodes can now have the same image spa-
tial coordinates, while belonging to a different stack num-
ber. Edges between nodes are added if the corresponding
segments are lying in adjacent images, while, within the
same stack, only a self returning edge is added at each node.
The two frameworks are sketched in Fig. 3. The weight as-
sociated to each edge has two components.

First, we recall the single image scenario, where each
node had an associated direction to it, and a ‘good’ contour
was one maximizing smoothness. We still seek smooth-
ness in terms of the 3D tubular structure, so that intuitively
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structural correspondence in 3D contour grouping

a: image input

b: graph setup

c: complex eigensolution

Figure 3. Structural correspondence as a contour grouping problem. We contrast our method with the traditional Untangling Cycles model.
In order to solve structure correspondence and find the cycles (a, yellow), nodes in the graph (b) are no longer edge pixels; instead, they
represent segments on the individual images. In order to have close contours we add a return link to each outer stack node (dark green).
Cycles through the 3D tubular structures then correspond to cycles in the complex eigenvectors v of a random walk matrix (c).

each tube does not bend too much while transversing the
stacks. If we imagine each node with an arrow pointing
downwards, measuring bending between two nodes can be
simplified by projecting them onto one single plane and
measuring the spatial distance between them. Letting the
positions of node i and j be di and dj respectively on the
x− y planes of the individual images, we define

ξ(i, j) = exp (−|dj − di|/σ) (3)

We have empirically found that the introduction of a

complex component θ to the weights allows better cycle
discrimination in the embedding space. ψ encodes the
number steps taken in the random walk, so that jump-
ing between stacks, in terms of the n images stacks
{I(1), I(2), . . . , I(n)}, can be written as

ψi→j = t− s, (4)

i ∈ I(s), j ∈ I(t)

s, t ∈ 1, . . . , n

where the unit step is given by ψ = 1. The final weight
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Figure 4. Embedding Space. While real eigenvalues (orange ellipse) collapse eigenvectors on the real line, eigenvectors corresponding
to complex eigenvalues with large phase angle and real components (purple square, red circle) encode cycles information: each cycle
corresponds to a cycle in the original graph, which itself encodes a cycle though the image stacks. Positive and negative phase angles
encode clock and anti-clockwise cycles respectively.

between two nodes will then be given by:

wi→j =

 ξ(i, j) + (ψi→j)i i 6= j
ξ(i, i) + i i = j = 1, n
ξ(i, i) ∗ 0.1 + i i = j = 2, . . . , n− 1

(5)

In order to have close contours we add a return link to each
node Fig. 3. Adding a returning edge at each layer guar-
antees that cycles of shorter lengths will also be able to be
picked up in the random walk, hence dealing with missing
correspondence throughout the stacks.

2.3. Circular Embedding for Random Walk Cycles

In order to understand the intuition behind the eigenvec-
tors of the random walk matrixP , [9] showed that the eigen-
vectors are an approximate solution to an ideal cost for cir-
cular embedding of salient contour grouping.

A circular embedding (Fig. 4) is a mapping between the
vertex set V of the original graph to a circle plus the origin:
Ocirc : V 7→ (r, θ) : Ocirc(i) = xi = (ri, θi), where ri is
the circle radius which can only take a positive fixed value
r0 or 0. θi is the angle associated with each node. The ideal
embedding encodes both the cut and the ordering of graph

nodes, and maximizes the following score:

Ce(r, θ,∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0, rj>0

−→
P ij/|S| ·

1
∆θ

, (6)

where S is a subset of graph nodes and ∆θ = θj − θi is the
average jumping angle.

Setting u = x, v = u · e−i∆θ, and c = t0e
−i∆θ, we can

rewrite Eqn. (6) as maximizing Real((uH−→P v · c)/(uHv))
and it is equivalent to the following:

max
u,v∈Cn

Real(uH−→P v) s.t. uHv = c. (7)

which leads exactly to
−→
P ’s complex eigenvectors.

2.4. Algorithm

Given an image stack with their associated segments,

1. Build a graph G(V,E) where the nodes V correspond
to the segments throughout the stack.

2. Compute the weight matrix by Eqn. 5.

3. Solve the complex eigenvectors of the associated ran-
dom walk matrix

−→
P .

4. Extract contours from cycles in the embedding space
[9].
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Figure 5. Sample results illustrating 3D tubes shrinking (left 2 columns) and shifting (right 2 columns) across the stack. The first row
shows two eigenvectors and extracted contour cycles of lengths 6 and 5. Each cycle in the embedding space is color-coded to show the 3D
cell correspondences throughout the 6-image stack. Longer cycles are first extracted from the eigenvector.
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3. Experiments
We have 20 stacks of microscopic haircell images. For

each stack, we selected 6 image slices. The parameters used
were kept constant for all stacks: connectivity radius of 25
pixels and σ = 5. The choice of radius relates to the amount
of shifting allowed between the images. Cells centers were
found using the 2D segmentation method of [10].

We allowed cells to connect only up to two slices for-
ward. Cylindrical tubes representing hair cells in 3D are
then picked up individually as cycles in the eigenvectors
Fig. 4. Given n stacks, cycles of length 6 represent cells
that can be seen throughout the slices, while cycles of length
5, 4, . . . represent the ones with missing correspondences,
i.e. disappearing cells in the upper stacks.

Our implementation in MATLAB takes about 1 second
to find the correspondences in a stack of about 60 tubes.

We show results for two stacks in Fig. 5, illustrating the
main two challenges present in these type of cells. Hair cell
bundles are formed by an organ-pipe like structure of tubu-
lar cells, with the radially outer ones of shorter lengths when
compared to the central ones. Depending on each hair bun-
dle and imaging technique, the difference in shrinking of
the cells can be seen either as cells shifting in space, pos-
sibly assuming ellipsoidal cross-sections before dissipating
in the next image layer, or as cells concentrically shrinking,
if the images and the hair bundle actually align with respect
to its center. Fig. 5 illustrates how two different eigenvec-
tors for each image stack contain the information of cycles
of different length.

4. Summary
We present a contour grouping approach to extract tubu-

lar structures across image stacks. The key insight is to view
the structural correspondence problem as finding closed
contours across the image stack.

We formulate it in the spectral graph partitioning frame-
work, where the random walk matrix is constructed from
complex graph weights capable of encoding stack order-
ing. While the resulting eigenvectors correctly encode the
tubular structure information for all cells, regardless of their
lengths throughout the stacks.

What’s most appealing about our method is that cycles
found can handle missing correspondences in the form of
disappearing, shrinking, and shifting cells. In addition, this
particular choice of contour grouping with complex weights
allows all salient cycles of the same length to be extracted
from the same eigenvector.
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