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Extracting numerous cells in a large microscopic image is often re-
quired in medical research. The challenge is to reduce the segmentation com-
plexity on a large image without losing the fine segmentation granularity of small
structures. We propose a constrained spectral graph partitioning approach where
the segmentation of the entire image is obtained from a set of patch segmenta-
tions, independently derived but subject to stitching constraints between neigh-
boring patches. The constraints come from mutual agreement analysis on patch
segmentations from a previous round. Our experimental results demonstrate that
the constrained segmentation not only stitches solutions seamlessly along over-
lapping patch borders but also refines the segmentation in the patch interiors.

1 Introduction

There is often a need in medical research to count, measure, and compare numerous
tiny cells in a large image. Segmentation methods such as watershed and k−means
clustering [1, 2] are efficient but unable to deal with large intensity variation, whereas
spectral graph partitioning methods [3, 4] are robust but unable to efficiently find small
structures in a large image. Our goal is to make the latter approach scale effectively
with the image size yet without losing the fine granularity of small segments (Fig. 1).

a: image b: watershed c: k-means d: our result

Fig. 1. Segmenting numerous small regions in a large image. a) Epithelial cells, which stained
with Hoechst fluoresce blue normally and red when transformed by virus, are small structures of
varying intensity in this microscopic image. They must be segmented, counted, and measured.
b,c,d) Two-way segmentations by watershed, k-means, and our method. With large intensity
variation for the cells, watershed fails with oversegmentation and k-means fails with conjoined
cells of similar intensities, whereas our method correctly pops out all the individual cells.
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Spectral graph partitioning methods [3, 4] are prized for their ability to grasp the
large structural organization of an image from the global integration of local cues. While
this property is desired for understanding a real-scene image, it not only unnecessarily
handles a huge number of pixels in a large image (since segmenting cells in one region
really should not be influenced by cells far from them), but also prevents small struc-
tures from being segmented all at once (since a larger image size leads to larger regions
instead of numerous small ones given a fixed number of segments). Therefore, finding
many small regions in a large image faces two challenges: segmentation complexity
from dealing with the large and segmentation granularity from dealing with the small.

The two main approaches to reduce complexity, coarse-to-fine and multiresolution
segmentations [4–10], are not suitable for this task. A coarse-to-fine approach speeds
up the segmentation by initializing a finer segmentation with the results of a coarser
one, whereas a multiresolution approach integrates features at multiple scales to yield
a better segmentation. Since small structures are not present in either coarser-scale seg-
mentations or coarser-scale features, there is no help to be gained from either approach.

Fig. 2. Algorithm overview. Segmenting numerous small structures in a large image can be per-
formed as a series of independent patch segmentation subject to stitching constraints between
neighbouring patches. The constraints are derived from mutual agreement analysis on adjacent
patch segmentations from a previous round. Segmentations between neighbouring patches are
marked in blue, green, or maroon, if 1, 2, or more than 3 patches agree. Constrained segmenta-
tion (gold) improves the initial segmentation (cyan) in three different ways: clean-up of spurious
small regions, separation of conjoined cells, and refinement of cell boundaries.
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We propose performing segmentation on smaller patches while subject to stitch-
ing constraints in their overlapping areas (Fig. 2). We first break down the image into
patches and segment each patch independently, based on local pairwise cues that distin-
guish cells from their background [11]. Their individual segmentations are then used to
establish the agreement between the patches, which provide pairwise long-range stitch-
ing constraints to be respected by each patch. We run the independent segmentation
again on each patch, but now subject to these pairwise constraints on its pixels. The
segmentation can be solved efficiently as a constrained eigenvalue problem [12]. Since
these segmentations have mutual agreement in the overlapping areas, their individual
solutions can be collapsed into one segmentation on the entire large image.

Segmentation subject to stitching constraints does more than stitching solutions
together at patch borders. The constraints in the overlapping regions are propagated
through local cues in the optimization process to improve the interior segmentation
of a patch. Constrained segmentation in individual patches achieves reduced complex-
ity without losing global consistency, refining segmentations both inside and between
patches. We detail our model and experiments in Sections 2 and 3 respectively.

2 Spectral Graph Partitioning Subject to Stitching Constraints

We formulate our cell segmentation task as a constrained graph partitioning problem
on a set of overlapping patches. Each patch is represented by a weighted graph, where
nodes denote pixels and weights attached to edges connecting two nodes encode group-
ing cues between the pixels. Segmenting small structures in the image becomes a two-
way node partitioning problem: pixels inside cells form a foreground node set, and those
outside form the other background node set.

We need to address: 1) What features and grouping cues to use to facilitate this
foreground-background segregation [11]; 2) How to set up constraints between neigh-
boring patches; 3) How to integrate these constraints into the segmentation [12, 13].

2.1 Features F and Grouping Cues W

We characterize cells of small convex bright regions as the sinks of local gradient fields.
Each pixel is associated with a peak direction vector p that indicates where pixels of
higher intensity are located in its convex vicinity. Two pixels are attracted to the same
region if their pixel-centric local gradient fields F ’s are similar, and repelled into dif-
ferent regions if their F ’s are of opposite types (e.g. sources and sinks).

Consider pixel i and its neighbourhood N(i). If neighbour a ∈ N(i) can be reached
in a straight line from i with non-decreasing intensity, a is a higher intensity pixel in the
same convex region. Let p(i) be the average direction from its a neighbours, weighted
by the total non-decreasing intensity T (i, a) along the straight line from i to a:

p(i) ∝
∑

a∈N(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (1)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (2)
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where L(i) denotes the 2D location of pixel i in the image, I(i) the intensity of pixel i,
and | · | the L2 norm of a vector. Peak direction vector p(i) thus points from i towards
the core of the cell that i belongs to, i.e., the highest intensity of its local convex region.
It measures the direction and distance from pixel i to the center of the cell.

We define F (i, a) as the inner product of p(i) and p(a), measuring how much a’s
cell center estimate agrees with i’s. The ensemble of {F (i, a): a ∈ N(i)} is a pixel-
centric vector field (i.e. with the absolute direction of p(i) factored out) that charac-
terizes where pixel i is in the shape of a convex region, and we can use the feature
similarity S to establish pairwise pixel grouping cues:

F (i, a) =< p(i), p(a) >, a ∈ N(i) (3)

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)|
, j ∈ N(i) (4)

S(i, j) is more likely to be positive for nearby pixels inside the same dot, and negative
for distant pixels between different dots, giving rise to two kinds of grouping cues [11]:
The short-range attraction A is proportional to similarity S and the long-range repulsion
R is proportional to dissimilarity 1− S. The total effective weight W is A−R.

Unlike real-scene image segmentation [3, 4], we do not use single edge features (e.g.
large intensity gradients along region boundaries) to delineate regions. We use distribu-
tive local gradient fields to characterize geometrical distinction between region cores
in the foreground and region peripheries in the background. Similar ideas about such
features can be found in [14] on detecting critical points in images with topological
numbers. While the individual pairwise grouping cues have poor precisions for localiz-
ing region boundaries, they taken together in global integration result in segmentations
that are sensitive to geometrical variation yet robust to intensity variations.

2.2 Stitching Constraints U

A two-way node partitioning can be described by a n × 2 binary partition matrix X ,
where n is the total number of pixels, X(i, 1) and X(i, 2) indicating whether pixel i
belongs to the inside or outside of a cell.

Our stitching constraints are imposed on the partition indicator X that is to be solved
in the optimization. If pixels a and b are known to belong in the same region, we have
the constraint X(a, :) = X(b, :), or X(a, :) − X(b, :) = 0. All these equations can be
described in a linear constraint UT X = 0, where U(a, k) = 1, U(b, k) = −1 is the
k-th constraint that a and b belong to the same region.

The initial first-round patch segmentation does not require any constraints U , al-
though simple intensity thresholding or initial seeds can be introduced. In the second-
round patch segmentation, where each patch has been segmented, U comes from a mu-
tual agreement analysis of X in the overlapping regions between neighbouring patches:
those pixels that two patches agree on the segmentation become either foreground or
background pixels. Only a sparse set of pairwise constraints (usually between distant
pixels) are needed to ensure that two neighbouring patches will have consistent seg-
mentations in their overlapping areas.
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2.3 Segmentation with Stitching: Constrained Graph Partitioning X

For each image patch I , after having computed its pairwise grouping cues W and stitch-
ing constraints U , we obtain a two-way segmentation using the constrained normalized
cuts criterion [12]. Formally, this criterion can be written in the following matrix form:

maximize ε(X) =
2∑

g=1

XT
g WXg

XT
g DXg

(5)

subject to X ∈ {0, 1}n×2, X12 = 1n (6)

UT X = 0 (7)

where 1n denote an n× 1 vector of 1’s and D is the diagonal degree matrix for a n×n
weight matrix W . Note that W could have both positive and negative weights, and the
negative ones are essential for popping out disconnected regions [15, 11].

The near-global optimal solution is given by the eigenvectors of QPQ, where

P = D−1W (8)

Q = I −D−1U(UT D−1U)−1UT (9)

While the eigensolution of QPQ takes a longer time than that of P (unconstrained
version) to compute at each iteration, it often requires fewer iterations and could be in
fact faster. We follow the eigensolution and its discretization procedures developed in
[12, 13] and their code online to obtain a binary segmentation.

The space and time complexity is much reduced using patch segmentation with
stitching constraints, as the image is broken down to smaller patches and finding nu-
merous small regions becomes possible in a single two-way segmentation.

3 Experiments

We implement our algorithm in MATLAB and apply it to sets of 512×512 microscopic
images. The cells in these images are 15 pixels in diameter on average. We use the same
set of parameters as in [11] for deriving the weights W on each patch of size 256×256.
The pixel neighbourhood radius is 12 pixels, and the overlap radius between patches is
20 pixels. Since the computational complexity mainly depends on the patch size, the
entire image can be arbitrarily large.

Fig. 3 shows our results on 3 appearance types of medical images, each represen-
tative of a large class of images in its own domain. The cells have a large range of
intensity, and fainter ones could be darker than some background pixels elsewhere in
the image. Worse still, cells are not always isolated, but rather packed closely next to
each other, making the separation even hard for the human eye. In the last rows of Fig. 3,
fainter cells are so overwhelmed by those brightest cells that they can only be seen with
a close inspection of what appears to be smudged backgrounds.

These images are very challenging to segment and most existing approaches fail.
Our method, however, is capable of finding these cells, including faint ones and con-
joined ones, all at once in a two-way segmentation, without any need for post-processing.
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image power watersheds our method

Fig. 3. Results by Power watersheds and our method on human alveolar basal epithelial A549
cells (rows 1-4) and embryonic kidney HEK293T cells (rows 5-6). While the quality of segmen-
tation degrades for power watersheds when the cells have a larger intensity variation, our method
pops out all the cells in these images with the same parameters and no post-processing.
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Fig. 4. Precision-recall statistics for k-means, watershed, power watersheds, and our method. Our
method (red round dots, upper right corner) has better precision and recall overall.

We benchmark our method against human labeled dot centers, in comparison with
3 other approaches: k-means, standard watershed (MATLAB built-in implementation),
and power watersheds [2] provided by its authors.

Given m ground-truth dot centers and n segment centers for an image, let Dij be
the Euclidean distance between dot i and segment j. If it is less than a certain radius
threshold ρ, we consider (i, j) a matched detection.

precision =
#{j : minm

i=1 Dij ≤ ρ}
n

=
# nearest dots within radius ρ

# segments
(10)

recall =
#{i : minn

j=1 Dij ≤ ρ}
m

=
# nearest segments within radius ρ

# dots
(11)

The precision measures the proportion of true dots among all the segments, and the
recall measures the proportion of segments among all the true dots.

Fig. 4 shows that our method performs much better than these other methods in
terms of both precision and recall. k-means, clustering pixels based on their intensity
values, particularly has trouble separating conjoined like-intensity cells, while increas-
ing k only leads to clustering instability. While power watersheds has lower precision, it
does noticeably improve boundary shapes of segmented cells over standard watershed,
which is not properly measured in the precision-recall statistics. However, it tends to
miss faint cells and the segmentation degrades with larger intensity variation (Fig. 3).

The quality of our segmentations depends on our patch segmenter and stitching
constraints. The precision-recall statistics in Fig. 4 shows that our spectral graph parti-
tioning approach works better than others at popping out small regions. Our stitching
constraints can be appreciated by comparing the quality of segmentation without and
with constraints: While there is no significant improvement in the recall (p = 0.46, t
test), there is an average improvement of 0.04 in the precision (p = 0.007, t test).

To summarize, we present an efficient method for segmenting many small regions
in a large image by constructing a set of patch segmentations which are independently
derived but subject to stitching constraints between them. The quality of entire seg-
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mentation depends on how to segment individual patches and how to stitch them to-
gether. Although our method works with any patch segmenter, it naturally integrates
the stitching problem into each patch’s spectral graph partitioning formulation. Our
results demonstrate that stitching as partitioning constraints not only reduces segmen-
tation complexity, but also corrects segmentation incongruences and imperfections.

Segmenting small structures in a large image faces a scale dilemma between the
image size and the segment size, and our approach resolves the dilemma by decoupling
the two sizes in constrained patch segmentations. We can expand it to a broader variety
of shapes, e.g. thin structures such as blood vessels, by tailoring the weights to allow
directional extension in the evaluation of pairwise pixel similarity.
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