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ABSTRACT
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We investigate the utility of a novel form of prior, namely the

accuracies with which humans categorize briefly displayed

images. Such information reflects the complexity of an image

for the visual system and carries information about the fea-

tures important for categorization. We incorporate the prior

in an SVM framework, by biasing the decision boundary to-

wards examples difficult for humans, and by learning a suit-

able kernel. We focus on the task indoors vs. outdoors using

a variety of histogram and interest point features. We observe

improvement in classification especially for the indoor class

when gist features are used.

Index Terms— Image classification, Image recognition,

Feature extraction

1. INTRODUCTION

Many problems in computer vision are often cast as classi-

fication problems. A set of training images along with their

human-provided labelings is used to predict the category of

unknown images. This is particularly challenging as the un-

known images can be very different from the ones in the train-

ing set. Computer vision approaches addressing this problem

can be divided into those relying on very large training sets

and simple computational machinery, and those relying on

complex computations and few training examples.

The first type of approaches ([1, 2, 3]) relies on the

premise that a large training set may contain representatives

of all possible types of images. In its simplest form, such an

approach categorizes a query image by comparing it, using

simple descriptors, to the vast number of training images.

The creation of large datasets required by such approaches

was made possible by the ubiquity of internet and emergence

of frameworks like the Amazon Mechanical Turk.

Alternative approaches use priors on the classes or train-

ing exemplars in conjunction with more elaborate computa-

tional techniques. Their goal is to extract as much informa-

tion as possible from the few training images and transfer it

to the unseen ones. Example approaches include [4, 5].

Our approach follows the second line of work: we im-

prove the classification performance by imposing priors on

the training exemplars. What differentiates our method from

existing ones is the type of priors we use. In most cases, priors

are derived after the features have been decided. For exam-

ple, if color features are used for a task, knowing a-priori that

’blue’ is predictive of a category helps estimating the range of

color features characterizing this category, without the need

of many training exemplars. Our priors, on the other hand,

refer to how accurately an image is categorized by humans;

the feature space in which this categorization takes place is

unknown. Incorporating such priors is challenging because

the perceptual feature space has to be approximated as well.

To address this problem, we assume that the available ma-

chine features are a transformed superset of the perceptual

features. Given a large set of machine features, our goal be-

comes to infer the transformation between the two spaces, and

select the relevant features. These requirements can be sim-

ply modeled in a Support Vector Machine (SVM) framework.

The subjects’ accuracies guide the learning of the kernel and

an estimate of the transformation is provided. Additionally,

they bias the decision boundary towards images difficult for

humans and features likely to be used by humans are selected.

We focus on categorizing indoor vs. outdoor scenes using

grayscale images. These categories are challenging because

they cannot be discriminated based on any obvious salient

feature, for example ‘blue sky’. We use four types of features

(gist, tiny images, sparse SIFT, textons) [6], and observe im-

provements especially for the indoor category when gist and

tiny image features are used. The utility of human perfor-

mance data was first explored in [7], in conjunction with lin-

ear SVM’s and gist features. This paper provides a more natu-

ral model, includes non-linear classification, kernel learning,

and a larger variety of features.

We describe the nature of our priors in Section 2, the for-

mulation in Section 3, and our experimental validation and

conclusions in Section 4.

2. A HUMAN-PERFORMANCE PRIOR

Our prior consists of the accuracies with which subjects cate-

gorize images very briefly presented. These data are obtained

through a psychophysics experiment described in [8]. The

stimuli employed consist of 50 indoor and 50 urban outdoor



Fig. 1. Example indoor and outdoor stimuli used in the rapid

categorization experiment. The images in the first column

were categorized 100.0%, whereas those in the second col-

umn 75.0%. Images not categorized very accurately tend to

be rich in texture and lighting.

images collected from the internet so that the spatial layout

of the scene is clearly visible. During an experimental trial,

a stimulus is displayed for only 16ms and is followed by a

perceptual mask prompting the subject to provide his/her de-

cision. Even for such small exposure duration, the subjects

are able to categorize the scenes correctly 90.2%. In more de-

tail, 44 scenes are categorized more than 95.0% correctly, and

only 10 scenes less than 10.0%. Images not categorized very

accurately are usually complex scenes, with complex lighting,

rich in texture and clutter (Fig. 1).

We interpret accuracies as a form of distance from an ideal

decision boundary - the decision boundary humans use. An

image categorized very accurately (poorly) by humans should

be far from (close to) the decision boundary. Such prior can

reduce the required amount of training data. The optimal

decision boundary is usually midway the points of the two

classes. If the number of exemplars is small, then the com-

puted boundary might deviate from the optimal one. Knowl-

edge of distances may rectify this deviation.

3. MAX-MARGIN FORMULATION

We employ the subjects’ accuracies in a Support Vector Ma-

chine (SVM) framework. We first explain the linear classifier

formulation, proceed to the non-linear case, and follow by the

learning of the kernel.

Linear Classification

SVM classification [9] is formulated as a constrained satis-

faction program. For the linear case, the category of an un-

seen example with feature vector x is given by the sign of

f(x) =
∑

i wixi + b. The goal is to find the function f(·)
that minimizes the number of misclassifications. If xi is the

feature vector for the i-th image and yi ∈ {1,−1} its categor-

ical label, then the separating hyperplane (w, b) is given by:

min ||w||p + C
∑

i

ξi

s.t. (xi · w + b) · yi ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . n (1)

The slack variables ξi relax the constraints when the data

are not linearly separable. Since we are interested in feature

selection as well, we use the L1 norm, which is known to

enforce additional sparsity ([10]).

To incorporate the human performance data, we substitute

the 1’s in the constraints with the accuracies αi. This way we

don’t penalize only the number of misclassifications but also

the scores that are lower than the subjects’ ones.

min ||w||1 + C
∑

i

ξi

s.t. yi (xi · w + b) ≥ αi − ξi

ξi ≥ 0, i = 1, . . . n (2)

Non-linear Classification

We include non-linearity in our formulation in a manner simi-

lar to Generalized Support Vector Machines [11]. In this case,

the decision boundary has the form f(x) =
∑

i yik(x,xi)+b,

where k(x,xi) is the kernel product between the unseen data-

point x and the training exemplar xi. When training, we seek

to optimize:

min ||w||1 + C
∑

i

ξi

s.t. yi (
∑

j 6=i

yj k(xi,xj) wj + b) ≥ αi − ξi

ξi ≥ 0, i = 1, . . . n (3)

Kernel Learning

The subjects’ accuracies refer to a perceptual feature space

which is not known. They are useful as priors when the ma-

chine features are correlated to the perceptual features. To

increase the correlation, we learn the kernel k(·, ·) according

to a correlation measure dictated by the subjects’ accuracies.

For images with perceptual features zi and zj , We define

the perceptual correlation as:

r(zi, zj) =

{

1 − |A(i) − A(j)|, if yi = yj

|A(i) − A(j)|, if yi 6= yj
(4)

We denote the subjects’ accuracy on the i-th image with A(i).
When two images have the same (different) category and are

categorized with similar accuracies, then their perceptual fea-

tures should be correlated (uncorrelated). The above measure

behaves like correlation: its values range between 0 (uncorre-

lated) and 1 (correlated).



SVM (%) D-SVM (%)

feature type indoors outdoors indoors outdoors

gist 56.5 78.7 62.1 79.6

tiny images 56.0 67.1 60.2 66.5

sparse SIFT 74.9 62.8 75.4 63.1

textons 69.3 86.2 68.3 87.1

Fig. 2. Accuracies obtained with non-linear SVM and cosine

kernel and our D-SVM with polynomial cosine kernel and

polynomial transformation. The degrees of the polynomials

used with D-SVM (Eqs. 5,6) were: for gist d = 2, m = 5,

for tiny images d = 2, m = 1, for sparse SIFT and textons

d = 1, m = 1. D-SVM outperforms SVM for gist and tiny

images features.

The correlation h(xi,xj) between machine feature vec-

tors xi and xj is computed as the cosine between the vectors.

In our formulation, we use a polynomial transformation:

h(xi,xj) = (
xi · xj

|xi||xj |
+ 1)d (5)

xi ·xj denotes the inner product and |xi| the Euclidean length.

To learn the actual kernel k(xi,xj) used in classification

we assume it is a polynomial with respect to h(xi,xj). The

coefficients of the polynomial are estimated with linear least-

squares regression.

k(xi,xj) =

m
∑

i=0

βih(xi,xj)
i (6)

Previous Work

Prior knowledge has been incorporated into SVM’s in a va-

riety of ways [12]. Our formulation is similar in form but

different in goal from support vector regression (SVR) [13],

soft-SVM [14], and weighted margin support vector machines

(WMSVM) [15]. SVR does not take into account the discrete

category of a datapoint and is thus unsuitable for our purpose.

Soft-SVM assumes uncertainty in the class label, whereas

in our case there is no such ambiguity. Finally, WMSVM

makes assumptions regarding the frequency of the exemplars,

whereas our prior assumptions concern the categorization dif-

ficulty of the exemplars.

4. EXPERIMENTAL EVALUATION

We compare the performance of our method using subjects’

accuracies and kernel learning (D-SVM) against that of the

standard non-linear SVM formulation.

We train the classifiers on our spatial layout dataset of 50

indoor and 50 outdoor images. Our testing set consists of

1000 indoor and 1000 outdoor images collected from datasets

available online [2, 16, 17]. The images are at least of size

256x256. The spatial layout of the scene is clearly visible

and no single object is the main focus of the image.

Fig. 3. (a) Support vectors selected by D-SVM only. (b)

Support vectors selected by SVM only. The prior biases the

selection of support vectors towards scenes of varying layout

structure as opposed to varying appearance.

We compute 4 types of features available from [6].

Gist: The image is convolved with Gabor filters at 4 scales

and 8 orientations. The filter responses are averaged in each

of 4x4 divisions of the image [18] (512 features).

Tiny images: The image is matched to a dataset of 80 million

images reduced in size [3], and the quality of the match is

considered as a descriptor (3072 features).

Sparse SIFT: The SIFT descriptor is computed at Hessian-

affine and MSER interest points. The SIFTs are clustered into

1000 clusters using k-means and each image is represented

with two histograms of 1000 bins, where each SIFT is soft-

assigned to its nearest cluster (2000 features).

Textons: A texton dictionary of 512 entries is built by clus-

tering responses to a bank of filters [6]. For each image, a

histogram is computed by assigning each pixel’s set of filter

responses to the nearest dictionary entry (10752 features).

Fig. 2 shows the classification results for SVM and our

method (D-SVM). The cosine kernel is used for SVM; it per-

forms better than polynomial or cosine polynomial kernels.

The polynomial cosine kernel (Eq. 5) is used for D-SVM and

is polynomially transformed to the perceptual correlations r

(Eq. 6). Different degrees of polynomials are suitable for dif-

ferent features: for gist we set d = 2, m = 5, for tiny images

d = 2, m = 1, and for the remaining features d = 1, m = 1.

Improvements are observed for the gist and tiny images fea-

tures. It is possible that sparse SIFT and textons do not benefit



Fig. 4. Indoor scenes categorized accurately by D-SVM only:

they vary in structure and layout.

from our formulation because they rely on universal dictio-

naries computed without knowledge of the prior. The biggest

improvement observed is 5% for the indoor category in con-

junction with gist features.

This improvement can be attributed to the wider variety

of layout structure exhibited by the D-SVM support vectors.

Fig. 3 shows support vectors selected by SVM only or D-

SVM only. In total SVM selects 29 support vectors and D-

SVM 27. From these, 16 are selected by SVM only and 14

by D-SVM only. SVM maximizes the margin for difficult to

discriminate examples. For the gist features, it selects images

rich in texture or complex lighting conditions; for example,

the night scene has similar light blobs as the indoor scenes.

Such images tend to have varying appearance and not neces-

sarily varying layout structure. In contrast, D-SVM takes into

account the prior and the support vectors selected are diverse

in terms of layout structure.

Our method is more effective for the indoor class and

some examples are shown in Fig. 4. In total, 79 images

are categorized by D-SVM only and 23 by SVM only. The

indoor images D-SVM categorized correctly consist of corri-

dors, very open indoor spaces, and a variety of interiors. The

features D-SVM favors characterize the geometry and the

structure of a scene. This is expected, since gist features may

account for the excellent performance of the human vision

system when it comes to scene recognition [18].

In summary, we employ the accuracies with which hu-

mans categorize rapidly presented scenes as priors in an SVM

classifier. The priors guide both the training of the classi-

fier and the learning of the kernel. Increased performance is

observed for gist and tiny images features especially for the

indoor class. The gist features selected by our method char-

acterize more effectively the layout structure of a scene as

opposed to its appearance.
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