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Many applications need to segment out all small round
regions in an image. This task of finding dots can be viewed
as a region segmentation problem where the dots form one
region and the areas between dots form the other. We for-
mulate it as a graph cuts problem with two types of group-
ing cues: short-range attraction based on feature similar-
ity and long-range repulsion based on feature dissimilarity.
The feature we use is a pixel-centric relational representa-
tion that encodes local convexity: Pixels inside the dots and
outside the dots become sinks and sources of the feature
vector. Normalized cuts on both attraction and repulsion
pop out all the dots in a single binary segmentation. Our
experiments show that our method is more accurate and ro-
bust than state-of-art segmentation algorithms on four cat-
egories of microscopic images. It can also detect textons in
natural scene images with the same set of parameters.

1. Introduction
Finding dots, i.e. small round regions, in an image is

a frequently encountered task in medical and scientific re-
search. The dots could be microscopic views of cochlea
haircells, epithelial A549 cells, HEK293T embryonic kid-
ney cells or silicon wafer defects (Fig. 1). Counting these
dots, locating them, and measuring their intensity are im-
portant for understanding hearing mechanism, cancer de-
velopment, or material properties. Given the large number
of dots in each image and the large number of images in
these applications, it is essential to have a computer vision
algorithm which extracts these dots automatically.

Finding dots is a challenging segmentation problem.
These microscopic images often have poor imaging qual-
ity (Fig. 1a), large intensity variation (Fig. 1b-c), and ex-
tensive occlusion and conjunction between dots (Fig. 1c-d).
Even to the human eye, while fuzzy haircells do pop out,
low-contrast A549 and kidney cells need scrutinizing, and
conjoined silicon pits require thinking to separate them.

Our goal is to develop an algorithm that is capable of
finding dots in all these types of images (Fig. 2).

microscopic images hand-labeled dots

a:

b:

c:

d:

Figure 1. Finding dots in an image is a challenging segmentation
problem when the image has poor imaging quality, large inten-
sity variation, occlusion and conjunction between dots. These dots
could be: a) Haircells in hearing research, courtesy of Pathak and
Corey at Harvard University, b,c) Hoechst stained nuclei of A549
cells and HEK293T embryonic kidney cells in cancer research,
courtesy of Sosale at UPenn, d) Etch pit dislocations of silicon
wafer in material research, courtesy of Bertoni at MIT.
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Figure 2. Our algorithm is more accurate and robust at finding dots
in 4 types of images, all with the same set of parameters.

Image segmentation is conventionally formulated as sep-
arating regions of homogeneous features such as intensity
and texture [6, 5, 12, 4, 9]. However, the difference of fea-
tures in adjacent regions is not always large enough to sep-
arate them completely, creating gaps along region bound-
aries. A common remedy for completing the gaps is to in-
clude in the formulation a prior term which favours a seg-
mentation with smooth boundaries [11, 7, 14, 18, 13].

All these traditional formulations of segmentation view
regions as solid entities occupied by pixels, and boundaries
as abstract lines taking up zero space in-between.

While precise region delineation is useful for image ma-
nipulation (Fig. 3a) or object recognition and grasping, it is
not necessary for our dot finding (Fig. 3b) and many other
applications. Where boundaries should be located is flexi-
ble, so long as the core of each dot is retained in the region.

a: precise cutout b: flexible boundary

Figure 3. Precise boundary delineation is useful for image manip-
ulation but not necessary for our dot finding applications. a) Image
cutout (Li et al, Lazy Snapping, SIGGRAPH 2004) is an editing
tool which produces a segmentation that follows the facial contour
precisely. b) Finding haircells only requires locating the core of
dots where the boundaries between dots could be flexible.

If we view boundaries not as regions’ dependent existing
only in the 1D space, but rather as regions of their own in
the 2D space, we can effectively pop out all the dots simul-
taneously from a two-way region segmentation (Fig. 4).

That boundaries form regions of their own has long been
observed in [8], but only as a hazard to real image segmenta-
tion which needs to be actively suppressed [10]. The idea is
that while edges themselves are good features for intensity
segmentation, only their statistics over small windows are
meaningful features for texture segmentation. These win-
dow statistics prevent edges from breaking up an area of the
same texture, but they also tend to break up an area of the
same intensity: Boundaries between black and white areas
certainly have different statistics from either the black area
or the white area, and thus become regions of their own.

The features that make our dot boundaries regions of
their own are not statistics which characterize local textural
appearance, but patterns which characterize local geometry.
Most evident in Fig. 1d, what allows us to break a long tube
into a string of small dots is local convexity created by a
few dents. However, instead of measuring local convexity
with curvature numbers, we describe it using a distributed
relational representation, i.e., each pixel has a pixel-centric
flow field, which is a sink for pixels inside the dots (intensity
peaks) and a source for pixels outside the dots (Fig. 4F ).

We formulate our algorithm in the spectral graph cuts
framework [12], where pixels are nodes of a weighted
graph, and finding dots becomes dissecting the graph based
on weighted connections between nodes. When segmenta-
tion is viewed as finding regions of homogeneous features,
the weights are affinitive. They characterize how much
two pixels attract each other to the same group, a larger
weight for larger feature similarity. When segmentation is
viewed as popping out a collection of core regions from
their boundary regions, the weights also need to be divisive.
They characterize how much core pixels and boundary pix-
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Figure 4. Algorithm overview. Given image I , we first compute a flow field feature vector F which characterizes the geometry of local
intensity distributions: A pixel inside a dot (intensity peak) becomes a sink, and a pixel outside the dots (intensity valley) becomes a source.
We then compute (green) attraction A between nearby pixels based on similarity in F , and (red) repulsion R between distant pixels based
on dissimilarity in F . A two-way node partitioning based on both attraction and repulsion pops out all the dots from their backgrounds.

els repel each other, a larger weight for larger feature dis-
similarity. If attraction binds pixels locally both inside and
outside the dots, repulsion actively binds all dots to form
one group against their common boundaries (Fig. 4A,R).
The best segmentation cuts off connections between pixels
of minimal attraction and maximal repulsion, popping out
all the dots in a two-way region segmentation (Fig. 4X).

We detail our model in Section 2, present experimental
results in Section 3, and conclude in Section 4. Our method
works better than a few segmentation algorithms on finding
dots in a variety of microscopic images, and it works well
on real images, all with the same set of parameters. It is
potentially a practical tool for a wide range of applications.

2. Finding Dots with Spectral Graph Cuts

We formulate the dot finding problem as a weighted
graph partitioning problem, where nodes denote pixels,
weights attached to edges connecting two nodes encode
grouping cues between the pixels, and finding dots becomes
a node bipartitioning problem: pixels inside the dots form
one group, and pixels between dots form the other group.

Given an image I , we first compute the feature vector F
at each pixel, which is a flow field with sinks and sources
characterizing intensity peaks and valleys respectively, then
establish short-range attraction A with feature similarity,
and long-range repulsion with feature dissimilarity, and fi-
nally use normalized cuts with attraction and repulsion to
obtain a two-way segmentation [15, 16].

2.1. Pixel-Centric Convexity Feature Vector F

Since dots are small round regions of bright pixels, we
first attach to each pixel a peak direction vector p(i) that
indicates where pixels of higher intensity are located in its
local convex vicinity. Let L(i) denote the 2D location of
pixel i in the image, and | · | the L2 norm of a vector. Con-
sider pixel i and pixel a in its neighbourhood N(i). If a
can be reached in a straight line from i with nondecreasing
intensity, a is a higher intensity pixel in the same convex re-
gion. p(i) computes the average direction from neighbour
a’s, weighted by the total nondecreasing intensity T (i, a)
along the straight line from i to a:

p(i) ∝
∑

a∈N(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (1)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (2)

p(i) can be regarded as pixel i’s local estimation of the di-
rection towards the dot it belongs to. Pixels inside a dot
have p(i)’s pointing towards the center, whereas those be-
tween dots have p(i)’s pointing away from it (Fig. 5a).

While the vector field {p(a) : a ∈ N(i)} characterizes
where pixel i is in the convex shape of a dot, all the direc-
tions need to be normalized with respect to p(i) so that pix-
els (i’s) at an equal distance to the center of a dot have simi-
lar vector fields no matter how they are oriented towards the
dot. We define the pixel-centric feature vector F as:

F (i, a) =< p(i), p(a) > (3)
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a: peak direction vector p

b: F (i, :) c: F (j, :) d: F (k, :)

Figure 5. Pixel-centric convexity feature vector F . a) Peak vector
p at each pixel points towards the center of dot the pixel belongs to.
The dot centers and boundaries are sinks and sources in the vector
field. b,c,d) Feature vector F at pixels i, j, k marked in a). F (i)
indicates how much each neighbour agrees with pixel i on p(i),
i.e., where it thinks the peak direction is. i and j have different
local p fields, but both are inside a dot and have similar F fields
which are far different from k, a pixel outside any dot.

where <,> denotes vector inner product. F (i, :) shows
how much i’s neighbours agree with i on the direction the
dot lies in, with p(i) itself factored out. Pixels inside a dot
have mostly positive values (Fig. 5b,c), whereas pixels be-
tween dots have both positive and negative values (Fig. 5d).

2.2. Grouping Cues: Attraction A and Repulsion R

Since the feature vector F is a direction vector, we use
the inner product between two feature vectors to measure
feature similarity S. The larger the similarity, the larger the
attraction, and the smaller the repulsion.

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)|
, j ∈ N(i) (4)

A(i, j) = e−
1−S(i,j)

σ , |L(j)− L(i)| ≤ rA (5)

R(i, j) =
1− S(i, j)

2
, |L(j)− L(i)| ≤ rR (6)

Note that rA � rR, i.e., attraction only operates at a short
range to pull pixels in the same dot together, whereas repul-
sion only operates at a long range to push pixels completely
inside dots and pixels completely outside dots apart.

a: attraction A and repulsion R over feature similarity S

b: A(i, :) c: A(m, :) d: A(k, :)

e: R(i, :) f: R(m, :) g: R(k, :)

Figure 6. Short-range attraction A based on feature similarity S
and long-range repulsion R based on feature dissimilarity 1 − S.
a) Attraction A is proportional to S and defined for nearby pix-
els, whereas R is inversely proportional to S and defined only for
distant pixels. b,c,d) A and e,f,g) R at pixels i, m, k marked in
Fig. 5a. Both i and m repel k, causing them to group together.

2.3. Graph Cuts with Attraction and Repulsion

Given attraction A and repulsion R between pixels, we
segment the image using the normalized cuts criterion [15]:

max ε =
within-group A

total degree of A
+

between-group R

total degree of R

This criterion can then be written in a matrix form using n×
2 partition matrix X , where X(i, g) = 1 if pixel i belongs
to group g, g = 1, 2. n is the total number of pixels. Let
1n denote n× 1 vectors of 1’s, and DW = Diag(W1n) the
diagonal degree matrix for any n× n weight matrix W .

maximize ε(X) =
2∑

g=1

XT
g WXg

XT
g DXg

(7)

subject to X ∈ {0, 1}n×2, X12 = 1n (8)

UT X = 0 (9)
where W = A−R + DR, (10)

D = DA + DR (11)

U is an n× c constraint matrix: If pixels a and b are known
to belong in the same region (e.g. from a background mask),
we have one constraint X(a, :) = X(b, :), i.e. U(a, k) = 1,
U(b, k) = −1 as the k-th constraint in matrix U .
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image meanshift watershed grad-watershed oriented-shed isoperimetric our method

Figure 7. Comparison of results on the 4 representative images in Fig. 1. Meanshift cannot break up conjoined dots. Standard water-
shed tends to oversegment, and gradient-based watershed misses many weak dots. Oriented watershed does not produce closed regions.
Isoperimetric segmentation tends to under-segment the image. While all these methods require some post-processing, our method produces
isolated dots all at once in a two-way region segmentation.

We follow the solution procedure developed in [17, 16]
and use their code online to find a near-global optimum to
this constrained normalized cuts problem.

3. Experiments

We implement our algorithm in MATLAB and apply it to
4 sets of microscopic images as well as real scene images.
Each microscopic dataset has 60 images, provided by our
collaborators and considered representative of their images.

The dot diameter ranges from 8 to 20 pixels. The same
set of parameters are used for all our results: σ = 0.75,
rA = 4, rB = 12. We threshold R to remove repulsion cues
from intensity peaks: R(i, j) = 0, if

∑
j F (i, j) < −10.

No constraints (Eqn. 9) are used except for dislocation im-
ages, where a background mask from intensity thresholding
is applied to avoid extracting unwanted lighter shapes.

While our space complexity is more than the traditional
normalized cuts with attraction cues only, our time com-
plexity is often less. In particular, since we are not treating
one dot as one region [3], but treating all the dots as a single
region, we get all the dots in a two-way segmentation.

We compare our method to 4 other algorithms (Fig. 7).

Meanshift: We use a local implementation [2]. It en-
hances intensity differences, but it is sensitive to scale
choices and cannot break up dots based on convexity.

Watershed: We use MATLAB’s built-in function in two
different ways: Watershed is directly applied to either
the intensity image or the gradient magnitudes (with
radius 5) of the image, in the same procedure as MAT-
LAB’s demo on Marker-Controlled Watershed Seg-
mentation. While the standard watershed results tend
to be over-fragmented in the presence of local intensity
fluctuation, the gradient-based watershed results tend
to be under-segmented and miss many dots of weak
contrast. We drop the latter from further evaluation.

Oriented watershed: We use the implementation pro-
vided by [1]. It relies on Pb [10] to clean up watershed
lines and has been shown to work well on most natural
images. The inadequacy of Pb on our images causes it
to have worse results than the standard watershed.

Isoperimetric: We use the implementation provided by
[6]. It recursively partitions an image into two re-
gions depending on initial seeds automatically chosen
from pixels of minimal intensity. Its results are under-
segmented and lack sensitivity to local convexity.
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haircells segmented dots A549 cells segmented dots

Figure 8. Our sample results on haircells and A549 cells. We can segment out clear or fuzzy dots in a near-regular or irregular layout.

While these algorithms are not designed to find dots, their
results demonstrate the difficulty and issues involved in seg-
menting dots. Unlike any of these algorithms, our method
does not require post-processing and produces all the iso-
lated dots at once in all these images (Fig. 8, Fig. 9).

We benchmark these results against human labeled dot
centers. Given m ground-truth dot centers and n segment
centers for an image, let Dij be the Euclidean distance be-
tween dot i and segment j. If it is less than a certain radius
threshold ρ, we consider (i, j) a matched detection.

precision =
#{j : minm

i=1 Dij ≤ ρ}
n

(12)

recall =
#{i : minn

j=1 Dij ≤ ρ}
m

(13)

The precision measures how many true dots are picked out
in the segmentation, and the recall measures how many
segmented dots are in fact true dots. Fig. 10 shows that
our method performs much better than these other methods.
The data points with perfect precision and lower recall rates
correspond to haircell images, where our method fails to de-
tect some extremely blurry haircells in the periphery which
usually only experts can pick out (e.g. Fig. 9 Row 4).

While our method is designed to pop out all the dots in
a microscopic image based entirely on the convexity flow
field feature, Fig. 11 shows that it works equally well on
natural scene images. The dots there are small repetitive
patterns, or textons, in frontal, or slanted, tilted, and per-
spective views. These interesting results open up new pos-
sibilities for shape from texture algorithms.
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HEK293T cells segmented dots dislocations segmented dots

Figure 9. Our sample results on HEK293T kidney cells and silicon wafer dislocation Images. We can segment out dots independent of the
size of their intensity contrast and even in the presence of partial occlusion and dot conjunction.

4. Conclusions

Finding dots is a challenging image segmentation task
which naturally arises in a diversity of applications. We
develop a spectral graph partitioning algorithm that pops out
all the dots in a single two-way region segmentation. There
are three key components to our algorithm.

The first is viewing dot boundaries as flexible regions of
their own. Many applications do not require precise seg-
mentation, neither does human vision. There is, however, a
deeper computational reason. When too much emphasis is
put on the precision of boundary locations and shapes (as in
all traditional image segmentation methods), it is hard for
the desired segmentation to become the dominant optimum

of any criterion. When that requirement is relaxed, para-
doxically the solution is closer to the desired segmentation.

The second is to encode geometry (convexity in particu-
lar) in a pixel-centric relational representation. While such a
representation is coarse for each pixel, its distributive nature
is capable of encoding subtle differences in local convexity
with the ensemble of pixels. An extension of our work is to
handle more complicated geometry other than convexity.

The third component is to introduce grouping cues of
both attraction and repulsion natures. While repulsion from
feature dissimilarity seems to encode the same attraction
cue of feature similarity, as it operates at a different (larger)
spatial range, it plays an active and complementary role to
local attraction. Popout would not be possible without re-
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Figure 10. Precision-recall statistics for meanshift, watershed,
isoperimetric, and our method on 4 categories of microscopic im-
ages. The oriented watershed shown in Fig. 7 is not included as it
often does not produce closed dot regions. Our method (red round
dots, upper right corner) has better precision and recall overall.

pulsion. While the mechanism of attraction and repulsion
in spectral graph theory has been elucidated in [15], its util-
ity has never been demonstrated on any visual tasks. Our
work is in fact the first successful application of attraction
and repulsion to real segmentation problems.

Our method can also detect textons in natural scene im-
ages without feature templates. These results provide excit-
ing new possibilities for other computer vision algorithms.
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