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The Laplacian pyramid recursively splits an image into lo-
cal averages and local differences using a fixed Gaussian interpolation
function. We propose a spatially variant interpolation function that is
adaptive to curvilinear edges in the image. Unlike the signal-based mul-
tiscale analysis where a step edge is multiply represented at all scales,
our perception-based multiscale analysis preserves the edge at a single
scale as much as possible. We demonstrate that our average pyramid
retains boundaries and shading at lower spatial and tonal resolutions,
whereas our difference pyramid refines edge locations and intensity de-
tails with a remarkably sparse code, delivering an image synopsis that is
uncompromising between faithfulness and effectiveness.

1 Introduction

An image of a natural scene is not a collection of random numbers. Pixels nearby
often have similar values, yet it is their differences that give away shapes and
textures. We propose an edge-preserving Laplacian pyramid that provides an im-
age synopsis which removes spatial redundancy, retains perceptually important
structures such as boundaries and textures, and refines the representation over
scale (Fig. 1). As the synopsis adopts a larger size, boundaries become more pre-
cisely localized, textures more elaborated. These synopses can be related using
the smallest synopsis and a series of sparse differences to refine it (Fig. 2).

image synopsis towards a smaller size

Fig. 1. Image synopsis should be effective, faithful and progressive. The original image
(285 × 288) is represented at 1

2
, 1

4
and 1

8
of its size respectively, all shown at the full

size (with obvious pixelization in the rightmost 36×36 image). Perceptually important
features, such as shape boundaries, material texture, highlights and cast shadows,
remain visible throughout the synopsis reduction process.
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Fig. 2. Multiscale analysis of an image. a: The signal-based Laplacian pyramid parses
an image into an average image of lower frequency and a series of difference images
of higher frequencies. In the average, boundaries are fuzzy and textures are smoothed
out. In the differences, a step edge is represented as multiple smooth transitions with
artificial halos (Gibbs phenomenon). b: Our edge-preserving Laplacian pyramid has
an average image that retains boundaries and overall textural variations and a set of
differences that successively refine edge locations and intensity details.

Multiscale analysis of an image is a well traversed area in signal processing,
e.g. the Gaussian-Laplacian pyramid [1] and wavelets [2]. The basic idea is that
every pixel value can be decomposed into a neighbourhood average component
and a local difference component. This process can be recursively applied to the
average, producing a frequency subband decomposition of the image (Fig. 2a).
Signal-based multiscale analysis methods vary in their choices of filters to com-
pute the neighbourhood average, yet they share one commonality: the filter is
the same everywhere in the image, whether the pixel is on a boundary or inside
a region. Signal frequencies matter; perceptual structures do not matter. Con-
sequently, signal-based multiscale analysis is great for blending images across
frequencies [3], but as image synopsis it is neither effective nor faithful.

We develop a Laplacian pyramid that adapts the neighbourhood average
computation according to edges. Since the average maximally preserves edges
within a single scale, edges are no longer repeatedly represented at multiple
levels of the pyramid. In fact, there is little perceptual structure left in the
difference images, other than sparse correction near edges due to inevitable loss
of spatial resolution at a coarser scale (Fig. 2b). We demonstrate that our new
Laplacian pyramid is effective at both coding and representing the image.

2 Edge-Preserving Multiscale Analysis

The Laplacian pyramid is developed from the idea that the intensity of pixel p

in a real image I can be largely predicted by its local context Ī:
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I(p) ≈ Ī(p) =
∑

q=p′s local neighbour

W (p, q)I(q) (1)

where weight W (p, q) describes how neighbour q contributes to predicting p’s
intensity. In the original formulation [1], W is pre-chosen and fixed over the entire
image, which has nothing to do with the image I itself. There is no guarantee
that the prediction Ī is a good synopsis of I, or the residue I(p)− Ī(p) is small.
In our formulation, W adapts to I and varies across the image, with Ī maximally
preserving the edges in I while making I − Ī as small as possible.

Our multiscale analysis follows the same procedure as in [1]:
Step 1: An image is decomposed into an average and a difference.
Step 2: The average is smoother and thus reduced in size.
Step 3: Repeat Steps 1 and 2 to the average.
This process recursively splits an image into an average and a difference, resulting
in a difference pyramid that can be used to synthesize the image.

Multiscale Analysis:

Given image I and number of scales n, construct average pyramid A and dif-
ference pyramid D, where ↓(·,W▽) is downsampling with analysis weights W▽,
↑(·,W△) is upsampling with synthesis weights W△. The sampling factor is 2.

A1 = I, As+1 = ↓(As,W▽), s = 1 → n (2)

Dn+1 = An+1, Ds = As − ↑(As+1,W△), s = n → 1 (3)

Multiscale Synthesis:

Given difference pyramid D, reconstruct average pyramid A and image I.

An+1 = Dn+1, As = Ds + ↑(As+1,W△), s = n → 1; I = A1 (4)

Two functions, ↓(·,W▽) and ↑(·,W△) need to be defined. In the Laplacian
pyramid, the analysis weights W▽ and the synthesis weights W△ are not only
identical but also spatially invariant. They are entirely determined by the dis-
tance between pixels, regardless of what and where these pixels are in the image:

W▽(p, q) = W△(p, q) = G(‖−→p −−→q ‖;σ) (5)

G(d;σ) = exp

(

−
d2

2σ2

)

(6)

where −→p is p’s 2D image coordinates, ‖ · ‖ a vector’s L2 norm, and G(d;σ) the
un-normalized 1D Gaussian function with mean 0 and standard deviation σ.

However, a quick examination of Eqns. 2–4 reveals that W▽ and W△ can be
independently defined and in fact arbitrary without jeopardizing a perfect
reconstruction. In our multiscale analysis, not only W▽ 6= W△, but both of them
also vary according to perceptual structures at each pixel.



4 Stella X. Yu

We characterize the perceptual structure in terms of pixel proximity and edge
geometry. Our new weight W for Eqn. 1 is a product of these two factors. Pixel
p itself always contributes with the maximal weight 1, while pixel q contributes
with the minimal weight 0 if it is separated (by boundaries) or far from p.

Edge-Preserving Averaging:

Given image I and neighbourhood radius r, compute the local average Ī using
spatial proximity kernel Ks and edge geometry kernel Kg.

Ī(p) =

∑r

k=1

∑

q∈N(p,k) W (p, q; I)I(q)
∑r

k=1

∑

q∈N(p,k) W (p, q; I)
, N(p, k) = p’s neighbours at radius k (7)

W (p, q; I) = Ks(p, q; r) · Kg(p, q; I, r) (8)

Ks(p, q; r) = G(‖−→p −−→q ‖;
r

3
) (9)

The geometry kernel Kg describes curvilinear edges with pairwise pixel grouping
relationships, with edges first localized at zero-crossings of 2nd-order derivatives.

The edge magnitude E and phase P of image I are the size of the 1st-order
derivative and the sign of the 2nd-order derivative along the gradient direction
respectively. The magnitude measures the maximal contrast, whereas the binary
phase indicates on which side the pixel lies with respect to zero-crossings [4].

Zero-crossings alone are not sufficient to characterize boundaries [5, 6]. We
formulate Kg based on the idea of intervening contour (IC) affinity in segmen-
tation [7, 8] and the idea of bilateral extension in contour completion [6].

The IC affinity C(p, q) between pixels p and q is inversely proportional to the
maximal edge magnitude encountered along the line connecting them. For adja-
cent pixels, it is 0 if they are on the opposite sides of an edge, and 1 otherwise
(Fig. 3a, Eqn. 10, Eqn. 11 line 1). Kg is the gap-completed version of C from bi-
lateral extension: Either two pixels are separated by an edge, or their neighbours
at both ends are separated by an edge (Fig. 3b). This curvilinearity operation of
Kg can be modeled as minimax filtering of C along angular directions (Eqn. 12).

b b

bc bc bc

bc

bc bc bc

p q

b b

bc bc bc

bc

bc bc bc

p q

q+

q−

b b

bc bc bc

bc

bc bc bc

p q

q+

q−

b b b

bc bc bc

bc

bc bc bc

bc

bc

p m q

a: C(p, q) ≈ 0 b: Kg(p, q) ≈ 0 via q+ and q− c: C(p, q) via m

Fig. 3. Boundaries are characterized by curvilinear edges. a: IC affinity C at radius 1
checks if there is an edge (black line) between adjacent pixels. b: Kg checks if there
is a curved boundary (thick gray curve) between two pixels: Either they (left) or their
neighbours at both ends (right) are separated by edges. c: IC affinity C at radius 2
checks if there is a curved boundary between successive pairs of adjacent pixels.
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To extend the boundary characterization from radius 1 to radius 2, we first
establish affinity C for pixels at distance 2 from that between successive pairs of
adjacent pixels (Fig. 3c, Eqn. 11 line 2). Kg is subsequently obtained as bilateral
extension of C to complete boundary gaps.

Formally, we first define Kg for N(p, 1) and then propagate it to N(p, 2).
This process (Eqn. 11-Eqn. 12) is recursively applied at an increasing radius to
fill in Kg values within a log-polar neighbourhood: 0 if two pixels are separated
by boundaries, and 1 otherwise. Kg is sparse. The space and time complexity is
linear to the number of pixels and to the number of neighbours per pixel.

Edge Geometry Kernel:

Given edge magnitude E and phase P , edge parameter σg, N(p, r) denoting the
set of pixels at radius r from p and along 8 directions, compute geometry Kg

which describes boundaries enclosing a pixel at an increasing radius (Fig. 3).

L(p, q) =

{

min(E(p), E(q)), P (p) 6= P (q)
0, P (p) = P (q)

(10)

C(p, q) =

{

G(L(p, q); σg), q ∈ N(p, 1)

min(Kg(p,m),Kg(m, q)), −→m =
−→p +−→q

2 , q ∈ N(p, 2)
(11)

Kg(p, q) = min(C(p, q), max
o∈{q+,q−}

C(p, o)), |∡q±pq| = 45◦, q, q± ∈ N(p, r) (12)

Downsampling is trivial since we only need to perform decimation on the aver-
age Ī. Upsampling requires boundary estimation at subpixel locations. To relate
subpixels to original pixels, we first interpolate edge magnitudes and phases at
subpixel locations using the Gaussian function with standard deviation 1

3 . We
then compute the affinity C and hence Kg between subpixels and their 8 imme-
diate original pixels (Fig. 4a). Using Kg between original pixels, we propagate
weights from subpixel locations to original pixels at a farther radius (Fig. 4b).
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a: C(p′, q), q ∈ N(p, 1) b: C(p′, q), q ∈ N(p, 2)

Fig. 4. Geometry kernel relating subpixel locations to original pixels. a: It starts with
establishing IC affinity C between p′ and its 8 immediate original pixels (left). There
are two scenarios. If p′ is closer to q than p, then C checks the edge between p′ and
q directly (middle). Otherwise, both edges intersecting p′ and p, p and q are checked
(right). Minimax filtering on C with neighbouring directions gives rise to geometry
kernel K(p′, q). For example, the left thick gray curve in b) illustrates K(p′, m). b: IC
affinity at radius 2 checks if there are boundaries (thick gray curves) intersecting the
line connecting p′ and q via mid-point m.
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Edge Geometry Kernel at Subpixel Locations:

Given edge L, parameter σg, subpixel displacement
−→
d where ‖d‖ < 1, compute

geometry kernel Kg between location −→p ′ = −→p +
−→
d and original pixel q.

C(p′, q) =







G(L(p′, q);σg), ‖−→p ′ −−→q ‖ ≤ ‖−→p −−→q ‖, q ∈ N(p, 1)
G(max(L(p′, p), L(p, q));σg), ‖

−→p ′ −−→q ‖ > ‖−→p −−→q ‖, q ∈ N(p, 1)

min(Kg(p
′,m),Kg(m, q)), −→m =

−→p +−→q
2 , q ∈ N(p, 2)

(13)

Kg(p
′, q) = min(C(p′, q), max

o∈{q+,q−}
C(p′, o)), |∡q±pq| = 45◦, q, q± ∈ N(p, r) (14)

Our analysis and synthesis weights realize weight W in Eqn. 8 on a down-
sampled grid and an upsampled grid respectively.

Edge-Preserving Analysis and Synthesis Weights:

We apply Eqn. 8 to downsample and upsample image I with:

W▽(p, q) = Ks(p, q; 2) · Kg(p, q) (15)

W△(p′, q) = Ks(p
′, q; 1) · Kg(p

′, q), −→p ′=−→p +
−→
d ,

−→
d ∈ {0, 0.5} × {0, 0.5} (16)

Our weight formula appears similar to bilateral filtering [9] based on spatial
proximity and intensity similarity. We replace the intensity similarity with our
geometry kernel which characterizes boundaries.

Our approach also shares the same anisotropic diffusion principle as many
partial differentiation equation formulations [10, 5]. We adapt weights according
to local image structures, yet they are neither low-level signal quantifiers such as
gradients [10], nor high-level hidden causes such as perceptual boundaries with
smoothness priors imposed [5], but mid-level characterization of boundaries in
terms of curvilinear zero-crossing edges.

Consequently, our method does not create flat zones and artificial boundaries
inside smooth regions (so-called staircasing effect) as local [9, 10] or non-local [11]
neighbourhood filtering approaches. The local average operator does not need to
be upgraded to linear regression in order to dissolve the staircasing artifacts[12].

We decompose an image into scales just like the Laplacian pyramid [1] and its
elaborated wavelet version [2]. However, instead of expanding the wavelet basis
to accommodate edges, e.g., ridgelets, wedgelets, curvelets [13–15], we create a
local structure adaptive basis at each pixel to acknowledge the discontinuity,
avoiding artificial oscillations that are inevitable in harmonic analysis methods.

Our synthesis weight formula expands boundaries to a higher resolution with
local pairwise pixel grouping relationships. It can be used for single image super-
resolution without evoking massive image patch comparisons [16–18].

3 Experimental Results

We evaluate our perceptual multiscale analysis over the following signal-based
multiscale analysis methods: the traditional Laplacian pyramid, i.e., Gaussian
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original: 31 × 31 15 × 15 62 × 62

Gaussian nearest bilinear bicubic our results

by circle formula

by image interpolation

Fig. 5. Comparison of interpolation methods. The scene consists of a circle on a shaded
background. Row 1 shows three images generated by the same formula at scales 1,
0.5, and 2 respectively. Row 2 shows downsampling results, Row 3 upsampling re-
sults, all interpolated from the original image using 5 interpolation methods. Gaussian:
boundaries dissolving over blur. Nearest: spikes at downsampling, jagged boundaries
and streaked shading at upsampling. Bilinear and bicubic: finer shading at upsampling,
smoother boundaries at the cost of blur and halos. Our results: boundaries smoothed
and shading refined without damaging sharp corners and contrast, approximating the
images generated by formula but without spikes at scale 0.5 and rounding at scale 2,
both unforeseeable from the original image.

interpolation, nearest neighbour, bilinear, and bicubic interpolation methods.
For the Gaussian, we use σ = 2. For the nearest, bilinear, and bicubic, we use
MATLAB built-in function imresize.m with a image size factor of 2 and the
default anti-aliasing setting. For our method, we set σg = 0.05, r = 2, n = 5.

We first compare the average image as an image representation. Fig. 5 shows
that our interpolation preserves corners and contrast as well as the nearest neigh-
bour interpolation, and refines curves and gradation as well as the bicubic in-
terpolation. Fig. 6 further demonstrates that our results have neither excessive
blur and halos around edges as the Gaussian, bilinear, bicubic methods, nor
magnified pixelation artifacts in textures as the nearest neighbour method. Our
method thus provides a faithful image synopsis at a much reduced size.
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Gaussian nearest bilinear bicubic our results

down to 1

4
×size

up to 4×size

Fig. 6. Comparison of the average image as a synopsis representation. For the 285×288
image in Fig. 2, we downsample it twice to 72 × 72 (shown at the full size), then
unsample twice to bring the size back to 285 × 288. Our results have neither excessive
blur as the Gaussian, bilinear, and bicubic, nor pixelation artifacts as the nearest.

We then compare the difference images as an image code on a set of stan-
dard test images (Fig. 7a). In the signal-based multiscale analysis, a single sharp
discontinuity in the intensity is decomposed into smooth transitions at multiple
frequencies. As the spatial frequency goes up, the intensity oscillation grows rel-
atively large near the edge. Our perception-based multiscale analysis encodes an
edge within a single scale as much as possible. There is no intensity overshoot-
ing, and the difference needed to refine the edge location is at most 2 pixels
wide, creating a sparser representation. Since most information is concentrated
in the average image of the smallest size (Fig. 7b), the reduction of entropy in
the difference images of larger sizes leads to significant savings in the number of
bits (Fig. 7c,d). While parsing an image into frequency bands can save 0.25 bits
per pixel over the original, parsing it into perceptual multiscale can save 1.45
bits per pixel. That is a 5-time increase in the lossless compression performance.

Among signal-based approaches, as an image code, multiscale with the sim-
plest nearest neighbour interpolation is far more efficient than the widely known
Laplacian pyramid; as an image representation, multiscale with bicubic interpo-
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a: standard test images ranging from 510 × 510 to 769 × 565 pixels
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c: average number of bits

d: t-test on the perceptual over: Gaussian nearest bilinear bicubic

mean difference in bits per pixel −1.20 −0.16 −0.37 −0.38
confidence at 5% significance ±0.14 ±0.14 ±0.05 ±0.05
p-value from two-tailed t-tests 1.5 × 10−7 3.3 × 10−2 4.1 × 10−7 3.0 × 10−7

Fig. 7. Lossless compression performance comparison. a) Test images. b) Entropy at
each scale for the Gaussian (x-axis) and our method (y-axis). The circle size reflects the
image size. While our average images have higher entropy than the Gaussian averages
(shown as the smallest circles above the diagonal line), most difference images, have
lower entropy than the Laplacian differences (shown as the rest circles). c) Average
number of bits per pixel for the original Laplacian pyramid on the x-axis, and the
original + and our edge-preserving Laplacian pyramid N on the y-axis. Linear relations
that fit through +’s and N’s respectively are shown as dashed lines. On average, 0.25
bits are saved with the Laplacian pyramid, while 1.45 bits are saved with our pyramid.
d) t-test results on the average numbers of bits per pixel between our method and the
other four methods. Our method saves more bits than any other method.
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lation has a better trade-off between clarity and smoothness. Our edge-preserving
Laplacian pyramid can yet outperform these signal-based multiscale approaches
on either account: The average images retain boundaries and shading at lower
spatial and tonal resolutions, whereas the difference images refine edge locations
and intensity details with a remarkably sparse code. It delivers an image synopsis
that is uncompromising between faithfulness and effectiveness.
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