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Medical image segmentation appears to be governed by the
global intensity level and should be robust to local intensity fluctua-
tion. We develop an efficient spectral graph method which seeks the best
segmentation on a stack of gamma transformed versions of the original
image. Each gamma image produces two types of grouping cues oper-
ating at different ranges: Short-range attraction pulls pixels towards re-
gion centers, while long-range repulsion pushes pixels away from region
boundaries. With rough pixel correspondence between gamma images,
we obtain an aligned cue stack for the original image. Our experimental
results demonstrate that cutting across the entire gamma stack delivers
more accurate segmentations than commonly used watershed algorithms.

1 Introduction

Hair cells of the inner ear transduce mechanical signals into electrical signals [1].
Each hair bundle is composed of tens of stereocilia organized in an organ-pipe-
like formation of increasing height (Fig. 1). Automatic segmentation of these
stereocilia in their fluorescent images is vital for medical research on hearing.

a: 3D view of hair cells b: 2D fluorescent slices & their segmentations

Fig. 1. Stereocilia segmentation. a) Hair cells are composed of tens of stereocilia orga-
nized in an organ-pipe-like formation of increasing height. b) Fluorescent images (Row
1) and their segmentations (our results, Row 2) at multiple heights show the cross
sections (e.g. A,B,C in a) of individual stereocilia (marked by colored dots).
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A: intensity fluctuation at boundaries

B: intensity fluctuation inside regions
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Fig. 2. Local intensity fluctuation presents considerable challenges in medical image
segmentation. A) Fluctuation at boundaries weakens the separation between two in-
tensity peaks. B) Fluctuation inside regions tends to break up an otherwise well defined
intensity peak. Both cases cause oversegmentations in watershed approaches. The solid
black line plots the 1D intensity profile along the line connecting the two pixels in the
inset, which shows the image in a labeled window on the left. The dotted green lines
mark the desired boundaries between intensity peaks.

Segmentation of such medical images often appears to be governed by global
intensity levels, yet imaging noise and local intensity fluctuation presents con-
siderable challenges. Two scenarios are illustrated in Fig. 2.

Morphological methods and energy-driven methods are widely used in medi-
cal image segmentation. While the former prescribes a local computational pro-
cedure, e.g. watershed algorithms [2, 3], the latter involves the minimization of a
global energy function formulated based on either regions [4, 5] or contours, e.g.
active contours [6] and level set methods [7].

While morphological methods are computationally efficient but prone to local
noise, energy-driven approaches are computationally costly and critically depen-
dent on initial seed solutions. Various techniques have been proposed to combine
their benefits, e.g. watersnakes [8] and level sets for watershed [3].

Graph cuts methods have also been employed to overcome the limitations of
watershed algorithms, which are essentially local segmentation methods. These
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Fig. 3. Method Overview. Given an image, we build a stack of its gamma transformed
versions, i.e., In = Iγn . For each gamma image In, we derive pairwise attraction An and
repulsion Rn between pixels. We compute pixel correspondences Cn between adjacent
gamma layers, and project cues at each layer to the reference layer I1: An→1 and Rn→1.
Cutting across the aligned cue stack produces segmentation Xk that is invariant to
gamma transformations, k indicating the granularity of segmentation.

include segmenting a single connected component with isoperimetric graph par-
titioning [9] and thin structures with augmented banded graph cuts [10].

We present a graph cuts approach that is robust to local intensity fluctuation
and can extract several regions of interest without any user initialization. We
encode the impact of high and low intensities, which we will refer to as peaks and
valleys, in pairwise grouping cues that encourage peak regions to stay together
and valley regions to divide apart. It is the job of global integration to decide
where region boundaries should be.

Our key idea is that regions of an image appear stable with respect to the
gamma transformation of the image, while cues in each gamma transformed
version reflect an ever changing balance between peaks and valleys, as peaks
shrink and valleys expand with an increasing gamma. The desired segmentation
must be the global consensus of local cues from a stack of these gamma images.

Illustrated in Fig. 3, given an image I, we first create several gamma trans-
formed versions: In = Iγn . For each In, we define two complementary local
grouping cues: a short-range attraction between nearby pixels with similar inten-
sities and a long-range repulsion between distant pixels with similar intensities
but separated by valleys. The former occurs most likely for pixels belonging to
the same stereocilium and the latter for pixels belonging to adjacent stereocilia.
Large repulsion demands single boundaries to occur somewhere between two
distant pixels, whereas large attraction discourages the formation of boundaries
between two nearby pixels, preventing the oversegmentation problems in Fig.
2. We establish rough local alignment between gamma images and project cues
derived from each In to the original image I through pixel correspondences. We
seek the optimal graph cuts across the cue stack of attraction and repulsion,
producing segmentation Xk for the original image I at a granularity determined
by the number of eigenvectors k.

We will address the integration of multiple cues in Section 2, formulate our
pairwise grouping cues for stereocillia images in Section 3, present experimental
results in Section 4, and conclude the paper in Section 5.
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2 Constrained Cuts with Attraction and Repulsion

We formulate the segmentation in a spectral graph-theoretic framework. We
collect pairwise cues and seek the solution that optimizes a global criterion. We
consider pairwise cues of three kinds: attraction A, repulsion R, and constraints
U . These cues have been studied separately in [11–13]. We combine them for the
first time in a single framework.

2.1 Graph Representation

In spectral graph methods, an image I is represented by a weighted graph
G(V,E,W ), where V denotes the set of nodes, E the set of edges connecting
the nodes, and W the weights attached to edges. A pixel then becomes a node
in the graph, each pairwise grouping cue becomes a weight between two nodes,
and image segmentation becomes a graph node partitioning problem: We seek k
partitions of node set V such that V = ∪kl=1Vl and Vi ∩ Vj = ∅, ∀i 6= j.

2.2 Criterion with Attraction and Repulsion

A good segmentation should have strong within-group attraction and between-
group repulsion, and weak between-group attraction and within-group repulsion.

Characterizing this intuition with linkratio allows us to achieve both ob-
jectives simultaneously [14]. linkratio L of two node sets (P,Q) measures the
fraction of connections from P to Q among all the connections that P has:

linkratio L(P,Q;W ) =
C(P,Q;W )
C(P, V ;W )

(1)

connections C(P,Q;W ) =
∑

i∈P,j∈Q
W (i, j) (2)

In particular, we have L(P, P ;W )+L(P, V \P ;W ) = 1, i.e. maximizing a within-
group linkratio is equivalent to minimizing its between-group linkratio.

We seek to maximize linkratios from within-group attraction and between-
group repulsion, combined linearly according to their total degree of connections:

max ε =
k∑
l=1

αL(Vl, Vl;A) + (1− α)L(Vl, V \Vl;R) (3)

where α =
C(Vl, V ;A)

C(Vl, V ;A) + C(Vl, V ;R)
(4)

α is a number between 0 and 1, indicating the total degree of attraction. 1− α
indicates the total degree of repulsion.
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2.3 Partial Grouping Constraints

We represent the partitioning by partition indicator X = [X1, . . . , Xk], where
Xl is an N × 1 binary indicator for partition Vl, Xl(i) = 1 if pixel i ∈ Vl, and 0
otherwise, l = 1, . . . , k. N is the number of pixels in the image.

We consider partial grouping constraints which require pixels a and b to
belong in the same region, i.e. X(a) = X(b). The collection of c such constraints
can be written as UTX = 0, where U is an N × c matrix, and each column of U
has only two non-zero numbers, +1 and −1.

2.4 Optimal Solution

Our criterion ε with pairwise attraction A and pairwise repulsion R, subject to
grouping constraints U can be written in a compact matrix form:

maximize ε(X) =
k∑
l=1

XT
l WXl

XTDXl
(5)

subject to X ∈ {0, 1}N×k, X1k = 1N (6)

UTX = 0 (7)
where W = A−R+DR (8)

D = DA +DR (9)

1n denotes the n× 1 vector of all 1’s. DW = Diag(W1N ) is an N ×N diagonal
matrix, and its diagonal contain the total degree of W connections for each node.

Relaxing the binary constraints, we can solve this optimization problem [11]
with the eigenvectors of HD−1WH, where H = I−D−1U(UTD−1U)−1UT . We
then discretize the eigenvectors to obtain the final segmentation [14].

3 Pairwise Grouping Cues from Image Intensities

The success of global integration depends on the local cues that feed into it. We
define a short-range attraction that pulls pixels towards region centers, a long-
range repulsion that pushes pixels away from region boundaries, and partial
grouping constraints that force peripheral background pixels to belong together.
With pixel correspondence between gamma images, we obtain a cue stack for
the original image.

3.1 Short-Range Attraction within Individual Peaks

Attraction A(i, j) between pixels i and j encodes local intensity similarity. The
straightforward definition

A(i, j) = e
−
|Ii−Ij |

2

2σ2
a (10)
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Fig. 4. Pairwise attraction and repulsion. a) Our attraction is adaptive to the local
intensity range within each neighborhood N (i), so that A(i′, j′) ≈ A(i, j), enhancing
the discrimination of two nearby similar peaks. b) Our repulsion is strongest for nearby
peaks and gets reduced as two pixels approach the inbetween valley: R(i, j′′) > R(i, j′).
mij is the minimal intensity level between pixels i and j.

requires fine parameter tuning and tends to merge nearby peaks of similar in-
tensities. We introduce a new definition that is asymmetrical between two pixels
and acts to pull pixels towards intensity peaks.

For pixels i and j, A(i, j) is inversely proportional to the the maximal inten-
sity difference between i and any pixel on the line ij, with sensitivity regulated
by local intensity range δi in i’s neighborhood N (i):

A(i, j) = e
−

maxt∈line(i,j) |Ii−It|
2

2δ2
i
·σ2
a (11)

δi = max
t∈N (i)

It − min
t∈N (i)

It (12)

We choose N (i) to be slightly larger than a stereocilium so that δi is estimated
between the peak and surrounding valleys (Fig. 4a). With adaptive scaling by
local intensity range δi, A(i, j) effectively enhances attraction within weak peaks
and allows a single parameter setting for σa to work on a variety of images.

3.2 Long-Range Repulsion between Peaks

Adjacent peaks provide a strong cue as to where the boundaries should lie.
This cue is encoded by long-range repulsion. Intuitively, two pixels of similar
intensity should belong to different peaks if they are separated by a valley. We
define repulsion R(i, j) between pixels i and j to be proportional to the difference
with the minimal intensity mij encountered on the line ij:

R(i, j) = 1− e−
min(|Ii−mij |,|Ij−mij |)

σr (13)
mij = min

t∈line(i,j)
It. (14)

The farther away the pixels are from the valley, the larger the intensity difference
with the minimum, and the larger the repulsion (Fig. 4b).
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3.3 Pixel Correspondence and Cue Projection

With each gamma transformation, while peaks remain peaks and valleys remain
valleys, their regions of influence change: Peaks shrink and valleys expand; pix-
els belonging to one peak region could become part of the background. Local
grouping cues derived from gamma images consequently do not completely agree
with each other. We establish rough pixel correspondence and project cues on
individual gamma image back to the original image.

Let An(i, j) be the affinity (i.e. attraction) between pixels i and j at gamma
image In. We follow the approach in [15] by computing the corresponding pixel
location Cn(i) as the center of mass of i’s affinity field and composing them
recursively to obtained the cue stack for the original image I = I1:

An→1(i, j) = An(Cn(i), Cn(j)) (15)
Rn→1(i, j) = Rn(Cn(i), Cn(j)) (16)

Cn(i) =
∑

j∈N(i)

An(i, j)Cn−1(i) (17)

where C1(i) is pixel i’s location in the original image I.
Cutting across the cue stack is equivalent to cutting a single graph with the

following total attraction A and total repulsion R:

A =
∑
n

D−1
A,nAn→1 +An→1D

−1
A,n (18)

R =
∑
n

D−1
R,nRn→1 +Rn→1D

−1
R,n. (19)

where DA,n and DR,n are the degree matrices for An and Rn respectively.

3.4 Partial Grouping Constraints

We obtain a crude background mask by intensity thresholding on the original
image. This mask is translated into our graph cuts framework as partial grouping
constraints where two pixels in the peripheral background must belong together
in the final segmentation. We form the constraint matrix U from the collections
of these pairwise grouping constraints.

3.5 Algorithm

Given image I, we compute a segmentation using the following procedure:

1. Build a gamma image stack where In = Iγn and I1 = I;
2. For each gamma image In,

(2.1) compute attraction An and repulsion Rn,
(2.2) compute pixel correspondence Cn,
(2.3) compute An→1, Rn→1 by projecting An, Rn to the original image I;

3. Compute total attraction A and repulsion R by collapsing the stack;
4. Form partial grouping constraints U from a background mask;
5. Solve the eigenvectors of weights W = A−R+DR with constraints U ;
6. Obtain a discrete segmentation from the eigenvectors.
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4 Experiments

We implement our algorithm in MATLAB. The same set of parameters are used
for all our images (∼300×300): γ = {1, 2, 4}, σa = 0.3, σr = 2σa, neighbourhood
radius 8 and 16 for attraction and repulsion respectively. We choose the number
of eigenvectors k according to the expected number of stereocilia in the image.

Fig. 5 shows that better segmentation is achieved by integrating cues over
the entire gamma stack instead of an individual gamma image. Single peaks
originally faint or without clear boundaries are enhanced in gamma transformed
images. However, with an increasing gamma, valleys are widened and boundaries
become less precise. Cutting across the gamma image stack allows segmenting
out weak peaks while retaining precise boundaries throughout the image.

Fig. 6 shows our coarse to fine segmentations. When the number of eigen-
vectors k is small, our segmentations resemble the watershed results. However,
our segmentations are not disrupted by local intensity fluctuation and do not
break up salient peaks. When k increases, our segmentions locate each peak with
tighter delineation. Our method successfully segments out weak peaks without
utilizing the near regularity of the spatial layout of stereocilia.

Fig. 7 shows additional results on images of poor imaging quality.
We measure the goodness of segmentation by scoring it with respect to the

ground-truth center locations of stereocilia. Let disk(i) denote a disk of some
fixed radius throughout the haircell bundles, located at stereocilium center i.
Let segment(i) denote the segment of maximal overlap with disk(i). Our score
is a number between 0 and 1, measuring the extent of overlap between disk(i)
and segment(i):

score(i) =
disk(i) ∩ segment(i)
disk(i) ∪ segment(i)

. (20)

γ0 γ1 γ2 γ0,γ1,γ2

Fig. 5. Better segmentation is obtained by cutting across the gamma stack instead of
a single gamma image. Left shows 3 individual gamma images and their segmentations
in 4 labeled windows. Right shows the segmentations based on all 3 γ images.
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a: image b: watershed c: k = 80 d: k = 100 e: k = 120 f: cells only

Fig. 6. Coarse-to-fine stereocilia segmentations. For each image (Column a), we show
watershed segmentations (Column b) and our results (Columns c-e) as the number
of eigenvectors k increases. Extracted stereocilia (Column f) show that our method is
robust to local intensity fluctuation, can discover weak peaks and precise boundaries.

Fig. 7. Our method works equally well on noisy and low-contrast images. k = 40. Rows
1-3 show images, watershed results and our results respectively.
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a: watershed b: our method at k = 120

c: distribution of scores

Fig. 8. Segmentation scores with respect to ground-truth stereocilia centers. These
center locations are marked by colored dots. Each number indicates the score of a
particular segment that contains a stereocilium center. a and b show a score example
for watershed and our method. c shows the distribution of scores from all the images.
Our method has a higher score than watershed overall.

The higher the score, the more precise the segmentation. As the number of
eigenvectors increases, our segmentation captures a more precise shape of indi-
vidual stereocilia. Fig. 8 shows with both image examples and statistics that our
method overall scores higher than watershed.

Our method segments the background into multiple valley regions, which
are of little interest to medical researchers. By requiring the mean intensity in
the region center to be higher than the periphery, we get rid of valleys and
automatically extract the stereocilia, as shown in Fig. 6f.
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5 Conclusions

The segmentation of medical images appears to be governed by the global inten-
sity level, yet local intensity fluctuation poses considerable challenges to both
local methods such as watershed and global methods such as level sets.

We develop a spectral graph-theoretic method which finds the best segmen-
tation on a stack of gamma transformed versions of the original image. Each
gamma image produces two kinds of local grouping cues: short-range intensity
similarity cues that pull pixels towards stereocilia centers, and long-range inten-
sity difference cues that push pixels away from stereocilia boundaries. We obtain
a cue stack for the original image using pixel correpondences between gamma
images. We then seek the optimal graph cuts across the aligned cue stack which
maximize within-group attraction and between-group repulsion. The near-global
optimal solution can be found efficiently using eigendecomposition.

Our method has only a few parameters and requires little tuning. We obtain
accurate and robust results on a variety of images with the same set of param-
eters, demonstrating the advantage of cutting across the entire gamma stack
instead of the original image or any gamma image alone, and achieving better
performance than watershed algorithms.

The segmentation issues we investigate in this paper are not restricted to
stereocilia images. Our approach of making a global decision based on two types
of local cues operating at different spatial ranges and from multiple gamma im-
ages provides a robust and efficient alternative to watershed or level set methods
in many medical image applications.

References

1. Vollrath, M.A., Kwan, K.Y., Corey, D.P.: The micromachinery of mechanotrans-
duction in hair cells. Annual Review of Neuroscience 30 (2007) 339–65

2. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38(1) (1994)
113–125

3. Tai, X., Hodneland, E., Weickert, J., Bukoreshtliev, N., Lundervold, A., Gerdes,
H.: Level set methods for watershed image segmentation. In: SSVM07. (2007)
178–90

4. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Comm. Pure Math. (1989) 577–684

5. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. (1990) 452–72

6. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions
on Image Processing (1998)

7. Malladi, R., Sethian, J.A.: Level set methods for curvature flow, image enchance-
ment, and shape recovery in medical images. In: In Proc. of Conf. on Visualization
and Mathematics, Springer-Verlag (1997) 329–45

8. Nguyen, H.T., Worring, M., van den Boomgaard, R., Worring, H.T.N.M.: Water-
snakes: Energy-driven watershed segmentation (2003)

9. Grady, L.: Fast, quality, segmentation of large volumes - isoperimetric distance
trees. In: ECCV (3). (2006) 449–62



12

10. Sinop, A.K., Grady, L.: Accurate banded graph cut segmentation of thin structures
using laplacian pyramids. In: MICCAI (2). (2006) 896–903

11. Yu, S.X., Shi, J.: Segmentation given partial grouping constraints. PAMI 26(2)
(2004) 173–83

12. Yu, S.X., Shi, J.: Understanding popout through repulsion. In: CVPR, Kauai
Marriott, Hawaii, USA (9-15 Dec 2001)

13. Yu, S.X., Shi, J.: Segmentation with pairwise attraction and repulsion. In: ICCV,
Vancouver, Canada (9-12 July 2001)

14. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: ICCV, Nice, France (11-17 Oct
2003)

15. Yu, S.X.: Segmentation induced by scale invariance. In: CVPR, San Diego (20-26
June 2005)


