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Abstract. Original active contour formulations may become ill-posedespecially
for boundaries characterized by prominent features. Attempts to yield well-posed
formulations lead to bias towards short contours. We provide a framework to
unify existing bias correcting energy methods and propose anovel local bias cor-
recting scheme similar to non-maximum suppression. Our method can be seen as
an approximation of a well-known algorithm that transformsa graph with posi-
tive and negative weights to a graph with only positive weights while preserving
the shortest paths among the nodes.

1 Introduction

One of the most well-known energy criteria for modeling and extracting object bound-
aries is that of Snakes, initially proposed in [1]:

E[C(s)] =

∫
C(s)

1

2
(α|C′(s)|2 + β|C′′(s)|2)ds − λ

∫
C(s)

‖∇I‖ds (1)

C(s) denotes the contour parametrized bys. The first two terms favor smooth contours,
whereas the third favors contours adhering to prominent image features like strong dis-
continuities. The above energy has no intrinsic preferencetowards short boundaries,
however it may become ill-posed. Good boundary segments receive negative cost and
the minimum of the objective may become−∞. Past approaches that attempted to cor-
rect the formulation ([2,3,4]) led to criteria strongly biased towards short segments. An
example is shown in Figure1. Given two points on the object boundary, the criterion
in [2] will extract the shortest possible curve instead of the actual boundary.

(a) original image (b) biased criterion (c) optimal solution

Fig. 1. Traditional energy criteria suffer from bias towards segments of short length.
Given two points on the object boundary, the criterion of [2] will produce a straight line
(shown in (b)). The desired boundary is shown in (c).
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We offer a novel interpretation of the bias problem and introduce a framework for
correcting it. Our framework unifies existing approaches like min ratio cycles [5], piece-
wise extension of the contour [6], non maximum-suppression [7], and our probabilistic
formulation in [8].

The length bias is a result of converting Criterion1 to positive by adding a large con-
stant. Such a transformation leads to a well-posed functional, however the minima are
not preserved. The new optimum solution is strongly biased towards short boundaries.

To remove the bias we turn to a discrete representation of Criterion1. We represent
the image with a graph where each node corresponds to a pixel and neighboring pixels
are connected. The edge weights are derived from the biased criterion that is, Equation1
plus constant, and are positive. The goal is to find the quantity α to remove from the
weights so that they remain positive and the bias is eliminated. We show that earlier bias
elimination approaches follow this framework and provide different choices regarding
α. We additionally propose a local bias correction scheme, which is an approximation
of a well-known algorithm of converting a graph with positive and negative weights to
a graph with only positive weights while preserving the shortest paths among nodes.

The problematic nature of Functional1 has been recognized early on and some of
the problems consistently appearing in the literature include: The contour fails to latch
to prominent image discontinuities and shrinks to a point. The contour produced is of-
ten too smooth and can not model geometrically complex boundaries. Self-intersecting
contours are allowed and cannot be easily avoided. These problems have been mostly
attributed to either the suboptimal nature of the optimization method, or the parametric
form of the energy functional. Rarely have they been linked to the bias introduced when
the energy criterion is converted to positive.

Earlier approaches required initialization of the contourvery close to the actual
boundary [1,9]. The intelligent scissors method described in [2,3,4] provided a novel
way for the user to guide the delineation process. Usually, these approaches require a lot
of user interaction to delineate the boundary. Level set methods [10] employ an intrinsic
representation of the curve and thus are not prone to problems related to parametriza-
tion. However, it is difficult to impose topological constraints, for example extraction
of a single region. Methods like the ones in [11,6,7] have incorporated heuristics in the
optimization process; they essentially extract the boundary in a piecewise manner. Ad-
ditional image features ([12,13,14]) and stronger contour priors ([15,16,17]) have also
been explored. Such methods impose additional constraintsbut do not correct the built-
in bias of the original criterion. The most direct attempt toaddress the bias problem has
been to normalize the quality score of the contour by the length of the contour [5,18].

2 The Boundary Length Bias Problem

To better understand the nature of the bias we will employ a discrete version of Func-
tional 1 and we will omit the second-order derivative. We assume thata curveC is
discretized inton points. Letci be thei-th point. Then, the energy1 is given by:

E[C] =

n∑
i=1

{d(ci+1, ci) − λ ‖∇I‖ci
} (2)
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whered(ci+1, ci) is an approximation of the first derivative of the curve and‖∇I‖ci
is

the gradient intensity at pointci. d(ci+1, ci) can be defined as the Euclidean length of
the linear segment connecting neighboring pointsci+1 andci.

Criterion2 can be globally optimized with dynamic programming. To thisend, the
image is represented with a graph. Each arc(u, v) is weighted according to2:

w(u, v) = d(u, v) − λf(u, v) (3)

wheref(u, v) refers to the image-derived features term.
The weights of Eq.3 become negative at image locations with prominent image fea-

tures. In the case where negatively weighted cycles are formed, the minimum of Eq.2
is−∞ and the problem becomes ill-posed. A negative cost cycle acts as a black hole in
the energy landscape and forces all candidate boundary segments to include that cycle.
Such an example is illustrated in Fig.2. When the weights are positive, the shortest
paths fromS to all the other nodes include the bold edges. However, when negatively
weighted cycles are introduced (Fig.2(c)), the shortest paths are altered entirely so that
they include negative cycles.

1

1

1

1

1

1

1

1

1
2

2

3

3 3

3

2

2

S

1
1

1

1

1

1

1

2

2

3

3 3

3

2

2

S
1

1

1

1

1

1

1

2

2

3

2

2

S
1

−7

33

31

1

(a) graph with positive weights (b) shortest paths from S (c)shortest paths for neg. cycle

Fig. 2. Negatively weighted cycles act as black holes in the energy landscape. (a) Orig-
inal graph with positive weights. (b) Shortest paths from S to all the other nodes for the
weights of (a) (shown with bold arrowed lines). (c) The edge indicated with dashed line
has obtained negative weight -7 and negative cycles have been created. The shortest
path from S (shown with bold lines) are forced to include suchcycles.

Removing negatively weighted cycles is computationally very difficult. An image
will typically consist of many prominent features which will cause the creation of an
exponential number of such cycles. Further, because the optima of the solution change
drastically when such a cycle is created, it is difficult to impose simple constraints that
will ensure the extraction of contours adhering to the object boundaries.

In practice, algorithms like [2,3,4] assume that the weights are positive. This is
equivalent to adding a large positive constantM to the original weights such that:

M = { max
w(u,v)<0

|w(u, v)|} + c (4)

wherec > 0. The weights obtained will be

wM (u, v) = w(u, v) + M (5)
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Such a transformation does not preserve the optima of the objective criterion since
the length of the contour is implicitly part of the optimization process. The objective
criterion optimized instead, is:

EM (C) =
∑

(u,v)∈C

{d(u, v) − λf(u, v)} + nM (6)

This difference between Equations1 and 6 is the termnM which is an additional
smoothing term proportional to the length of the contour. Its introduction is arbitrary
and its effect can be significant when long and geometricallycomplex contours are
to be extracted. When such criteria are used for interactivecontour extraction a large
amount of human input is required, as has been observed in [19].

3 Removing the Bias

To remove the bias introduced by adding a constant (Eq.5), we seekŵ of the form:

ŵ(u, v) = wM (u, v) − α(u, v) (7)

Our goal is to estimateα(u, v) so thatŵ(·) > 0 and we will do so in a local fashion.
Previously proposed bias correction methods provide different choices forα(u, v).

3.1 Local Bias Correction

The role of negative weights is to encourage the inclusion ofboundary segments in the
final solution. Thus, we need to assign very low positive weights to good boundary seg-
ments. The quality of a segment can be assessed based on the quality of its neighbors: a
segment should receive low value if it is significantly better than nearby segments. The
simplest segment is the edge between two nodes and we define:

w+(u, v) = wM (u, v) − max
w

wM (u, w) (8)

wherew andv are adjacent tou.
Non-maximum suppression and piecewise extension of the boundary are very simi-

lar to this transformation. Non-maximum suppression assigns high values to locally best
pixels. Piecewise boundary extension, extracts a boundaryin an incremental fashion so
that it is composed from high-score segments.

Converting Negative Weights to Positive Provided there are no negatively weighted
cycles, a graph with negative and positive weights can be convertedto a graph with
positive weights so that the shortest paths among the nodes are preserved. Such a trans-
formation is part of Johnson’s all pairs shortest paths algorithm ([20]) and defines a new
weighting functionŵ(u, v) as:

w+(u, v) = w(u, v) + h(u) − h(v) (9)

The functionh(·) is computed as follows. We create a new graphG′ consisting of all
the nodes of the original graphG and an additional dummy nodes. Nodes is connected
to all the other nodes with weights equal to 0. Then,h(u) is defined as the cost of the
shortest path froms to u. The weights thus defined are positive. Figure3 shows an
example of such a transformation.
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Fig. 3. (a) Original graph with positive and negative weights. (b) Graph with trans-
formed weights. The numbers inside the nodes indicate the shortest path costs from a
dummy nodes.

Since a criterion with both positive and negative weights (but without negatively
weighted cycles) does not suffer from the length bias, it follows that there exist criteria
with positive terms which do not have an implicit bias.

In practice however, this algorithm cannot be applied sincethe weights induced by
the image features will lead to negative cycles. Our local correction method can be seen
as an approximation to the optimal algorithm. Instead of a single dummy nodes, we
use as many dummy nodes as the nodes of the graph, and find the shortest paths in a
small neighborhood of each node. If there is a single best contour, our method yields
the same contour as the optimal method.

3.2 Ratio Weight Cycles

The ratio weight criterion in [5] minimizes a normalized version of the original energy
functional given by:

w(C) =

∑
e w(e)∑
e n(e)

(10)

wherew(C) is the weight of a contourC.
Finding the minimum of Eq.10is equivalent to converting the original graph weights

w(e) to w(e) − λn(e) and finding zero cost cycles, i.e.:
ŵ(C) = w(e) − λn(e) = 0 (11)

This is equivalent tofinding the largestλ such that no negatively weighted cycles are
created. The approach as presented in [5] does not model open curves and does not
admit user interaction. It provides a way of estimatingλ given a fixedn(e).

The authors explore two types ofn(e). Whenn(e) = 1, the shortest mean cycle is
found and the bias of Eq.6 is reduced toM . The data term is also altered so that the
contour extracted has on average good features. Whenn(e) = 1/|∇I|(e), the criterion
minimized is very similar to the original snakes criterion.The stronger the gradient
intensity, the shorter the contour extracted.

3.3 Probabilistic Formulation

In [8], we proposed a probabilistic formulation which is capableof extracting geomet-
rically complex boundaries. The weights defined by this method are of the form:

w(u, v) = xj − log
∑

i

e−xi (12)
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Fig. 4. Bold lines indicate the optimal contour. In (a)the weights in parentheses are
obtained by optimally converting the negative weights to positive. Graph (b) is obtained
by adding 3 to the original weights of graph (a). In (c) the local bias correction is applied
to the weights of (b). In (d) the weights of (b) are transformed according to the min ratio
cycle method.

wherexi, xj are the scores of neighboring segments, in our case edges emanating from
the same node. The approximation scheme used to compute thelog of the summation
of exponentials results in weights similar to the ones of thelocal correcting method.
That is, locally best segments receive very low costs.

4 Evaluation

4.1 Toy Example

Figure4 demonstrates how the methods presented transform the weights and alter the
optima of the criteria. Bold lines indicate the desired boundary. In the optimal case,
(Fig.4(a)) the graph contains both positive and negative weights and the desired bound-
ary is the petal-shaped one. Inside the parentheses, the weights obtained from the opti-
mal transformation are indicated. If the weights are translated by a constant, as is shown
in Figure4(b), then the optima of the criterion are not preserved. As a result, the opti-
mum contour has been smoothed out (part of the inner cycle is included). The local bias
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transformation is shown in Figure4(c); for this example the weights calculated are not
similar with the optimal ones but the optimal contour is the desired boundary. Finally,
in Figure4(d) the weights obtained from the mean ration are shown. In this case, the
optimal contour includes part of the outer cycle.

4.2 Contour Completion

Figure5 shows results obtained for some real images for the task of contour completion.
The gradient of the image was only used to guide the process. Seed points were selected
by identifying consecutive strong gradient intensity points. The shortest paths among
all seed points were found using biased weights and the locally corrected weights. In
the case of biased weights one can see the tendency towards simpler contours. Further,
boundaries which are not characterized with high intensitygradient are not always fol-
lowed, as for example in the black and white flower. On the other hand, the locally
corrected weights produce more detailed edge maps and oftentimes complete the con-
tours in a more conceptually compatible fashion. On the downside, they may lead to
irregular boundaries as in the case of the woman example.

(a) original image (b) seed points (c) biased (d) locally corrected

Fig. 5. Seed points were selected as strong edge points on the objectboundary (b).
Shortest paths between all seed points were found and displayed for the biased method
(c) and the locally corrected method (d).
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