A Unifying View of Contour Length Bias Correction

Christina Pavlopoulou Stella X. Yu

Computer Science Department
Boston College, Chestnut Hill, MA 02469, USA
{pavl o, syu}l@s. bc. edu

Abstract. Original active contour formulations may become ill-possgecially
for boundaries characterized by prominent features. Aitsito yield well-posed
formulations lead to bias towards short contours. We peddramework to
unify existing bias correcting energy methods and propaseval local bias cor-
recting scheme similar to non-maximum suppression. Ouhaoaetan be seen as
an approximation of a well-known algorithm that transforangraph with posi-
tive and negative weights to a graph with only positive wisghihile preserving
the shortest paths among the nodes.

1 Introduction

One of the most well-known energy criteria for modeling arttacting object bound-
aries is that of Snakes, initially proposed in:[

BOW) = [ S0+ s [ eilds @

(s)
C(s) denotes the contour parametrizedsbil he first two terms favor smooth contours,
whereas the third favors contours adhering to prominengétriaatures like strong dis-
continuities. The above energy has no intrinsic prefereasmrds short boundaries,
however it may become ill-posed. Good boundary segmengvieecegative cost and
the minimum of the objective may becomec. Past approaches that attempted to cor-
rect the formulation (,3,4]) led to criteria strongly biased towards short segments. A
example is shown in Figuré. Given two points on the object boundary, the criterion
in [2] will extract the shortest possible curve instead of thealdboundary.
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(a) original image (b) biased criterion (c) optimal solatio
Fig. 1. Traditional energy criteria suffer from bias towards segtaeof short length.
Given two points on the object boundary, the criterionZfill produce a straight line

(shown in (b)). The desired boundary is shown in (c).
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We offer a novel interpretation of the bias problem and idtrce a framework for
correcting it. Our framework unifies existing approachles inin ratio cyclesf], piece-
wise extension of the contou®]j non maximum-suppression][ and our probabilistic
formulation in [B].

The length bias is a result of converting Criteribto positive by adding a large con-
stant. Such a transformation leads to a well-posed funatitmowever the minima are
not preserved. The new optimum solution is strongly biasa@tds short boundaries.

To remove the bias we turn to a discrete representation tér@m 1. We represent
the image with a graph where each node corresponds to a pideleighboring pixels
are connected. The edge weights are derived from the bigisexian that is, Equatiof
plus constant, and are positive. The goal is to find the qyantto remove from the
weights so that they remain positive and the bias is elirethatVe show that earlier bias
elimination approaches follow this framework and providféedent choices regarding
«. We additionally propose a local bias correction scheméglwis an approximation
of a well-known algorithm of converting a graph with posttignd negative weights to
a graph with only positive weights while preserving the séstrpaths among nodes.

The problematic nature of Functionehas been recognized early on and some of
the problems consistently appearing in the literatureuide! The contour fails to latch
to prominent image discontinuities and shrinks to a poiht €ontour produced is of-
ten too smooth and can not model geometrically complex batiesl Self-intersecting
contours are allowed and cannot be easily avoided. Thesdepns have been mostly
attributed to either the suboptimal nature of the optiniaraimethod, or the parametric
form of the energy functional. Rarely have they been linketthé bias introduced when
the energy criterion is converted to positive.

Earlier approaches required initialization of the contwery close to the actual
boundary [,9]. The intelligent scissors method described 43[4] provided a novel
way for the user to guide the delineation process. Usublbgd approaches require a lot
of user interaction to delineate the boundary. Level sehou [L0] employ an intrinsic
representation of the curve and thus are not prone to prabielated to parametriza-
tion. However, it is difficult to impose topological constres, for example extraction
of a single region. Methods like the ones irl]6,7] have incorporated heuristics in the
optimization process; they essentially extract the bognitea piecewise manner. Ad-
ditional image features 1,13,14]) and stronger contour priorsi(p,16,17]) have also
been explored. Such methods impose additional constiaihtio not correct the built-
in bias of the original criterion. The most direct attempétitlress the bias problem has
been to normalize the quality score of the contour by thettenfthe contour’p,14].

2 TheBoundary Length Bias Problem

To better understand the nature of the bias we will employsardte version of Func-
tional 1 and we will omit the second-order derivative. We assume ahetirveC' is
discretized inta: points. Lete; be thei-th point. Then, the enerdyis given by:

E[C] =Y _{d(cit1, ei) = A VI ]le;} )
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whered(c;+1, ¢;) is an approximation of the first derivative of the curve d8l||., is
the gradient intensity at poimt. d(c;+1, ¢;) can be defined as the Euclidean length of
the linear segment connecting neighboring poifts andc;.

Criterion2 can be globally optimized with dynamic programming. To #isl, the
image is represented with a graph. Each(ar@) is weighted according t@:

w(u,v) = d(u,v) — \f(u,v) 3)

wheref (u,v) refers to the image-derived features term.

The weights of Eg3 become negative at image locations with prominentimage fea
tures. In the case where negatively weighted cycles areddrthe minimum of EqR2
is —oo and the problem becomes ill-posed. A negative cost cycteasca black hole in
the energy landscape and forces all candidate boundaryesggo include that cycle.
Such an example is illustrated in Fig. When the weights are positive, the shortest
paths from$ to all the other nodes include the bold edges. However, wiegatively

weighted cycles are introduced (FR{c)), the shortest paths are altered entirely so that
they include negative cycles.

(a) graph with positive weights  (b) shortest paths from S sk@yrtest paths for neg. cycle

Fig. 2. Negatively weighted cycles act as black holes in the enenggdcape. (a) Orig-
inal graph with positive weights. (b) Shortest paths frono Slt the other nodes for the
weights of (a) (shown with bold arrowed lines). (c) The edgidated with dashed line
has obtained negative weight -7 and negative cycles have ¢reated. The shortest
path from S (shown with bold lines) are forced to include scyties.

Removing negatively weighted cycles is computationallg\difficult. An image
will typically consist of many prominent features which lWihuse the creation of an
exponential number of such cycles. Further, because thmajiff the solution change
drastically when such a cycle is created, it is difficult tgpimse simple constraints that
will ensure the extraction of contours adhering to the aljecindaries.

In practice, algorithms likeZ,3,4] assume that the weights are positive. This is
equivalent to adding a large positive constahto the original weights such that:

M ={ max |w(u,v)|}+¢c 4

w(u,v)<0
wherec > 0. The weights obtained will be

wpg (u,v) = w(u,v) + M (5)
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Such a transformation does not preserve the optima of thectig criterion since
the length of the contour is implicitly part of the optimiiat process. The objective
criterion optimized instead, is:

En(C)= Y {d(u,v) = Mf(u,v)} +nM (6)
(u,v)eC
This difference between Equatiodsand 6 is the termnM which is an additional
smoothing term proportional to the length of the contowr.iitroduction is arbitrary
and its effect can be significant when long and geometrigaiyplex contours are
to be extracted. When such criteria are used for interactvgour extraction a large
amount of human input is required, as has been observedjin [

3 Removing the Bias

To remove the bias introduced by adding a constant§Eqve seeko of the form:
w(u,v) = wpr(u,v) — alu,v) (7)

Our goal is to estimate(u, v) so thatw(-) > 0 and we will do so in a local fashion.

Previously proposed bias correction methods providerdiffechoices forv(u, v).

3.1 Local BiasCorrection

The role of negative weights is to encourage the inclusidmoaindary segments in the

final solution. Thus, we need to assign very low positive Wesgo good boundary seg-

ments. The quality of a segment can be assessed based oralifyp @fiits neighbors: a

segment should receive low value if it is significantly betten nearby segments. The

simplest segment is the edge between two nodes and we define:

+
(

w™ (u,v) = wpr(u,v) — max wpy (u, w) (8)

wherew andv are adjacent ta.

Non-maximum suppression and piecewise extension of theday are very simi-
lar to this transformation. Non-maximum suppression amssigh values to locally best
pixels. Piecewise boundary extension, extracts a boundany incremental fashion so
that it is composed from high-score segments.

Converting Negative Weightsto Positive Provided there are no negatively weighted
cycles a graph with negative and positive weights can be conveaedgraph with
positive weights so that the shortest paths among the ned@seserved. Such a trans-
formation is part of Johnson'’s all pairs shortest pathsrélym ([2(]) and defines a new
weighting functionw(u, v) as:

wh (u,v) = w(u,v) + h(u) — h(v) 9)
The functionh(-) is computed as follows. We create a new gragiconsisting of all
the nodes of the original grafghand an additional dummy nodeNodes is connected
to all the other nodes with weights equal to 0. Thiefu) is defined as the cost of the
shortest path frons to u. The weights thus defined are positive. Fig@rehows an
example of such a transformation.
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Fig.3. (a) Original graph with positive and negative weights. (b with trans-
formed weights. The numbers inside the nodes indicate theesi path costs from a
dummy nodes.

Since a criterion with both positive and negative weights (Bithout negatively
weighted cycles) does not suffer from the length bias, Ibfes that there exist criteria
with positive terms which do not have an implicit bias.

In practice however, this algorithm cannot be applied stheaveights induced by
the image features will lead to negative cycles. Our localezion method can be seen
as an approximation to the optimal algorithm. Instead ofnglsi dummy node, we
use as many dummy nodes as the nodes of the graph, and findothessipaths in a
small neighborhood of each node. If there is a single besbconour method yields
the same contour as the optimal method.

3.2 RatioWeight Cycles

The ratio weight criterion inq] minimizes a normalized version of the original energy
functional given by:

g y U)(C) — Ze w(e)
wherew(C) is the weight of a contouf.

Finding the minimum of E(L0is equivalent to converting the original graph weights
w(e) tow(e) — An(e) and finding zero cost cycles, i.e.:

w(C) =w(e) — An(e) =0 (11)
This is equivalent tdinding the largest\ such that no negatively weighted cycles are
created The approach as presented i} floes not model open curves and does not
admit user interaction. It provides a way of estimatingiven a fixedn(e).

The authors explore two types ofe). Whenn(e) = 1, the shortest mean cycle is
found and the bias of Ed is reduced ta\/. The data term is also altered so that the
contour extracted has on average good features. When= 1/|VI|(e), the criterion
minimized is very similar to the original snakes criteridrhe stronger the gradient
intensity, the shorter the contour extracted.

(10)

3.3 Probabilistic Formulation

In [8], we proposed a probabilistic formulation which is capaiflextracting geomet-
rically complex boundaries. The weights defined by this roétire of the form:

w(u,v) = x; —log Z e v (12)
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(c) local bias correction (d) min ratio

Fig.4. Bold lines indicate the optimal contour. In (a)the weighisparentheses are
obtained by optimally converting the negative weights tsifiee. Graph (b) is obtained
by adding 3 to the original weights of graph (a). In (c) thedlduias correction is applied
to the weights of (b). In (d) the weights of (b) are transfodraecording to the min ratio
cycle method.

wherex;, z; are the scores of neighboring segments, in our case edgesgngafrom
the same node. The approximation scheme used to compuliggtbéthe summation
of exponentials results in weights similar to the ones ofltdwal correcting method.
That is, locally best segments receive very low costs.

4 Evaluation

4.1 Toy Example

Figure4 demonstrates how the methods presented transform the tweigt alter the
optima of the criteria. Bold lines indicate the desired bdany. In the optimal case,
(Fig. 4(a)) the graph contains both positive and negative weigtddfee desired bound-
ary is the petal-shaped one. Inside the parentheses, thbteebtained from the opti-
mal transformation are indicated. If the weights are tratiesl by a constant, as is shown
in Figure4(b), then the optima of the criterion are not preserved. Assalt, the opti-
mum contour has been smoothed out (part of the inner cyahelisgded). The local bias
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transformation is shown in Figuegc); for this example the weights calculated are not
similar with the optimal ones but the optimal contour is tiesided boundary. Finally,
in Figure4(d) the weights obtained from the mean ration are shown.itnd#se, the
optimal contour includes part of the outer cycle.

4.2 Contour Completion

Figure5 shows results obtained for some real images for the taskbaocompletion.
The gradient of the image was only used to guide the processl [®ints were selected
by identifying consecutive strong gradient intensity geiThe shortest paths among
all seed points were found using biased weights and thelyocairected weights. In
the case of biased weights one can see the tendency towanglsiscontours. Further,
boundaries which are not characterized with high interggidient are not always fol-
lowed, as for example in the black and white flower. On the ottend, the locally
corrected weights produce more detailed edge maps andiofesncomplete the con-
tours in a more conceptually compatible fashion. On the disen they may lead to
irregular boundaries as in the case of the woman example.

(a) original i |mage (b) seed pomts (c) biased

(d) locallyrected
e M

Fig.5. Seed points were selected as strong edge points on the dlgjeatary (b).
Shortest paths between all seed points were found and wéspfar the biased method
(c) and the locally corrected method (d).
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